A PIPELINED, SHARED RESOUCE MIMD COMPUTEK

Burton J. Smith

Denelcor, Inc.
Denver, Colorado 80205

Abstract -- The HEP computer system currently
being implemented by Denelcor, Inc., under con-
tract to the U.S. Army Ballistics Research Lab-
oratory is an MIMD machine of the shared resource
type as defined by Flynn. In this type of or-
ganization, skeleton processors compete for
execution resources in either space or time.

In the HEP processor, spatial switching occcurs
between two queues of processes; one of these
controls program memory, register memory, and
the functional units while the other controls
data memory. Multiple processors and data
memories may be interconnected via a pipelined
switch, and any register memory or data memory
location may be used to synchronize two pro-
cesses on a producer-consumer basis.

Overview

The HEP computer system currently being im-
plemented by Denelcor, Inc., under contract to
the U.S. Army Ballisticc Research Laboratory is
an MIMD machine of the shared resource type as
defined by Flynn [1]. In this type of organiza-
tion, skeleton processors compete for execution
resources in either space or time. For example,
the set of peripheral processors of the CDC 6600
[5] may be viewed as an MIMD machine implemented
via the time-multiplexing of ten process states
to one functional unit.

In a HEP processor, two queues are used to
time-multiplex the process states. One of these
provides input to a pipeline which fetches a three
address instruction, decodes it, obtains the two
operands, and sends the information to one of
several pipelined function units where the opera-
tion is completed. In case the operation is a
data memory access, the process state enters a
second queue. This queue provides input to a
pipelined switch which interconnects several data
memory modules with several processors. When the
memory access is complete, the process state is
returned to the first queue. The processor organ-
ization is shown in Figure 1, and the over-all
system layout appears in Figure 2.

Each processor of HEP can support up to 128
processes, and nominally begins execution of a
new instruction (on behalf of some process) every
100 nanoseconds. The time required to completely
execute an instruction is 800 ns, so that if at
least eight totally independent processes, i.e.
processes that do not share data, are executing
in one processor the instruction execution rate
is 10’ instructions per second per processor. The
first HEP system will have four processors and
128K words of data memory.

FROM DATA MEMORY
VIA SWITCH

FETCH
OPERANDS

FETCH

INSTRUCTION

TO DATA MEMORY

> VIA SWITCH

PERFORM
FUNCTION

REGISTER
MEMORY

PROGRAM
MEMORY
Figure 1. Processor Organization
PROCESSOR e PROCESSOR
l.. ...
» PIPELINE) .
: SWITCE -4
.F‘ -..
MEMORY sl MEMORY
Figure 2. Overall System Layout

HEP instructions and data words are 64 bits
wide. The floating point format is sign magni-
tude with a hexadecimal, seven-bit, excess-64
eéxponent. All functional units can support one
instruction execution every 100 nanoseconds except
the divider, which can support this rate momen-
tarily but is slower on the average.

Tasks

Since HEP attains maximum speed when all of
its processes are independent, a simple set of
protection mechanisms is incorporated to allow
potentially hostil- users to execute simultane-
ously. A domain cf pProtection in HEP is called
a task, and consists of a set of processes with
the same task identifier (TID) in their process
state. The TID specifies a task status word which
contains base and limit addresses defining the
regions within the various memories accessible
by the processes in that task. In this way, pro-
cesses within a task may cooperate but are pre-
vented from communicating with those in other
tasks. Processes in different tasks or Proces-
Sors may communicate via data memory if they have
an overlapping allocatien there.

Processes are a Scarce resource in HEP; in
addition, the synchronization primitives used in
HEP make processes difficult to virtualize. Aas
a result, the maximum number of processes a task
will use must be specified to the system when the
task is loaded. Tt is the job of the operating
System to insure that its total allocation of
Processes to tasks does not exceed the number
available, so that a create fault (too many pro-
cesses) can only occur when one or more tasks have
created more processes than they were allocated.
In this event, the offending task or tasks (not
necessarily the task that actually caused the
create fault) are removed from the processor.

Protection violations, create faults, and
other error conditions arising within a process
cause traps. A trap is the creation of a process
eéxecuting in a supervisor task. There are a total
of sixteen tasks available in each Processor;
eight of these are user tasks and the other eight
are corresponding Supervisor tasks. When any
process in it, and a process is created in the
corresponding supervisor task to handle the con-
dition. This scheme is not used for create fault,
however; a create fault Suspends execution of all
Processes (regardless of task) except those
actually handling the fault.

Create fault occurs before all processes have
been used to allow any create instructions in
pProgress within the pipeline to complete normally
and to allow for the creation of the create fault
handler process. al1 other traps in HEP are pre-
cise in the sense that no subsequent instructions
will be executed from the offending task, a use-
ful feature when one is trying to debug a con-
current algorithm,

Synchronization

The synchronization of processes in HEP is
made simple by virtue of the fact that any regis-
ter or data memory location can be used to
synchronize two processes in a producer-consumer
fashion. This requires three states in general:
a reserved state to Provide for mutual exclusion,
a full state, and an empty state. The execution
of an instruction tests the states of locations

typically, an instruction tests its sources full
and its destination empty. If any of these tests
fails, the instruction is reattempted by the
Process on its next turn for servicing. 1If all
tests succeed, the instruction is executed; the
process sets both sources empty and the destina-
tion reserved. The operands from the sources are
sent to the function unit, and the program coun-
ter in the process state is incremented. When
the function unit eventually writes a result in
the destination location that was specified in
the instruction it sets the destination full.
Provisions are made to test a destination full
rather than empty, to preserve the state of a
source, or to totally override the state of a
Source or destination with the proviso that a
reserved state may not be overridden except by
certain privileged instructions. Input-ocutput
synchronization is handled naturally by mapping
I/0 device registers into the data memory address
Space; an interrupt handler is just a process
that is attempting to read an input location or
write an output location. 1I/0 device addresses
are not relocated by the data memory base address
and all I/O-addressed operations are privileged.

