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The IBM POWER4 is a new microprocessor
organized in a system structure that includes
new technology to form systems. The name
POWER4 as used in this context refers not
only to a chip, but also to the structure used
to interconnect chips to form systems.
In this paper we describe the processor
microarchitecture as well as the interconnection
architecture employed to form systems up to
a 32-way symmetric multiprocessor.

Introduction
IBM announced the RISC System/6000* (RS/6000*, the
predecessor of today’s IBM eServer pSeries*) family of
processors in 1990. The initial models ranged in frequency
from 20 MHz to 30 MHz [1] and achieved performance
levels exceeding those of many of their contemporaries
[2]. In 1993, the POWER2 microprocessor was introduced,
operating initially at frequencies ranging from 55 MHz to
71.5 MHz [3]. The POWER2 microprocessor was capable
of simultaneous execution of up to six instructions per
clock cycle. The PowerPC 601* microprocessor was also
introduced in 1993 [4]. The PowerPC 601 resulted from a
joint development effort by IBM, Apple, and Motorola at
the Somerset Design Center in Austin, Texas. Like their
predecessors, systems built using these microprocessors
were 32-bit architectures, though the PowerPC
Architecture* did recognize a 64-bit implementation. With
the RS64 microprocessor introduced in 1997 and the
POWER3 microprocessor introduced in 1998 [5], 64-bit
architected UNIX**-based RS/6000 systems became

commonplace. The RS64 and its follow-on
microprocessors, the RS64-II [6], RS64-III [7], and RS64-
IV [8], were optimized for commercial applications. The
RS64 initially appeared in systems operating at 125 MHz.
Most recently, the RS64-IV has been shipping in systems
operating at up to 750 MHz. The POWER3 and its follow-
on, the POWER3-II [9], were optimized for technical
applications. Initially introduced at 200 MHz, most recent
systems using the POWER3-II have been operating at
450 MHz. The RS64 microprocessor and its follow-ons
were also used in AS/400* systems (the predecessor
to today’s eServer iSeries*).

POWER4 was designed to address both commercial and
technical requirements. It implements and extends in a
compatible manner the 64-bit PowerPC Architecture [10].
First used in pSeries systems, it will be staged into the
iSeries at a later date. It leverages IBM technology using
an 0.18-�m-lithography copper and silicon-on-insulator
(SOI) technology [11]. In the ongoing debate between
the “speed demons” (high clock rate) and the “braniacs”
(more complex design but a higher instructions-per-cycle
rate [12]), IBM UNIX-based systems have traditionally
been in the braniac camp. With the POWER4, IBM
opted to also embrace the speed-demon approach. The
POWER4 design was initially introduced at processor
frequencies of 1.1 GHz and 1.3 GHz, surpassing all
other 64-bit microprocessors in some key performance
benchmarks [13].

In this paper we first describe the objectives that were
established for the design. We then take a closer look
at the components of the resultant systems from a
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microarchitecture perspective. We begin by first discussing
the POWER4 chip. One of IBM’s major strengths is its
system expertise—the ability to design multiple parts
in a consistent and synergistic manner. In that light,
POWER4 cannot be considered only a chip, but rather
an architecture within which a set of chips are designed
together to realize a system. As such, POWER4 can be
considered a technology in its own right. In that light, we
discuss how systems are built by interconnecting POWER4
chips to form symmetric multiprocessors (SMPs) of any
size up to a 32-way SMP. The interconnect topology,
referred to as a distributed switch, is new to the industry.
Finally, no system discussion would be complete without
some view of the reliability, availability, and serviceability
(RAS) features and philosophy incorporated into
POWER4 systems. A more complete discussion of the
POWER4 RAS features may be found in a companion
paper by Bossen et al. [14].

Guiding principles
In designing POWER4, the engineering team was guided
by a set of principles which included the following:

● SMP optimization: The server must be designed for high-
throughput multitasking environments. The system must
be optimized for SMP operation, in which a large
number of transistors can be used to improve total
system performance. By their very nature, servers
process disparate information, often with multiple
processes active concurrently.

● Full-system design approach: To optimize the system,
we began with the full design in mind up front. This
marriage of process technology, packaging, and
microarchitecture was designed to allow software
to exploit them. The processor was designed to fit
effectively in this environment. We designed the entire
system together, from the processor to memory and I/O
bridge chips. A new high-performance processor needs
a new subsystem to feed it effectively.

● Very-high-frequency design: To maintain a leadership
position, we planned from the outset to deliver best-of-
breed operating frequencies. We revamped our chip
design with new transistor-level tools [15], and have
transformed complex control logic into regular dataflow
constructs. Additionally, we have designed the system
to permit system balance to be preserved as technology
improvements become available, allowing even higher
processor frequencies to be delivered.

● Leadership in reliability, availability, and serviceability
(RAS): Servers have evolved toward continuous
operation. We had already begun designing into
our systems RAS attributes previously seen only in
mainframe systems. With POWER4, we accepted the
principle that one does not achieve high levels of

reliability only by choosing reliable parts and
incorporating error-correction-code (ECC) logic into
major arrays. Instead, we required an approach that
eliminated outages and provided redundancy in cases
where errors could not be eliminated. Where possible,
if an error occurred, we worked to transform hard
machine stops (checkstops) into synchronous machine
interrupts to software to allow the system to circumvent
problems if possible.

● Balanced technical and commercial performance: As we
balanced the system, we made sure the design could
handle a varied and robust set of workloads. This is
especially important as the e-business world evolves
and data-intensive demands on systems merge with
commercial requirements. The need to satisfy high-
performance computing requirements with their
historical high-bandwidth demands and commercial
requirements with their data-sharing and SMP scaling
requirements dictated a single design to address both
environments. This would also allow us to meet the
needs of what became pSeries and iSeries eServers
with a single design.

● Binary compatibility: Several internal IBM task forces
in the first half of the 1990s had concluded that the
PowerPC Architecture had no technical impediments
to prevent it from scaling up to significantly higher
frequencies with excellent performance. With no
technical reason to change, in order to keep our
customers’ software investment intact, we accepted the
absolute requirement of maintaining binary compatibility
for both 32-bit and 64-bit applications with prior
PowerPC* and PowerPC AS systems.

POWER4 chip
The components of the POWER4 chip are shown in
Figure 1. The design features two processors on one chip;
included in what we are referring to as the processor
are the various execution units and the split first-level
instruction and data caches. The two processors share a
unified second-level cache, also on the same chip, through
a core interface unit (CIU), as shown in Figure 1. The
CIU is a crossbar switch between the L2, implemented
as three separate, autonomous cache controllers, and
the two processors. Each L2 cache controller can operate
concurrently and feed 32 bytes of data per cycle. The CIU
connects each of the three L2 controllers to either the
data cache or the instruction cache in either of the two
processors. Additionally, the CIU accepts stores from the
processors across 8-byte-wide buses and sequences them to
the L2 controllers. Each processor has associated with it a
noncacheable unit, the NC unit in Figure 1, responsible
for handling instruction-serializing functions and performing
any noncacheable operations in the storage hierarchy.
Logically, this is part of the L2.
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The directory for a third-level cache, L3, and its
controller are also located on the POWER4 chip. The
actual L3 is on a separate chip. A separate functional
unit, referred to as the fabric controller, is responsible for
controlling dataflow between the L2 and L3 controller for
the chip and for POWER4 communication. The GX
controller is responsible for controlling the flow of
information into and out of the system. Typically, this
would be the interface to an I/O drawer attached to
the system. With the POWER4 architecture, however,
this is also the point at which we would directly attach
an interface to a switch for clustering multiple POWER4
nodes.

Also included on the chip are functions we logically
call pervasive function. These include trace and debug
facilities used for first-failure data capture, built-in self-
test (BIST) facilities, a performance-monitoring unit, an
interface to the service processor (SP) used to control the
overall system, power-on reset (POR) sequencing logic,
and error detection and logging circuitry.

