
Decoupled Access/Execute Computer
Architectures
JAMES E. SMITH
University of Wisconsin

An architecture for high-performance scalar computation is proposed and discussed. The main feature
of the architecture is a high degree of decoupling between operand access and execution. This results
in an implementation that has two separate instruction streams that communicate via architectural
queues. Performance comparisons with a conventional scalar architecture are given, and these show
that significant performance gains can be realized. Single-instruction-stream versions, both physical
and conceptual, are discussed, with the primary goal of minimizing the differences with conventional
architectures. This allows known compilation and programming techniques to be used. Finally, the
problem of deadlock in a decoupled system is discussed, and a deadlock prevention method is given.

Categories and Subject Descriptors: B.2.1 [Ari thmet ic and Logic Structures]: Design Styles--
pipeline; C.1.1 [Processor Archi tectures] : Single Data Stream Architectures--pipeline processors;
C.4 [Computer Systems Organization]: Performance of Systems--performance attributes; C.5.1
[Computer System Implementation]: Large and Medium ("mainframe") Computers--super (very
large) computers

General Terms: Design, Performance

Additional Key Words and Phrases: Pipelined computer systems, decoupled architectures, scalar
processing

1. INTRODUCTION

Today's supercomputers are probably best known for their vector mode of
operation where a single instruction can cause streams of data to flow through
pipelined arithmetic units. Nevertheless, performance in the more traditional
scalar mode of operation is recognized as being at least as important as vector
performance, and a good balance between the two is what distinguishes the
"second-generation" vector processors [15]. Perhaps the most striking example
is the CDC CYBER 200 series of vector computers [16], which became commer-
cially viable only after the scalar performance of their first-generation predeces-
sor, the STAR-100 [14], was significantly upgraded.

This paper is a revised version of a paper that appeared in the Proceedings of the 9th Annual
Symposium on Computer Architecture (Austin, Tex., Apr. 26-29). SIGARCH Newsletter (ACM) 10,
3 (Apr. 1982), 112-119.
This work was supported by the National Science Foundation under Grant ECS-8207277.
Author's address: Department of Electrical and Computer Engineering, University of Wisconsin,
Madison, WI 53706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/1100-0289 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984, Pages 289-308.

290 • James E. Smith

The need for balance between scalar and vector processing is very clearly
articulated by J. Worlton in [25]. His discussion centers on what he terms
"Amdahl's law," which appeared in [2] and which says that if a computer system
has a high-speed mode of operation and a low-speed mode, then overall perform-
ance will be dominated by the low-speed mode unless the fraction of results
generated in low-speed mode can be essentially eliminated. In modern supercom-
puter terms, the high-speed mode is vector operation, and the low-speed mode is
scalar operation. Empirical evidence of the validity of Amdahl's law is substantial,
with some benchmark results by Arnold [4] being a very good example.

In recent years there has been significantly more architectural and organiza-
tional innovation in the vector area than the scalar area. Furthermore, the vector
mode of operation exploits parallelism that is characterized by minimal data
dependencies. This is the same type of parallelism for which arrays of identical
processors will be most effective. Hence, most of the proposed methods for
exploiting very large-scale integration (VLSI) by bringing large numbers of
identical processors to bear on a single problem will yield the best results on
what are currently vectorizable problems. Unless there is innovation in processing
scalar tasks containing little inherent parallelism, there is danger of a growing
imbalance between high-speed and low-speed modes of computation and a
limiting of overall system performance as predicted by Amdahl's law.

In this paper, we explore a class of computer architectures and underlying
organizations that can substantially improve scalar performance. This is done by
using two separate instruction streams that cooperate in executing the same
scalar process; the two streams communicate via hardware queues. Instruction
decode/issue logic in each stream is simple and requires nothing beyond the
current state of the art as exemplified by the CRAY-1 and CYBER 205. Fur-
thermore, demands on software for scheduling of code--a common practice in
pipelined processors--are reduced. This paper discusses high-performance pipe-
lined processors, as the preceding remarks suggest. Nevertheless, the basic
principle can also be applied to much simpler and less expensive processors
[23].

1.1 Design Issues for Pipelined Scalar Processors

Most scalar performance improvements made in the last fifteen years have been
due to faster logic and memory technology, along with improved packaging and
cooling methods. For example, the CRAY-1 [10], representing the state of the
art in scalar as well as vector processing, performs scalar computation in funda-
mentally the same way as the CDC 7600 [5]. In fact, the CDC 6600 [24] and
IBM 360/91 [3] were in many ways more sophisticated in their scalar organization
than are more recent computers.