Switch

The switch that interconnects Processors and
data memories to allow memory sharing consists of
a number of nodes connected via ports. Each node
has three ports, and can simultaneously send and
receive a message on each port. The messages
contain the address of the recipient, the address
of the originator, the operation to be per formed
by the recipient, and a Priority. Each switch
node receives a message on each of its three
ports every 100 nanoseconds and attempts to re-
transmit each message on a port that will reduce
the distance of that message from its recipient;
a table mapping the recipient address into the
number of a port that reduces distance is stored
in each node for this burpose. If conflict for
a port occurs, the node routes one of the con-
tending messages correctly and the rest incor-
rectly. To help insure fairness, an incorrectly

passes through the node, and Preference is given
in conflict situations to the message(s) with the
highest Priority.

The time required to complete a memory oper-
ation via the switch includes two message trans-
mission times, one in each direction, since the

success or failure of the operation (based on the
state of the memory location, i.e. full or empty)
must be reported back to the processor so that it
can decide whether to reattempt the operation or
not. The propagation delay through a node and its
associated wiring is 50 nanoseconds. Since a mes-
::1z2 is distributed 2mong two (or three) nodes at
:=v instant, the sw.tch must be two-colorable to
zv=id conflicts between the beginning of some mes-
sage and the middle part of another. When the
switch fills up due to a high conflict rate, mis-
routed massages begin to "leak" from the switch.
Every originator is obliged to reinsert a leaking
message into the switch in preference to inserting
a new message. Special measures are taken when
the priority value reaches its maximum in any mes-
sage to avoid indefinite delays for such messages;
a preferable scheme would have been to let priori-
ty be established by time of message creation ex-
cept for the large number of bits required to
specify it.

FORTRAN Extensions

Two extensions have been made to FORTRAN to
allow the programmer to incorporate parallelism
into his programs. First, subroutines whose names
begin with "$" may execute in parallel with their
callers, either by being CREATEd instead of CALLed
or by executing a RESUME prior to a RETURN. Se-
cond, variables and arrays whose names begin with
"S$" may be used to transmit data between two pro-
cesses via the full-empty discipline. A simple
program to add the elements of an array $A is
shown in Figure 3. The subroutines $INPUT and
SOUTPUT perform obvious functions, and the sub-
routine SADD does the work of adding up the
elements. There are a total of 14 processes
executing as a result of running the program.

g ADD UP THE ELEMENTS OF

o THE ARRAY $A
REAL $A(1000),%S(10),$5UM
INTEGER 1

CREATE SINPUT($A,1000)

Do 10 I=1,10

CREATE $ADD(SA(100%I-99) ,$S(I),L100)
10 CONTINUE

CREATE $ADD ($5,5SUM,10)

CREATE $QUTPUT ($SUM,1)

END
c NOELTS ELEMENTS OF SV
c ARE ADDED AND PLACED IN $ANS

SUBROUTINE S$ADD(SV,SANS ,NOELT.)

REAL $V(1) ,$ANS,TEMP
INTEGER J, NOELTS
TEMP=0.0
DO 20 J=1,NOELTS
TEMP=TEMP+$V (J)

20 CONTINUE
SANS=TEMP
RETURN
END

Figure 3. HEP FORTRAN Example

Applications

As a parallel computer, HEP has an advantage
over SIMD machines and more loosely coupled MIMD
machines in two application areas. The first of
these involves the solution of large systems of
ordinary differential equations in simulating con-
tinuous systems. In this application, vector op-
erations are difficult to apply because of the
precedence constraints in the equations, and
loosely coupled MIMD organizations are hard to use
because a good partition of the problem to share
workload and minimize communication is hard to
find. Scheduling becomes relatively easier as the
number of processes increases [3], and is quite
simple when one has one process per instruction
as in a data flow architecture [4].

A second type of application for which HEP
seems to be well suited is the solution of partial
differential equations for which the adjacencies
of the discrete objects in the model change rapid-
ly. Free surface and particle electrodynamics
problems have this characteristic. The difficulty
here is one of constantly having to rearrange the
model within the computer to suit the connectivity
implied by the architecture. Tightly coupled MIMD
architectures have little implied connectivity.
Associative SIMD architectures of the right kind
may perform well on these problems, however.

Conclusion

The HEP system described above represents a
compromise between the very tightly coupled data
flow architectures and more loosely coupled multi-
computer systems [2]. As a result, it has some of
the advantages of each approach: It is relatively
easy to implement parallel algorithms because any
memory location can be used to synchronize two
processes, and yet it is relatively inexpensive
to implement large quantities of memory. In addi-
tion, the protection facilities make it possible
to utilize the machine either as a multiprogrammed
computer or as an MIMD computer.

References

(1] Flynn,M.J. "Some Computer Organizations and
Their Effectiveness", TEEE-C21 (Sept. 1972).

[2] Jordan,H.F. "A Special Purpose Architecture
for Finite Element Analysis", International
Conference on Parallel Processing (1978).

[3] vord,R.E. “"Scheduling Recurrence Equations for
Parallel Computation", Ph.D. Thesis, Dept. of
Computer Science, Wash. State Univ. (1976).

(4] Rumbaugh,J. "A Data Flow Multiprocessor”,
IEEE-C26, p. 13B (Feb. 1977).

[s] Thornton,J.E. "Parallel Operation in the Con-
trol Data 6600", Proc. FJCC vol 26, part 2,
p. 33 (1964).