A die photo of the POWER4 chip is shown in Figure 2.
The chip contains 174 million transistors interconnected
across seven layers of copper metallurgy. For clarity, the
major components of the chip are labeled. Their operation
is described in the remainder of this paper.

Four POWER4 chips can be packaged on a single
module to form an eight-way SMP. Four such modules can
be interconnected to form a 32-way SMP. To accomplish
this, each chip contains five primary interfaces. To
communicate with other POWER4 chips on the same
module, there are logically four 16-byte buses. Physically,
these four logical buses are implemented with six buses,
three on and three off, as shown in Figure 1. To
communicate with POWER4 chips on other modules,
there are two 8-byte buses, one on and one off. Each chip
has its own interface to the off-chip L3 across two 16-byte-
wide buses, one on and one off, operating at one-third
processor frequency. To communicate with I/O devices
and other computing nodes, two 4-byte-wide GX buses,
one on and one off, operating at one-third processor

Figure 1

POWER4 chip logical view.
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frequency, are used. Finally, each chip has its own JTAG
interface to the system service processor. All of the above
buses, except for the JTAG interface, scale with processor
frequency. POWER4 systems will be offered at more than
one frequency. It is also anticipated that technological
advances will allow us to increase processor frequency
over time. As this occurs, bus frequencies will scale
proportionately, allowing system balance to be maintained.

POWER4 processor
Figure 3 shows a high-level block diagram of a POWER4
processor. The two processors on the chip are identical
and provide a two-way SMP model to software. The
internal microarchitecture of the core is a speculative
superscalar out-of-order execution design. Up to eight
instructions can be issued each cycle, with a sustained
completion rate of five instructions. Register-renaming
pools and other out-of-order resources coupled with the
pipeline structure allow the design to have more than 200
instructions in flight at any given time. In order to exploit
instruction-level parallelism, there are eight execution
units, each capable of being issued an instruction each
cycle. Two identical floating-point execution units, each
capable of starting a fused multiply and add each cycle
[i.e., a maximum four floating-point operations (FLOPs)
per cycle per processor] are provided. In order to feed
the dual floating-point units, two load/store units, each
capable of performing address-generation arithmetic,

are provided. Additionally, there are dual fixed-point
execution units, a branch execution unit, and an execution
unit to perform logical operations on the condition register.

Branch prediction
To help mitigate the effects of the long pipeline
necessitated by the high-frequency design, POWER4
invests heavily in branch-prediction mechanisms. Branch-
prediction schemes are not new [16, 17]. POWER4 uses a
multilevel branch-prediction scheme to predict whether
or not a conditional branch instruction is taken. Similar
schemes have been implemented in other systems; see [18]
for example. Additionally, branch target addresses are
predicted for those instructions that branch to an address
specified in either the count register or the link register.
Similar concepts have been discussed in the literature
[19, 20].

In POWER4, up to eight instructions are fetched each
cycle from the direct-mapped 64KB instruction cache. The
branch-prediction logic scans the fetched instructions,
looking for up to two branches each cycle. Depending
upon the branch type found, various branch-prediction
mechanisms engage to help predict the branch direction
or the target address of the branch or both. Branch
direction for unconditional branches is not predicted. All
conditional branches are predicted, even if the condition
register bits upon which they are dependent are known at
instruction fetch time. Branch target addresses for the
PowerPC branch-to-link-register (bclr) and branch-to-
count-register (bcctr) instructions are predicted using a
hardware-implemented link stack and count cache
mechanism, respectively. Target addresses for absolute
and relative branches are computed directly as part of the
branch scan function.

As branch instructions flow through the rest of the
pipeline and ultimately execute in the branch-execution
unit, the actual outcomes of the branches are determined.
At that point, if the predictions were found to be correct,
the branch instructions are simply completed like all other
instructions. If a prediction is found to be incorrect, the
instruction-fetch logic causes the mispredicted instructions
to be discarded and begins refetching instructions along
the corrected path.

POWER4 uses a set of three branch-history tables to
predict the direction of branch instructions. The first
table, called the local predictor, is similar to a traditional
branch-history table (BHT). It is a 16 384-entry array
indexed by the branch instruction address producing a
1-bit predictor that indicates whether the branch direction
should be taken or not taken. The second table, called the
global predictor, predicts the branch direction on the basis
of the actual path of execution to reach the branch. The
path of execution is identified by an 11-bit vector, one bit
per group of instructions fetched from the instruction

Figure 2

POWER4 chip photograph showing the principal functional units 
in the microprocessor core and in the memory subsystem.
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cache for each of the previous eleven fetch groups. This
vector is referred to as the global history vector. Each bit
in the global history vector indicates whether or not the
next group of instructions fetched are from a sequential
cache sector. The global history vector captures this
information for the actual path of execution through these
sectors. That is, if there is a redirection of instruction
fetching, some of the fetched group of instructions are
discarded and the global history vector is immediately
corrected. The global history vector is hashed, using a
bitwise exclusive or with the address of the branch
instruction. The result indexes into a 16 384-entry global
history table to produce another 1-bit branch-direction
predictor. Like the local predictor, this 1-bit global
predictor indicates whether the branch should be
predicted to be taken or not taken. Finally, a third table,
called the selector table, keeps track of which of the two
prediction schemes works better for a given branch
and is used to select between the local and the global
predictions. The 16 384-entry selector table is indexed
exactly the same way as the global history table to produce
the 1-bit selector. This combination of branch-prediction
tables has been shown to produce very accurate
predictions across a wide range of workload types.

If the first branch encountered in a particular cycle is
predicted as not taken and a second branch is found in
the same cycle, POWER4 predicts and acts on the second
branch in the same cycle. In this case, the machine
registers both branches as predicted, for subsequent
resolution at branch execution, and redirects the
instruction fetching on the basis of the second branch.

As branch instructions are executed and resolved,
the branch-history tables and the other predictors are
updated to reflect the latest and most accurate information.
Dynamic branch prediction can be overridden by software.
This is useful for cases in which software can predict
branches better than the hardware. It is accomplished by
setting two previously reserved bits in conditional branch
instructions, one to indicate a software override and the
other to predict the direction. When these two bits are
zero (suggested use for reserved bits), hardware branch
prediction is used. Since only reserved bits are used for
this purpose, 100% binary compatibility with earlier
software is maintained.

POWER4 uses a link stack to predict the target
address for a branch-to-link instruction that it believes
corresponds to a subroutine return. By setting the hint bits
in a branch-to-link instruction, software communicates
to the processor whether a branch-to-link instruction
represents a subroutine return, a target address that is
likely to repeat, or neither. When instruction-fetch logic
fetches a branch-and-link instruction (either conditional or
unconditional) predicted as taken, it pushes the address of
the next instruction onto the link stack. When it fetches a

branch-to-link instruction with taken prediction and with
hint bits indicating a subroutine return, the link stack is
popped, and instruction fetching starts from the popped
address.

To preserve the integrity of the link stack in the face
of mispredicted branch target link instructions, POWER4
employs an extensive speculation tolerance mechanism in
its link stack implementation to allow recovery of the link
stack under most circumstances.

The target address of a branch-to-count instruction is
often repetitive. This is also true for some of the branch-
to-link instructions that are not predictable through the
use of the link stack (because they do not correspond to a
subroutine return). By setting the hint bits appropriately,
software communicates to the hardware whether the target
addresses for such branches are repetitive. In these cases,
POWER4 uses a 32-entry, tagless, direct-mapped cache,
called a count cache, to predict the repetitive targets, as
indicated by the software hints. Each entry in the count
cache can hold a 62-bit address. When a branch-to-link
or branch-to-count instruction is executed, for which
the software indicates that the target is repetitive and
therefore predictable, the target address is written in the

Figure 3

POWER4 core.
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count cache. When such an instruction is fetched, the
target address is predicted using the count cache.