Both the CDC 6600 and IBM 360/91 processors attempted to maximize overlap
by allowing instructions to be issued out of program sequence, but their complex
issue methods have been abandoned by their respective manufacturers. There
are at least three reasons for this retrenchment to simpler methods, and
these reasons shed some light on the trade-offs involved in high-performance-
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 291

processor design:

(1) Complex instruction issue methods tend to require more complicated
control, which means longer control paths and a slower clock rate. The reduced
clock rate can offset performance gains due to the sophisticated issue schemes.

(2) Complex issue methods lead to more problems in hardware debugging and
maintenance; errors are more difficult to reproduce due to less determinism in
the order in which instructions are issued and executed.

(3) Some of the performance loss caused by simple issue methods can be
compensated for by instruction scheduling by the compiler or assembly language
programmer [20]. Of course, this places a significantly greater burden on software.

It has long been known that a practical impediment to scalar performance is
that any straightforward instruction decoding/issuing scheme has some bottle-
neck through which instructions pass at the maximum rate of one per clock
period. This bottleneck was first mentioned by Flynn [12] and will henceforth
be referred to as the Flynn bottleneck. As previously mentioned, modern super-
computer implementations [10, 16] additionally constrain instructions to issue
in program sequence.

The architectures discussed in this paper permit improved scalar performance
in two important ways. First, the Flynn bottleneck is sidestepped by using two
instruction streams. This effectively doubles the maximum available instruction
bandwidth. Second, because hardware queues are used for communication be-
tween the instruction streams, the streams can "slip" with respect to each other.
This leads to what is essentially dynamic scheduling of instructions, previously
provided only by the sophisticated issue methods used in the CDC 6600 and IBM
360/91. Moreover, the instruction issue logic used in each instruction stream
remains simple.

1.2 Related Work

The main ingredient in the architecture/organization discussed here is the
separation of computer processing into two parts: access to memory to fetch
operands and store results, and function execution to produce the results. This
separation of tasks has been a particularly important feature of several high-
performance computers, including those from IBM, Amdahl, CDC, and Cray
Research.

The IBM and Amdahl high-performance implementations of the System 360/
370 architecture [1, 8] almost invariably decompose the design into an I-unit and
an E-unit. The I-unit fetches the single-instruction stream and makes the
appropriate data access requests from memory; meanwhile, instruction control
information is forwarded to the E-unit. The data from memory rejoin the control
at the E-unit, and the instruction is executed.

CDC and Cray Research architectures further separate the memory access and
function execution tasks. They use separate short precision registers for indexing
and addressing and longer precision registers for floating-point data. There is a
separate set of instructions for each set of registers to support the accessing and
execution tasks.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

292 • James E. Smith

The CSPI MAP-200 [7], an array processor, has pushed the degree of access
and execution decoupling beyond that of any of the large-scale computers
mentioned above. The MAP-200 uses two instruction streams--one for data
access and the other for execution. In this paper the same basic scheme is used,
but the MAP-200 architecture places much more of the burden for hardware
coordination and synchronization on the software, as is often the case in array
processors.

In related work, Hammerstrom and Davidson [13] proposed and studied a
theoretical processor model that separates operand access from execution. Partly
on the basis of this theoretical study, Pleszkun and Davidson [19] have recently
proposed a structured memory access architecture that is somewhat reminiscent
of the IBM and Amdahl I-unit/E-unit approach, except that in [19] both the I-
and E-units can capture program loops. This results in what are effectively two
instruction streams during loop execution. In addition, the structured memory
access architecture employs several sophisticated techniques that reduce memory
references for data.

Finally, architectures that have architectural queues but use a single-instruc-
tion stream have been proposed in [6, 22]. Architectures of this type are included
in the discussion in Section 4.

1.3 Paper Overview

This paper begins with an overview of decoupled access/execute computer archi-
tectures. Then some specific implementation issues are discussed. These are
handling of stores, conditional branches, and queues. All three of these are
handled in ways intended to place the burden of synchronization and interlocking
on the hardware. Next, results of a performance analysis of the 14 Lawrence
Livermore Loops [17] are given. This is followed by a discussion of ways in which
the two instruction streams of a decoupled access/execute architecture can be
merged while retaining most, if not all, of the performance improvement. Finally,
a discussion of deadlock, its causes, detection, and prevention, is given.

