
== Paper summary ==

The chapter stresses out some of the problems present in current memory system,
and tries to alleviate some of the issues by offering some interesting
solutions: new memory architectures, new uses of emerging technologies that
might replace or coexist among the current memory systems, methods of offering
predictable performance and quality of service among the current memory system.

The paper identifies three current fronts on which the current system is
becoming a bottleneck. First, the architecture front (many changes at the
architecture level such as heterogeneous systems, different users/agents that
are using the memory system and require a good response from the memory system -
QoS). Second, the application front (applications are becoming more data hungry
and need a lot of capacity and bandwidth to be supplied). Lastly, the technology
front (the current DRAM system do not scale anymore, therefore new technology
nodes must be used for a better scaling).

The paper tries to offer some solutions to alleviate some of the problems on all
of the fronts, it does not go into too much detail. However, it paints an
interesting picture where the memory system is the main actor. The methods used
for improving the memory system have some interesting background ideas and
really show performance improvements. The chapter opens this vast research
field offering some possible solutions but also leaving the reader to find
and come up with other solutions by himself.

== Strengths of paper and mechanisms (bullet points) ==

1. The chapter is well structured and presents the information in a well-thought
flow.

2. The problems that are being tackled are important problems that are causing
the memory system to be a bottleneck.

3. The idea of refreshing only some regions of the DRAM to reduce power
consumption.

4. Improving DRAM bank parallelism by favoring the sub arrays. Depending on how
the data is being placed and additional of circuitry may offer a high
improvement for dram parallelism.

5. The idea of moving some of the computing operations to the DRAM side seems
very appealing. DRAM becomes the active player in the system and it can overlap
memory operations with actual computations of the compute nodes, thereby
reducing some latencies.

6. The chapter also tackles the issue of heterogeneous memory systems that
contain both DRAM and other type of NVM systems.

7. The MISE idea of creating a model based on the memory requests presents an
interesting solution that offers QoS when running multiple applications.

== Weaknesses of paper and mechanisms (bullet points) ==

1. The main issue with the retention-time-aware memory controller is how to
determine that time. Profiling the application once and creating a mechanism for
prediction may seem an interesting solution. That will require an accurate
prediction and understanding of the application.

2. For improving the DRAM parallelism and the reduction of the latencies, the
memory controller must know exactly where and how to put the data so that the
system can make use of its mechanism. How complex will the memory controller be?

3. Making the DRAM an active player in the system will determine the creation of
coherence mechanisms between compute nodes and memory system. Methods for
notifying the compute nodes are needed.

4. What elements will notify the compute nodes as fast as possible when DRAM
performs computations on data, so the compute nodes don't have stale values for



computation?

5. In hybrid memory systems, how will reliability be guaranteed? If the NVM
memory system fails, how will the data that was in computation be restored?

== Detailed comments (expand on the summary as necessary) ==

As stated in the introduction, the ideas and algorithms, that were offered, help
solve some of the issues that the memory system faces nowadays. All the
mechanisms present good improvements, but can we do better, that is the main
question. All solutions may have some drawbacks, such as RAIDR which tends to
reduce power consumption because of the increasing need of refresh rates. The
issue is that the collection of the retention times is difficult. The mechanism
of prediction must be well put, and also a mechanism for recovery to offer
reliability.

== Ideas for improvement - Can you do better? ==

In all of the cases, an analysis on the software is always needed. Each
application is going to be characterized by a compute phase, transition phase,
and memory phase. If the analysis on the memory phase is well done and for each
application it can be predicted where the data is being placed, how the data is
being used, then the mechanism will have a better success. There always has to
be a cooperation between hardware and software. Compilers must also take into
account the underlying hardware subtleties so as to offer the best
optimizations. All the decisions done at the lower level must also be exposed
some how to the upper level of the compute stack.

== Lessons learned ==

To conclude, the chapter presented some interesting problems that need to be
solved so as to have high performance, whether we are talking about total
execution time or power consumption. The chapter presented some serious
requirements that need to be satisfied such as: capacity, bandwidth,
reliability, performance, cost and so on. Overall the chapter was an interesting
reading that covered a lot of material and presented some interesting direction
for future research work.