Instruction fetch
Instructions are fetched from the instruction cache (I-cache)
on the basis of the contents of the instruction-fetch
address register (IFAR). The IFAR is normally loaded
with an address determined by the branch-prediction logic.
As noted earlier, for cases in which the branch-prediction
logic is in error, the branch-execution unit will cause the
IFAR to be loaded with the corrected address of the
instruction stream to be fetched. Additionally, there
are other factors that can cause a redirection of the
instruction stream, some based on internal events, others
on interrupts from external events. In any case, once the
IFAR is loaded, the I-cache is accessed and retrieves up
to eight instructions per cycle. Each line in the I-cache can
hold 32 PowerPC instructions, i.e., 128 bytes. Each line is
divided into four equal sectors. Since I-cache misses are
infrequent, to save area, the I-cache has been designed to
contain a single port that can be used to read or write one
sector per cycle. The I-cache directory (IDIR) is indexed
by the effective address and contains 42 bits of real
address per entry.

On an I-cache miss, instructions are returned from the
L2 in four 32-byte transmissions. The L2 normally returns
the critical sector (the sector containing the specific word
address that references the cache line) in one of the first
two beats. Instruction-fetch logic forwards these demand-
oriented instructions into the pipeline as quickly as
possible. In addition, the cache line is written into one
entry of the instruction-prefetch buffer so that the I-cache
itself is available for successive instruction fetches. The
instructions are written to the I-cache during cycles when
instruction fetching is not using the I-cache, as is the case
when another I-cache miss occurs. In this way, writes to
the I-cache are hidden and do not interfere with normal
instruction fetching.

The PowerPC Architecture specifies a translation-
lookaside buffer (TLB) and a segment-lookaside buffer
(SLB) to translate from the effective address (EA) used
by software and the real address (RA) used by hardware
to locate instructions and data in storage. Since these
translation mechanisms take several cycles, once
translated, the EA, RA pair is stored in a 128-entry,
two-way set-associative array, called the effective-to-real
address translation (ERAT) table. POWER4 implements
separate ERATs for instruction-cache (IERAT) and data-
cache (DERAT) accesses. Both ERATs are indexed using
the effective address. A common 1024-entry four-way set-
associative TLB is implemented for each processor.

When the instruction pipeline is ready to accept
instructions, the IFAR content is sent to the I-cache,
IDIR, IERAT, and branch-prediction logic. The IFAR is

updated with the address of the first instruction in the
next sequential sector. In the next cycle, instructions are
received from the I-cache and forwarded to an instruction
queue from which the decode, crack, and group formation
logic shown in Figure 3 pulls instructions. This is done
even before it is known that there is a I-cache hit. Also
received in the same cycle are the RA from the IDIR,
the EA, RA pair from the IERAT, and the branch-
direction-prediction information. The IERAT is checked
to ensure that it has a valid entry and that its RA matches
the contents of the IDIR. If the IERAT has an invalid
entry, the EA must be translated from the TLB and SLB.
Instruction fetching is then stalled. Assuming that the
IERAT is valid, if the RA from the IERAT matches the
contents of the IDIR, an I-cache hit is validated. Using
the branch-prediction logic, the IFAR is reloaded and the
process is repeated. Filling the instruction queue in front
of the decode, crack, and group formation logic allows
instruction fetching to run ahead of the rest of the system
and queue work for the remainder of the system. In this
way, when there is an I-cache miss, there often are
additional instructions in the instruction queue to
be processed, thereby not freezing the pipeline.

If there is an I-cache miss, several different scenarios
are possible. First, the instruction-prefetch buffers are
examined to see whether the requested instructions are
there, and, if so, logic steers these instructions into
the pipeline as though they came from the I-cache and
will also write the critical sector into the I-cache. If the
instructions are not found in the instruction-prefetch
buffer, a demand-fetch reload request is sent to the L2.
The L2 processes this reload request with high priority.
When it is returned from the L2, an attempt will be
made to write it into the I-cache.

In addition to these demand-oriented instruction-
fetching mechanisms, POWER4 prefetches instruction-
cache lines that might soon be referenced into its
instruction-prefetch buffer, which is capable of holding
four entries of 32 instructions each. The instruction-
prefetch logic monitors demand instruction-fetch requests
and initiates prefetches for the next one (if there is a hit
in the prefetch buffer) or two (if there is a miss in the
prefetch buffer) sequential cache lines after verifying that
they are not already in the I-cache. When these requests
return cache lines, the returned lines are stored in the
instruction-prefetch buffer so that they do not pollute the
demand-oriented I-cache. The I-cache contains only cache
lines that have had a reference to at least one instruction.

Decode, crack, and group formation
As instructions are executed out of order, it is necessary
to remember the program order of all instructions in
flight. To minimize the logic necessary to track a large
number of in-flight instructions, groups of instructions are
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formed. The individual groups are tracked through the
system. That is, the state of the machine is preserved at
group boundaries, not at an instruction boundary within a
group. Any exception causes the machine to be restored
to the state of the oldest group prior to the exception.

A group contains up to five internal instructions
referred to as IOPs. In the decode stages, the instructions
are placed sequentially in a group—the oldest instruction
is placed in slot 0, the next oldest one in slot 1, and
so on. Slot 4 is reserved solely for branch instructions.
If required, no-ops are inserted to force the branch
instruction to be in the fourth slot. If there is no branch
instruction, slot 4 contains a no-op. Only one group
of instructions can be dispatched in a cycle, and all
instructions in a group are dispatched together. (By
dispatch, we mean the movement of a group of instructions
into the issue queues.) Groups are dispatched in program
order. Individual IOPs are issued from the issue queues
to the execution units out of program order.

Results are committed when the group completes. A
group can complete when all older groups have completed
and when all instructions in the group have finished
execution. Only one group can complete in a cycle.

For correct operation, certain instructions are not
allowed to execute speculatively. To ensure that the
instruction executes nonspeculatively, it is not executed
until it is the next one to complete. This mechanism
is called completion serialization. To simplify the
implementation, such instructions form single instruction
groups. Examples of completion serialization instructions
include loads and stores to guarded space and context-
synchronizing instructions such as the move-to-machine-
state-register instruction that is used to alter the state
of the machine.

In order to implement out-of-order execution, many
of the architected registers are renamed, but not all.
To ensure proper execution of these instructions, any
instruction that sets a nonrenamed register terminates a
group.

Internal instructions, in most cases, are architected
instructions. However, instructions are sometimes split
into one or more internal instructions. To achieve high-
frequency operation, we have limited instructions to read
at most two registers and write at most one register.
(Some floating-point operations do not obey this
restriction for performance reasons; for example, the
fused multiply and add series of instructions are handled
directly in the floating-point unit, though they require
three sources.) If this is not the case, the instruction
is split to satisfy this requirement. As an example, the
load with update instruction that loads one register and
increments an index register is split into a load and an add
instruction. Similarly, the load multiple word instruction is
implemented with multiple load word instructions. With

respect to group formation, we differentiate two classes.
If an instruction is split into two instructions, such as load
with update, that action is considered to be cracking. If an
instruction is split into more than two IOPs, it is called a
millicoded instruction. Cracked instructions flow into
groups like any other instructions, with the restriction
that both IOPs must be in the same group. If both IOPs
cannot fit into the current group, the group is terminated
and a new group is initiated. The instruction following the
cracked instruction may be in the same group as the
cracked instruction, assuming there is room in the group.
Millicoded instructions always begin a new group. The
instruction following the millicoded instruction also
initiates a new group.

Instructions performing logical operations on the
condition register appear at a lower frequency than other
instructions. As such, a single execution unit is dedicated to
this function. With the instruction-issue rules described in
the next section, this condition requires restricting this
class of instructions to only two of the four slots,
specifically slots 0 and 1.