2. DECOUPLED ARCHITECTURE OVERVIEW

A decoupled access/execute, or simply decoupled, architecture is separated into
two major functional units: the access processor, or A-processor, and the execute
processor, or X-processor (Figure 1). Each of the processors has its own instruc-
tion stream. Hence the two instruction decode/issue units shown in Figure 1 are
an essential part of the basic architecture. The instruction caches, on the other
hand, are needed to increase instruction fetch bandwidth to match the increased
instruction issue bandwidth that a decoupled architecture provides.

Each of the two processors has its own distinct set of registers. In the A-
processor these are denoted as registers Ao, A 1 , . . . , An-1 and in the X-processor
they are Xo, X1, . . . , Xm-1. Th~two processors do not necessarily have the same
number of registers, nor do the registers have to be the same length.

The two processors execute separate programs that have a similar flowchart
structure but perform two different functions. The A-processor performs all
operations necessary for transferring data to and from main memory. That is, it
does all address computation and performs all memory read and write requests.
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 293

M

E

M

0

R

Y

Data/Insts sn

X deta out r~g~'
XLQ I I

~ X ~I-decod~, L! I-cache end Issue

_--~ X-PROCESSOR

X
Funct I on
Unlts

I R-PROCESSOR C
nBO

1

A data out

_t
C o p y U n i t

XSO A

F o n c t t o n

U n i t s

R d d r e s s o u t R d d r e s s

G e n e r a t i o n

Un~±

Fig. 1. Block d iagram of a decoupled archi tecture.

In the process, it uses its own set of functional units and registers. Data fetched
from memory are either used internally in the A-processor, or are placed in a
first-in, first-out (FIFO) queue going to the X-processor. This is the X Load
Queue, or XLQ. The X-processor removes operands from the XLQ as it needs
them, uses them for computation with its functional units and registers, and
places any results into a second FIFO queue, the X-Store Queue or XSQ.

The A-processor issues memory store instructions as soon as it can compute
the store address; it does not wait until the store data are received via the XSQ.
Store addresses awaiting X data are held in the Store Address Queue or SAQ. As
a data item becomes available in the XSQ, it is paired with the first store address
in the SAQ and is sent to memory. This pairing takes place automatically when
the data become available.

The shared copy unit is used to provide a quick path for data in one processor's
register to be passed to the other processor's registers. This is an alternative to
passing data through main memory. When the data transfer Xi ~-- Aj is required,
an instruction is placed in each processor's program. The A-processor instruction

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

294 • James E. Smith

reads Aj and places it in a queue in the copy unit. The X-processor instruction
reads the copy unit queue and places the content in Xi. A similar pair of
instructions is used for an Ai*-- Xj. copy. A full queue blocks issue of an instruction
that places data in it. Similarly, an empty queue blocks issue of an instruction
that reads it. At a minimum, there is a length-one queue (actually a simple
register) in the copy unit for each type of copy. There might be instances when
a longer queue would lead to better performance, but for simplicity of implemen-
tation length-one queues were used for generating the performance results given
in Section 3.

In order for the A- and X-processors to track each other, they must be able to
coordinate conditional jumps or branches. FIFO queues are also used for this
purpose. These are the X-Branch Queue (XBQ) and A-Branch Queue (ABQ) in
Figure 1.

Either processor could conceivably have the data necessary to decide a condi-
tional branch. Consequently, each processor has a set of conditional branch
instructions that use its own data. Each processor also has a Branch From Queue
(BFQ) instruction that is conditional on the branch outcome at the head of its
branch queue coming from the opposite processor. When a processor determines
a conditional branch outcome, it places the outcome (taken or not taken) on the
tail of the branch queue to the opposite processor. Thus conditional branch
instructions appear in the two processors as pairs. If a conditional branch in the
A-processor uses its own internal data, the conditional branch in the X-processor
is a BFQ, and vice versa. A BFQ that finds its branch queue empty is blocked
from issuing until an outcome arrives.