Group dispatch and instruction issue
Instruction groups are dispatched into the issue queues
one group at a time. As a group is dispatched, control
information for the group is stored in the group
completion table (GCT). The GCT can store up to 20
groups. The GCT entry contains the address of the first
instruction in the group. As instructions finish execution,
that information is registered in the GCT entry for the
group. Information is maintained in the GCT until the
group is retired, i.e., either all of its results are
committed, or the group is flushed from the system.

Each instruction slot feeds separate issue queues for the
floating-point units, the branch-execution unit, the CR
execution unit, the fixed-point execution units, and the
load/store execution units. The fixed-point and load/store
execution units share common issue queues. Table 1
summarizes the depth of each issue queue and the number
of queues available for each type of queue. For the
floating-point issue queues and the common issue queues
for the fixed-point and load/store units, the issue queues
fed from instruction slots 0 and 3 hold instructions to be
executed in one of the execution units, while the issue

Table 1 Issue queues.

Queue type Entries per
queue

Number of
queues

Fixed-point and load/store 9 4
Floating-point 5 4
Branch execution 12 1
CR logical 5 2
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queues fed from instruction slots 1 and 2 feed the
other execution unit. The CR execution unit draws its
instructions from the CR logical issue queue fed from
instruction slots 0 and 1.

Instructions are dispatched into the top of an issue
queue. As they are issued from the queue, the remaining
instructions move down in the queue. In the case of two
queues feeding a common execution unit, the two queues
are interleaved. The oldest instruction that has all of its
sources set in the common interleaved queue is issued
to the execution unit.

Before a group can be dispatched, all resources to
support that group must be available. If they are not, the
group is held until the necessary resources are available.
To successfully dispatch, the following resources are
assigned:

● GCT entry: One GCT entry is assigned for each group.
It is released when the group retires.

● Issue queue slot: An appropriate issue queue slot must
be available for each instruction in the group. It is
released when the instruction in it has successfully
been issued to the execution unit. Note that in some
cases this is not known until several cycles after the
instruction has been issued. As an example, a fixed-point
operation dependent on an instruction loading a register
can be speculatively issued to the fixed-point unit before
it is known whether the load instruction resulted in an
L1 data cache hit. Should the load instruction miss in
the cache, the fixed-point instruction is effectively pulled
back and sits in the issue queue until the data on which
it depends is successfully loaded into the register.

● Rename register: For each register that is renamed and
set by an instruction in the group, a corresponding
renaming resource must be available. Table 2
summarizes the renaming resources available to each
POWER4 processor. The renaming resource is released
when the next instruction writing to the same logical
resource is committed. As a result of cracking and
millicode used in forming groups, it is necessary in
some situations to use additional logical registers. Four
additional GPRs and one additional 4-bit CR field are

required. The condition register is architected to be one
32-bit register comprising eight 4-bit fields. Each field is
treated internal to the system as a separate register and
is renamed. Not all of the fixed-point exception register
(XER) is renamed; only four of the XER fields are
renamed.

● Load reorder queue (LRQ) entry: An LRQ entry must be
available for each load instruction in the group. These
entries are released when the group completes. The
LRQ contains 32 entries.

● Store reorder queue (SRQ) entry: An SRQ entry must be
available for each store instruction in the group. These
entries are released when the result of the store is
successfully sent to the L2, after the group completes.
The SRQ contains 32 entries.

The operation of the LRQ and the SRQ is described in
the section on the load/store unit.

As noted previously, certain instructions require
completion serialization. Groups so marked are not issued
until that group is the next to complete (i.e., all prior
groups have successfully completed). Additionally,
instructions that read a nonrenamed register cannot be
executed until we are sure that all writes to that register
have completed. To simplify the implementation, any
instruction that writes to a nonrenamed register sets a
switch that is reset when the instruction finishes execution.
If the switch is set, this blocks dispatch of an instruction
that reads a nonrenamed register. Writes to a nonrenamed
register are guaranteed to be in program order by making
them completion-serialization operations.

Since instruction progression through the machine is
tracked in groups, when a particular instruction within a
group must signal an interrupt, this is achieved by flushing
all of the instructions (and results) of the group and then
redispatching the instructions into single instruction
groups. A similar mechanism is used to ensure that the
fixed-point exception register summary overflow bit is
correctly maintained.

Load/store unit operation
The load/store unit requires special attention in an out-
of-order execution machine in order to ensure memory
consistency. Since we cannot be sure that the result
of a store operation will be committed at the time it is
executed, a special mechanism is employed. Associated
with each SRQ entry is a store data queue (SDQ) entry.
The SDQ entry maintains the desired result to be stored
until the group containing the store instruction is
committed. Once committed, the data maintained in
the SDQ is written to the caches. Additionally, three
particular hazards must be avoided:

Table 2 Rename resources.

Resource type Logical
size

Physical
size

GPRs 32 (36) 80
FPRs 32 72
CRs 8 (9) 4-bit fields 32
Link/count registers 2 16
FPSCR 1 20
XER 4 fields 24
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● Load hit store: A younger load that executes before an
older store to the same memory location has written its
data to the caches must retrieve the data from the SDQ.
As loads execute, they check the SRQ to see whether
there is any older store to the same memory location
with data in the SDQ. If one is found, the data is
forwarded from the SDQ rather than from the cache. If
the data cannot be forwarded (as is the case if the load
and store instructions operate on overlapping memory
locations and the load data is not the same as or
contained within the store data), the group containing
the load instruction is flushed; that is, it and all younger
groups are discarded and refetched from the instruction
cache. If we can tell that there is an older store
instruction that will write to the same memory location
but has yet to write its result to the SDQ, the load
instruction is rejected and reissued, again waiting for
the store instruction to execute.

● Store hit load: If a younger load instruction executes
before we have had a chance to recognize that an older
store will be writing to the same memory location, the
load instruction has received stale data. To guard
against this, as a store instruction executes it checks the
LRQ; if it finds a younger load that has executed and
loaded from memory locations to which the store is
writing, the group containing the load instruction and
all younger groups are flushed and refetched from the
instruction cache. To simplify the logic, all groups
following the store are flushed. If the offending load is
in the same group as the store instruction, the group is
flushed, and all instructions in the group form single-
instruction groups.

● Load hit load: Two loads to the same memory location
must observe the memory reference order and prevent
a store to the memory location from another processor
between the intervening loads. If the younger load
obtains old data, the older load must not obtain
new data. This requirement is called sequential load
consistency. To guard against this, LRQ entries for all
loads include a bit which, if set, indicates that a snoop
has occurred to the line containing the loaded data
for that entry. When a load instruction executes, it
compares its load address against all addresses in the
LRQ. A match against a younger entry which has been
snooped indicates that a sequential load consistency
problem exists. To simplify the logic, all groups
following the older load instruction are flushed. If both
load instructions are in the same group, the flush
request is for the group itself. In this case, each
instruction in the group when refetched forms a single-
instruction group in order to avoid this situation the
second time around.

Instruction execution pipeline
Figure 4 shows the POWER4 instruction execution
pipeline for the various pipelines. The IF, IC, and BP
cycles correspond to the instruction-fetching and branch-
prediction cycles. The D0 through GD cycles are the
cycles during which instruction decode and group
formation occur. The MP cycle is the mapper cycle,
in which all dependencies are determined, resources
assigned, and the group dispatched into the appropriate
issue queues. During the ISS cycle, the IOP is issued to
the appropriate execution unit, reads the appropriate

Figure 4

POWER4 instruction execution pipeline.
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register to retrieve its sources during the RF cycle, and
executes during the EX cycle, writing its result back to the
appropriate register during the WB cycle. At this point,
the instruction has finished execution but has not yet been
completed. It cannot complete for at least two more
cycles, the Xfer and CP cycle, assuming that all older
groups have completed and all other instructions in the
same group have also finished.

Instructions waiting in the instruction queue after being
fetched from the instruction cache wait prior to the D1
cycle. This is the case if instructions are fetched (up to
eight per cycle) faster than they can be formed into
groups. Similarly, instructions can wait prior to the MP
cycle if resources are not available to dispatch the entire
group into the issue queues. Instructions wait in the issue
queues prior to the ISS cycle. Similarly, they can wait to
complete prior to the CP cycle.

Though not shown, the CR logical execution unit (the
unit responsible for executing logical operations on the
condition register) is identical to the fixed-point execution
pipeline, shown as the FX pipeline in the figure. The
branch-execution-unit pipeline is shown as the BR
pipeline. If a branch instruction is mispredicted with
respect to either direction or target, there is at least a
12-cycle branch-mispredict penalty, depending on how
long the mispredicted branch had to wait to be issued.

The pipeline for the two load/store units is identical
and is shown as the LD/ST pipeline in Figure 4. After
accessing the register file, load and store instructions
generate the effective address in the EA cycle. The
DERAT and, for load instructions, the data cache
directory and the data cache, are all accessed during the
DC cycle. If a DERAT miss should occur, the instruction
is rejected; i.e., it is kept in the issue queue. Meanwhile, a
request is made to the TLB to reload the DERAT with
the translation information. The rejected instruction
is reissued again a minimum of seven cycles after it
was first issued. If the DERAT still does not contain the
translation information, the instruction is rejected again.
This process continues until the DERAT is reloaded.
If a TLB miss occurs (i.e., we do not have translation
information in the TLB), the translation is initiated
speculatively. However, the TLB is not updated until we
are certain that the instruction failing translation will be
executed. To ensure that this occurs, the TLB updates are
held off until the group that contains the instruction
failing translation is the next group to complete. Two
different page sizes, 4 KB and 16 MB, are supported.
This provides a performance benefit for applications
requiring large memory, as is the case in many technical
applications and database applications that manage
an in-memory pool for indexes or caching data.

In the case of loads, if the directory indicates that the
L1 data cache contains the cache line, the requested bytes
from the returned data are formatted (the fmt cycle) and
written into the appropriate register. They are also
available for use by dependent instructions during this
cycle. In anticipation of a data cache hit, dependent
instructions are issued so that their RF cycle lines up with
the writeback cycle of the load instructions. If a cache
miss is indicated, a request is initiated to the L2 to
retrieve the line. Requests to the L2 are stored in the
load miss queue (LMQ). The LMQ can hold up to eight
requests to the L2. If the LMQ is full, the load instruction
missing in the data cache is rejected and reissued again
in seven cycles, and the process is repeated. If there is
already a request to the L2 for the same line from another
load instruction, the second request is merged into the
same LMQ entry. If this is the third request to the same
line, the load instruction is rejected, and processing
continues as above. All reloads from the L2 check the
LMQ to see whether there is an outstanding request yet
to be honored against a just-returned line. If there is, the
requested bytes are forwarded to the register to complete
the execution of the load instruction. After the line has
been reloaded, the LMQ entry is freed for reuse.

In the case of store instructions, rather than write
data to the data cache, the data is stored in the SDQ as
described above. Once the group containing the store
instruction is completed, an attempt is made to write the
data into the data cache. If the cache line containing the
data is already in the L1 data cache, the changed data
is written to the data cache. If it is not, the line is not
reloaded from the L2. In both cases, the changed data is
written to the L2. The coherency point for POWER4 is
the L2 cache. Additionally, all data in the L1 data cache
are also in the L2 cache. If data has to be cast out of the
L2, the line is marked invalid in the L1 data cache if it is
resident there.

The pipeline for the two fixed-point execution units
is shown as the FX pipe in Figure 4. Two fixed-point
instructions, with one dependent on the other, cannot
issue on successive cycles. There must be at least one
dead cycle between their issue cycles. However,
another instruction may issue in this cycle.

The pipeline for the two floating-point execution units
is shown as the FP pipe in the figure. Floating-point
instructions require six execution cycles. However, both
pipelines are fully piped; that is, two instructions can be
issued to the floating-point pipes each cycle. A floating-
point instruction dependent on a prior floating-point
instruction cannot issue within six cycles of the instruction
on which it is dependent. However, as is the case with the
other execution units, other floating-point instructions may
issue during this period.
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Storage hierarchy
The POWER4 storage hierarchy consists of three levels of
cache and the memory subsystem. The first and second
levels of the hierarchy are actually on the POWER4 chip.
The directory for the third-level cache, the L3, is on the
chip, but the actual cache is off-chip. Table 3 shows
capacities and organization of the various levels of the
hierarchy on a per-chip basis.

L1 caches
The L1 instruction cache is single-ported, capable of
either one 32-byte read or one 32-byte write each cycle.
The store through L1 data cache is triple-ported, capable
of two 8-byte reads and one 8-byte write per cycle with no
blocking. L1 data-cache reloads are 32 bytes per cycle.
The L1 caches are parity-protected. A parity error
detected in the L1 instruction cache forces the line to be
invalidated and reloaded from the L2. Errors encountered
in the L1 data cache are reported as a synchronous
machine-check interrupt. To support error recovery, the
machine-check interrupt handler is implemented in system-
specific firmware code. When the interrupt occurs, the
firmware saves the processor-architected states and
examines the processor registers to determine the recovery
and error status. If the interrupt is recoverable, the system
firmware removes the error by invalidating the L1 data-
cache line and incrementing an error counter. If the L1
data-cache error counter is greater than a predefined
threshold, which is an indication of a solid error, the system
firmware disables the failing portion of the L1 data
cache. The system firmware then restores the processor-
architected states and “calls back” the operating system
machine-check handler with the “fully recovered” status.
The operating system checks the return status from
firmware and resume execution. With the L1 data-cache
line invalidated, data is now reloaded from the L2. All
data stored in the L1 data cache is available in the L2
cache, guaranteeing no data loss.

Data in the L1 cache can be in one of two states: I (the
invalid state, in which the data is invalid) or V (the valid
state, in which the data is valid).

L2 cache
The unified second-level cache is shared across the two
processors on the POWER4 chip. Figure 5 shows a logical
view of the L2 cache. The L2 is implemented as three
identical slices, each with its own controller. Cache lines
are hashed across the three controllers.

Figure 5

L2 logical view.
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Table 3 Storage hierarchy organization and size.

Component Organization Capacity per chip

L1 instruction cache Direct map, 128-byte line
managed as four 32-byte sectors

128 KB (64 KB per processor)

L1 data cache Two-way, 128-byte line 64 KB (32 KB per processor)

L2 Eight-way, 128-byte line �1.5 MB

L3 Eight-way, 512-byte line
managed as four 128-byte
sectors

32 MB

Memory — 0 –16 GB
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Each slice contains four SRAM partitions, each capable
of supplying 16 bytes of data every other cycle. The four
partitions can supply 32 bytes per cycle, taking four
consecutive cycles to transfer a 128-byte line to the
processor. The data arrays are ECC-protected (single-
error correct, double-error detect). Both wordline and
bitline redundancy are implemented.

The L2 cache directory is implemented in two
redundant eight-way set-associative parity-protected
arrays. The redundancy, in addition to providing a backup
capability, also provides two nonblocking read ports to
permit snoops to proceed without causing interference to
load and store requests.

A pseudo-LRU replacement algorithm is implemented
as a standard 7-bit tree structure.

Since the L1 is a store-through design, store requests
to the L2 are at most eight bytes per request. The L2
implements two four-entry 64-byte queues for gathering
individual stores and minimizing L2 requests for stores.

The majority of control for L2 cache management is
handled by four coherency processors in each controller.
A separate coherency processor is assigned to handle each
request to the L2. Requests can come from either of the
two processors (for either an L1 data-cache reload or an
instruction fetch) or from one of the store queues. Each
coherency processor has associated with it a cast-out
processor to handle deallocation of cache lines to
accommodate L2 reloads on L2 misses. The coherency
processor does the following:

● Controls the return of data from the L2 (hit) or from
the fabric controller (miss) to the requesting processor
via the CIU.

● Updates the L2 directory as needed.
● Issues fabric commands for L2 misses on fetch requests

and for stores that do not hit in the L2 in the M, Me,
or Mu state (described below).

● Controls writing into the L2 when reloading because of
fetch misses in the L2 or when accepting stores from the
processors.

● Initiates back-invalidates to a processor via the CIU
resulting from a store from one processor that hits a
cache line marked as resident in the other processor’s
L1 data cache.

Included in each L2 controller are four snoop
processors responsible for managing coherency operations
snooped from the fabric. When a fabric operation hits on
a valid L2 directory entry, a snoop processor is assigned
to take the appropriate action. Depending on the type of
operation, the inclusivity bits in the L2 directory, and the
coherency state of the cache line, one or more of the
following actions may result:

● Sending a back-invalidate request to the processor(s)
to invalidate a cache line in its L1 data cache.

● Reading the data from the L2 cache.
● Updating the directory state of the cache line.
● Issuing a push operation to the fabric to write modified

data back to memory.
● Sourcing data to another L2 from this L2.

In addition to dispatching a snoop processor, the L2
provides a snoop response to the fabric for all snooped
operations. When a fabric operation is snooped by the
L2, the directory is accessed to determine whether the
targeted cache line is resident in the L2 cache and, if so,
its coherency state. Coincident with the snoop directory
lookup, the snooped address is compared with the
addresses of any currently active coherency, cast-out, and
snoop processors to detect address-collision scenarios. The
address is also compared to the per-processor reservation
address registers. On the basis of this information, the
snoop response logic determines the appropriate snoop
response to send back.

The L2 cache controller also acts as the reservation
station for the two processors on the chip in support of
the load [double] word and reserve indexed (lwarx/ldarx)
and the store [double] word conditional (stwcx/stdcx)
instructions. One address register for each processor is
used to hold the reservation address. The reservation logic
maintains a reservation flag per processor to indicate
when a reservation is set. The flag is set when a lwarx or
ldarx instruction is received from the processor; it is reset
when certain invalidating type operations are snooped,
including a store to the reservation address from other
processors in the system, or when a stwcx or stdcx
instruction succeeds. (A successful store occurs if the
reservation flag was not reset by another operation. The
success or failure of the conditional store instruction is
communicated to the program by setting a bit in the
condition register.)

The L2 cache implements an enhanced version of the
MESI coherency protocol, supporting seven states as
follows:

● I (invalid state): The data is invalid. This is the initial
state of the L2 entered from a power-on reset or a
snoop invalidate hit.

● SL (shared state, can be source to local requesters): The
data is valid. The cache line may also be valid in other
L2 caches. From this state, the data can be sourced to
another L2 on the same module via intervention. This
state is entered as a result of a processor L1 data-cache
load request or instruction-fetch request that misses in
the L2 and is sourced from another cache or from
memory when not in other L2s.
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● S (shared state): The data is valid. The cache line may
also be valid in other L2 caches. In this state, the data
cannot be sourced to another L2 via intervention. This
state is entered when a snoop-read hit from another
processor on a chip on the same module occurs and
the data and tag were in the SL state.

● M (modified state): The data is valid. The data has
been modified and is exclusively owned. The cache line
cannot be valid in any other L2. From this state the data
can be sourced to another L2 in a chip on the same or
remote module via intervention. This state results from
a store operation performed by one of the processors on
the chip.

● Me (exclusive state): The data is valid. The data is not
considered modified but is exclusive to this L2. The
cache line cannot be valid in any other L2. Cast-out of
an Me line requires only invalidation of the tag; i.e.,
data need not be written back to memory. This state is
entered as a result of one of the processors on the chip
asking for a reservation via the lwarx or ldarx instruction
when data is sourced from memory or for a cache line
being prefetched into the L2 that was sourced from
memory. (Sourcing data from the L3 in the O state is
equivalent to sourcing it from memory.)

● Mu (unsolicited modified state): The data is valid.
The data is considered to have been modified and is
exclusively owned. The cache line cannot be valid in any
other L2. This state is entered as a result of one of the
processors on the chip asking for a reservation via the
lwarx or ldarx instruction when data is sourced from
another L2 in the M state or for a cache line being
prefetched into the L2 that was sourced from another
L2 in the M state.

● T (tagged state): The data is valid. The data is modified
with respect to the copy in memory. It has also been
sourced to another cache; i.e., it was in the M state at
some time in the past, but is not currently exclusively
owned. From this state, the data will not be sourced to
another L2 via intervention until the combined response
is received and it is determined that no other L2 is
sourcing data (that is, if no L2s have the data in the SL
state. This state is entered when a snoop-read hit occurs
while in the M state.

The L2 state is maintained in the L2 directory. Table 4
summarizes the L2 states and the possible L1 data-cache
state as well as possible states in other L2s. The directory
also includes bits to indicate whether or not the data may
be contained in one or both of the processor’s L1 data
caches. Whenever a processor requests data to be loaded
into its L1 data cache, a bit corresponding to that
processor is set. This bit is not set for instruction fetches.
This indication is imprecise because it is not reset if the
data is replaced by the L1.

Included within the L2 subsystem are two noncacheable
units (NCU), one per processor, labeled NC units in
Figure 5. The NCUs handle noncacheable loads and
stores, as well as cache and synchronization operations.
(Because the storage model implemented is a weakly
consistent one, it is the programmer’s responsibility to
explicitly code memory-synchronization instructions in
those cases where the order of memory operations, as
seen by another processor, must be enforced.) Each
NCU is partitioned into two parts: the NCU master and
the NCU snooper. The NCU master handles requests
originating from processors on the chip, while the NCU
snooper handles the snooping of translation lookaside
buffer invalidate entry (tlbie) and instruction cache block
invalidate (icbi) operations from the fabric.

The NCU master includes a four-deep FIFO queue for
handling cache-inhibited stores, including memory-mapped
I/O store operations, and cache and memory barrier
operations. It also contains a one-deep queue for handling
cache-inhibited load operations.

The return of data for a noncacheable load operation is
via the L2 controller, using the same reload buses as for
cacheable load operations. Cache-inhibited stores are
routed through the NCU in order to preserve execution
ordering of noncacheable stores with respect to one
another.

Cache and synchronization operations originating in a
processor on the chip are handled in a manner similar to
cache-inhibited stores, except that they do not have any
data associated with them. These operations are issued
to the fabric. Most will be snooped by an L2 controller.
Included in this category are the icbi, tlbie, translation
lookaside buffer synchronize (tlbsync), enforce in-order
execution of I/O (eieio), synchronize (sync), page table
entry synchronize (ptesync), lsync, data cache block flush
(dcbf), data cache block invalidate (dcbi) instructions, and
a processor acknowledgment that a snooped TLB has
completed.

The NCU snooper snoops icbi and tlbie operations from
the fabric, propagating them upstream to the processors.
These snoops are sent to the processor via the reload
buses of the L2 controller. It also snoops sync, ptesync,

Table 4 Valid L2 states.

L2 state L1 data
cache

State in
other L2s

I I Any
SL I, V I, S, SL, T
S I, V I, S, T

M, Me, or Mu I, V I
T I, V I, S, SL
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lsync, and eieio. These are snooped because they may
have to be retried because of an icbi or TLB that has not
yet completed to the same processor.

L3 cache
Figure 6 shows a logical view of the L3 cache. The L3
consists of two components, the L3 controller and the L3
data array. The L3 controller is located on the POWER4
chip and contains the tag directory as well as the queues
and arbitration logic to support the L3 and the memory
behind it. The data array is stored in two 16MB eDRAM
chips mounted on a separate module. A separate memory
controller can be attached to the back side of the L3
module.

To facilitate physical design and minimize bank
conflicts, the embedded DRAM on the L3 chip is
organized as eight banks at 2 MB per bank, with banks

grouped in pairs to divide the chip into four 4MB
quadrants. The L3 controller is also organized in
quadrants. Each quadrant contains two coherency
processors to service requests from the fabric, perform
any L3 cache and/or memory accesses, and update the L3
tag directory. Additionally, each quadrant contains two
processors to perform the memory cast-outs, invalidate
functions, and DMA writes for I/O operations. Each pair
of quadrants shares one of the two L3 tag directory SRAMs.

The L3 cache is eight-way set-associative, organized in
512-byte blocks, with coherence maintained on 128-byte
sectors for compatibility with the L2 cache. Five coherency
states are supported for each of the 128-byte sectors, as
follows:

● I (invalid state): The data is invalid.
● S (shared state): The data is valid. In this state, the L3

can source data only to L2s for which it is caching data.
● T (tagged state): The data is valid. The data is modified

relative to the copy stored in memory. The data may be
shared in other L2 or L3 caches.

● Trem (remote tagged state): This is the same as the T
state, but the data was sourced from memory attached
to another chip.

● O (prefetch data state): The data in the L3 is identical to
the data in memory. The data was sourced from memory
attached to this L3. The status of the data in other L2
or L3 caches is unknown.

Each L3 coherency processor supports one random
cache or memory access. For sequential accesses, the L3
coherency processors can support up to four concurrent
load/store requests within a 512-byte L3 cache block. This
allows the L3 to support increased cache and memory
throughput for many common technical workloads to take
advantage of the bandwidth capability available with the
high-speed buses in POWER4 systems.

The L3 is designed to be used as a standalone 32MB
L3 cache, or to be combined with other L3s on the same
processor module in pairs or groups of four to create a
larger, address-interleaved L3 cache of 64 MB or 128 MB.
Combining L3s into groups not only increases the L3
cache size, but also scales the available L3 bandwidth.
When combined into groups, L3s and the memory behind
them are interleaved on 512-byte granularity. The fabric
bus controller selects the quadrant of the L3 to which a
particular real address is mapped, and the selected L3
controller adjusts the mapping from real address to L3
index and tag to account for the increase in the effective
cache size. Table 5 shows the mapping of real address bits
to L3 index and tag, as well as the algorithm for routing
an address to the corresponding L3 controller and
quadrant. The custom address flow logic is optimized for
the 128MB combined case. To handle the index/tag

Figure 6

L3 logical view.
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Logical L3
size

L3 index L3 tag L3 chip
select

L3 quadrant
select

32 MB 51:52, 42:50 22:41 — 53:54
64 MB 51, 41:50 22:40 54 52:53

128 MB 40:50 22:39 53:54 51:52
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adjustment for the smaller L3 cache sizes, the appropriate
bits are swapped as the L3 controller receives an address
from the fabric bus controller. This approach causes the
index bits to appear in a nonintuitive order, but avoids
the need for the custom address flow logic to shift all of
the address bits to make this adjustment. All address-bit
ranges in Table 5 assume that the full 42-bit address is
denoted as bits 22:63. Bits 55:56 are the sector ID bits,
and bits 57:63 are the offset within the 128-byte coherence
granule.

The L3 caches data, either from memory that resides
beneath it or from elsewhere in the system, on behalf of
the processors attached to its processor module. When
one of its processors issues a load request that misses the
L3 cache, the L3 controller allocates a copy of the data in
the S (shared) state. Inclusivity with the L1 and L2 is not
enforced. Hence, when the L3 deallocates data, it does
not invalidate any L1 or L2 copies. The L3 enters the T or
Trem state when one of its local L2 caches does a castout
from the M or T state. An address decode is performed
at snoop time to determine whether the address maps to
memory behind the L3 or elsewhere in the system, and
this causes the L3 to transition to the T or Trem state as
appropriate. This design point was chosen to avoid the
need for a memory address-range decode when the L3
performs a cast-out operation. The L3 can use the T/Trem
distinction to determine whether the data can be written
to the attached memory controller, or whether the cast-
out operation must be issued as a fabric bus transaction.

When in the T or Trem state, the L3 sources data to
any requestor in the system. However, when in the S
state, the L3 will source data only to its own L2s. This
minimizes data traffic on the buses between processor
modules, since, whenever possible, data is sourced by an
L3 cache on the requesting processor module. When in
the O state, the L3 sources data to any requestor using
the same rules that determine when it is permitted to send
data from its attached memory controller; i.e., no cache
is sourcing data and no snooper retried the request.

The L3 tag directory is ECC-protected to support
single-bit error correct and double-bit error detect.
Uncorrectable errors result in a system checkstop. If a
directory access results in a correctable error, the access is
stalled while the error is corrected. After correction, the
original access takes place. When an error is corrected,
a recovered attention message is sent to the service
processor for thresholding purposes.

The L3 address, memory address, and control buses
have parity bits for single-bit error detection. The L3 and
memory data buses, as well as the L3-cache-embedded
DRAMs, have ECC to support single-bit error correct and
double-bit error detect. Uncorrectable errors are flagged
and delivered to the requesting processor with an error
indication, resulting in a machine-check interrupt.

Correctable errors are corrected in-line, and a recovered
attention message is sent to the service processor for
thresholding purposes.

The L3 supports cache-line delete. The cache-line
delete function is used to mask stuck faults in the L3-
cache-embedded DRAMs. Line-delete control registers
allow the service processor to specify L3 index values for
which a particular member should not be used. When the
L3 controller snoops a request that matches a specified L3
index, it masks the tag-directory compare for the member
in question. The replacement algorithm also avoids the
deleted member when choosing a victim in the specified
congruence class. Cache-line delete can be invoked at IPL
time on the basis of results of power-on diagnostic testing,
or it can be enabled dynamically because of a fault
detected at run time.

If an L3 tag directory develops a stuck fault, or L3-
cache-embedded DRAMs develop more stuck faults than
can be handled with the line-delete control registers, the
L3 cache on the failing processor chip can be reconfigured
and logically removed from the system without removing
other L3 caches in the system and without reconfiguring
the memory attached to that L3. Memory accesses
continue to pass through the reconfigured L3 module, but
that L3 controller no longer performs cache operations.

Memory subsystem
A logical view of the memory subsystem is shown in
Figure 7. Each POWER4 chip can have an optional
memory controller attached behind the L3 cache. Memory
controllers are packaged two to a memory card and
support two of the four processor chips on a module.
A module can attach a maximum of two memory cards.
Memory controllers can have either one or two ports
to memory.

The memory controller is attached to the L3 eDRAM
chips, with each chip having two 8-byte buses, one in each
direction, to the data interface in the memory controller.
These buses operate at one-third processor speed using
the synchronous wave pipeline interface [21] to operate
at high frequencies.

Each port to memory has four 4-byte bidirectional
buses operating at a fixed frequency of 400 MHz connecting
load/store buffers in the memory controller to four system
memory interface (SMI) chips used to read and write data
from memory. When two memory ports are available, they
each work on 512-byte boundaries. The memory controller
has a 64-entry read command queue, a 64-entry write
command queue, and a 16-entry write cache queue.

The memory is protected by a single-bit error correct,
double-bit error detect ECC. Additionally, memory
scrubbing is used in the background to find and correct
soft errors. Each memory extent has an extra DRAM to
allow for transparent replacement of one failing DRAM
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per group of four DIMMs using chip-kill technology.
Redundant bit steering is also employed.

Hardware data prefetch
POWER4 systems employ hardware to prefetch data
transparently to software into the L1 data cache. When
load instructions miss sequential cache lines, either
ascending or descending, the prefetch engine initiates
accesses to the following cache lines before being
referenced by load instructions. In order to ensure that
the data will be in the L1 data cache, data is prefetched
into the L2 from the L3 and into the L3 from memory.
Figure 8 shows the sequence of prefetch operations. Eight
such streams per processor are supported.

Once a sequential reference stream is recognized,
whenever a load instruction initiates a request for data in
a new cache line, the prefetch engine begins staging the
next sequential line into the L1 data cache from the L2.
At the same time, it initiates a request to the L3 to stage
a line into the L2. However, since latencies to load the L2
from the L3 are longer than the latency to load the L1
from the L2, rather than prefetch the second cache line,

the fifth is prefetched, as shown in Figure 8. Prior
references, or the initial ramp-up on stream initiation, has
already staged the second through fourth lines from the
L2 to the L1 data cache. Similarly, a line is replaced in
the L3 from memory. To minimize processing required to
retrieve data from memory into the L3, a 512-byte line is
prefetched. This has to be done only every fourth line
referenced. In the case shown in the figure, lines 17
through 20 are prefetched from memory to the L3.

Because memory references are based on real addresses,
whenever a page boundary is crossed, the prefetching must
be stopped, since we do not know the real address of the
next page. To reduce the performance impact, POWER4
implements two page sizes, 4 KB and 16 MB. In addition
to allowing the prefetch to continue for longer streams,
it saves translation time. This is especially useful for
technical applications, where it is common to sequentially
reference large amounts of data.

To guard against prematurely initiating a data-prefetch
stream by the hardware, POWER4 ramps up the
prefetches slowly, requiring an additional four sequential
cache misses to occur before all of the cache lines in the
entire sequence are in various stages of prefetch to the
L1 data cache. However, software can often tell that a
prefetch stream should be initiated. Toward this end,
the data cache block touch (dcbt) instruction has been
extended, using a previously reserved bit to indicate to
the hardware that a prefetch stream should be installed
immediately without waiting for confirmation.

Special logic to implement data prefetching exists in the
processor load/store unit (LSU) and in the L2 and L3.
The direction to prefetch, up or down, is determined by
the actual load address within the line that causes the
cache miss. If the load address is in the lower portion of
the line, the guessed direction is up. If the load address is
in the upper portion of the line, the guessed direction is
down. The prefetch engine initiates a new prefetch when
it detects a reference to the line it guessed will be used.
If the initial guess on the direction is not correct, the
subsequent access will not confirm to the prefetch engine
that it had a stream. The incorrectly initiated stream will
eventually be deallocated, and the corrected stream will be
installed as a new stream.

Interconnecting chips to form larger SMPs
The basic building block is a multichip module (MCM)
with four POWER4 chips to form an eight-way SMP.
Multiple MCMs can be further interconnected to form
16-, 24-, and 32-way SMPs.

Four-chip, eight-way SMP module
Figure 9 shows the logical interconnection of four
POWER4 chips across four logical buses to form an eight-
way SMP. Each chip writes to its own bus, arbitrating

Figure 7

Memory subsystem logical view.
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among the L2, I/O controller, and L3 controller for the
bus. Each of the four chips snoops all of the buses, and
if it finds a transaction that it must act on, it takes the
appropriate action. Requests for data from an L2 are
snooped by all chips to see a) whether it is in their L2 and
in a state that permits sourcing it from the holding chip’s
L2 to the requesting chip, or b) whether it is in its L3 or
in memory behind its L3 cache based on the real address
of the request. If it is, the sourcing chip returns the
requested data to the requesting chip on its bus.

The interconnection topology appears like a bus-based
system from the perspective of a single chip. From the
perspective of the module, it appears like a switch.

Multiple module interconnect
Figure 10 shows the interconnection of multiple four-chip
MCMs to form larger SMPs. One to four MCMs can be
interconnected. When interconnecting multiple MCMs, the
intermodule buses act as repeaters, moving requests and
responses from one module to another module in a ring
topology. As with the single MCM configuration, each
chip always sends requests/commands and data on its
own bus but snoops all buses.

L3 memory configurations
As noted earlier, each MCM can have from zero to two
memory cards. In the case of two memory cards, there is
no requirement that they be of equal size. In the case
of no memory cards or two equal-size memory cards
connected to an MCM, the four L3s attached to the
module act as a single 128MB L3. In a single MCM
system, each L3 caches data sourced from the memory
attached behind its L3 cache. In the case of multiple
MCMs and data being sourced from memory attached to
another module, an attempt is made to cache the returned
data on the requesting module. The particular L3 chosen
is the L3 attached to the chip controlling the bus on which

the data is returned. However, if the L3 is busy servicing
requests, the line is not cached. Also, data is not cached
on the sourcing module if it is being sourced to a chip
on another module.

If one memory card or two memory cards of unequal
size are attached to a module, the L3s attached to the
module function as two 64MB L3s. The two L3s that
act in concert are the L3s that would be in front of the
memory card. (Note that one memory card is attached to
two chips.) The caching of requests to remote modules
described above functions in this case in a comparable
manner, with the exception that the two L3s acting as
a single L3 are considered to logically form a module
boundary (for caching purposes).

Figure 8

POWER4 hardware data prefetch.
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I/O structure
Figure 11 shows the I/O structure in POWER4 systems.
Attached to a POWER4 GX bus is a remote I/O (RIO)
bridge chip. This chip transmits the data across two 1-byte-
wide RIO buses to PCI host bridge (PHB) chips. Two
separate PCI buses attach to PCI–PCI bridge chips that
further fan the data out across multiple PCI buses. When
multiple nodes are interconnected to form clusters of
systems, the RIO bridge chip is replaced with a chip
that connects with the switch. This provides increased
bandwidth and reduced latency over switches attached
via the PCI interface.

System balance
POWER4 systems are designed to deliver balanced
performance. As an example, as additional chips and

MCMs are added to form larger SMP systems, additional
resources are added, as can be seen from Figure 10. With
the addition of each pair of POWER4 chips, the ability to
add a memory card is provided. In addition to memory
capacity, memory bandwidth is increased. Each additional
POWER4 chip provides additional L3 resource.

All buses interconnecting POWER4 chips, whether or
not on- or off-module, operate at half processor speed.
As future technology is exploited, allowing chip size to
decrease and operating frequencies to increase, system
balance is maintained, since bus speeds are no longer fixed
but are geared to processor frequency.

The multi-MCM configuration provides a worst-case
memory access latency of slightly greater than 10% more
than the best-case memory access latency maintaining the
flat memory model, simplifying programming.

Figure 10

Multiple POWER4 multichip module interconnection.
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The eight-way MCM is the building block for the
system. It is only available with four chips, each with its
attached L3. A single processor on a chip has all of the
L3 resources attached to the module, and the full L2
on the chip itself. If this processor is the only processor
executing, it exhibits extremely good performance. If only
one chip of the four on the module is active, the situation
is similar, though both processors now share a common
L2. They both have full access to all of the L3s attached
to the module. When analyzing measurements comparing
one-way to two-way to four-way to eight-way performance,
one must account for the full L3 available in all of these
configurations.

Future roadmap
Enhancements to the current POWER4 system in the
coming years will take several directions.

We are in the process of leveraging newer technologies
to allow us to increase frequency while further decreasing
power. We will aggressively increase processor frequencies
to the 2� GHz range while maintaining the system
balance offered by our current design.

The current design introduces parallelism throughout
the system so as to overcome the increasing memory
latencies (in processor cycles) resulting from high-
frequency operations. The parallelism allows the processor
to continue executing in the presence of cache misses.
Future POWER4 systems will continue this design,
increasing parallelism and providing larger caches.

We have already invested in ensuring that software
can exploit the increased performance levels POWER4
systems will be offering. We will continue making system-
level enhancements in order to provide even greater
performance increases over time.

Summary
POWER4 development has met our objectives in terms of
performance and schedule as defined at the beginning of
the project in 1996. Enormous levels of bandwidth and
concurrency contribute to superior performance across
a broad range of commercial and high-performance
computing environments. These unprecedented performance
levels are achieved by a total system design that exploits
leading IBM technologies. We are well along in developing
follow-on systems to the current POWER4 to further
enhance its leadership. POWER4 is redefining what is
meant by a server and how a server must be designed.
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