For performance reasons, it is desirable for the A-processor to determine as
many of the conditional branches as possible. This reduces dependency on the
X-processor and allows the A-processor to run ahead. Furthermore, if the A-
processor is running ahead of the X-processor, branch outcomes in the XBQ can
be used by the instruction-fetch hardware in the X-processor to reduce or
eliminate instruction-fetch delays related to conditional branches; that is, it is
as if the X-processor observes unconditional branches rather than conditional
ones. Often, as when a loop counter is also used as an array index, it happens
naturally that the A-processor determines conditional branches.

Throughout this paper, examples and comparisons are made with respect to
the CRAY-1 architecture and organization. The CRAY-1 was chosen because it

(1) represents the state of the art in scalar performance, 1
(2) already has an architecture that to some extent decouples access and execu-

tion,
(3) has a straightforward implementation that makes timing calculations rela-

tively simple.

Example 1. Figure 2a is the first of the 14 Lawrence Livermore Loops (HYDRO
EXCERPT) intended to benchmark FORTRAN performance [21]. Figure 2b is
a compilation onto the CRAY-1 architecture; the compiled code is in CRAY

The more recent CRAY X - M P [22] is nearly identical to the CRAY-1 in the way in which it handles
scalar operations.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 295

q = 0.0
Do 1 = 1, 400
x(k) = q + y(k)*(r*z(k + 10) + t*z(k + 11))

(a)

A4 *-- -400
A2 *--0
As*-- 1
X2 *--- r

X~ ,-- t
loop: Xa *-- z + 10, A2

X7 ,-- z + 11, A2
X, ~ X2*/Xs
X8 ,-- X6*/X7
X7 *-- y, A2
Xe *- Xs + fX~
A~*-A4 + 1
X4 *-- X7*/Xs
Ao *-- A,
x, A**- X~
A2 *-- A2 + Aa
JAM loop

Access
A4 *-- -400
A2 *--0
A a ~ - I
XLQ ",- r
XLQ ~ t

loopa: XLQ ,~- z + 10, A2 loopx:
X L Q ~ z + 11, A2
XLQ ,,-- y, A2
A4*-- A4 + 1
X, A2 ,,-- XSQ

Ao*-- A,
A2 *-- A2 + A3
JAM loopa • place outcome in XBQ

(c)

• negative loop count
• initialize index (k)
• index increment
• load loop invariants
• into registers
• load z(k + 10)
• load z(k + 11)
• r*z(k + 10) - floating multiply
• t*z(k + 11)
• load y(k)

• r*z(k + 10) + t*z(k + 11)
• increment loop count
• y (k)*(r*z(k + 10) + t*z(k + 11))
• copy loop count for JAM
• store into x(k)

• increment index
• branch if A0 < 0

(b)

Execute

X2 *- XLQ
X6 *-- XLQ
X4 ,~- X2*/XLQ
Xa ~-- Xs, /XLQ
Xe ~- Xs + / X ,
XSQ ,-- XLQ,/X~
BFQ loopx • remove outcome from XBQ

Fig. 2. (a) The first Lawrence Livermore Loop (HYDRO EXCERPT) (b) CRAY-1 compilation.
(c) Decoupled architecture compilation.

a s s e m b l y l a n g u a g e w i t h a r r o w s i n s e r t e d fo r r e a d a b i l i t y . T h e s c a l a r r e g i s t e r s h a v e

b e e n r e n a m e d Xo, X1, e tc . , r a t h e r t h a n So, $1, e tc . , in o r d e r t o m a k e c o r r e s p o n d -

e n c e w i t h t h e d e c o u p l e d a r c h i t e c t u r e m o r e c l ea r . F i g u r e 2c c o n t a i n s t h e A- a n d

X - p r o g r a m s fo r a d e c o u p l e d a r c h i t e c t u r e t h a t is p a t t e r n e d a f t e r t h e C R A Y - 1 ; t h e
m a j o r d i f f e r e n c e s a r e t h a t t h e r e a r e t w o i n s t r u c t i o n s t r e a m s , a n d b r a n c h o u t c o m e s

a n d d a t a a r e c o m m u n i c a t e d v i a q u e u e s .

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

296 • James E. Smith

2.1 Memory Interlocks

The memory system proposed here returns load data in the same order in which
it is requested and does not include an operand cache. Both out-of-order memory
loads and an operand cache could be used to implement a decoupled architecture.
However, their absence considerably simplifies the necessary interlocks and is
consistent with the CRAY-1 implementation.

As for load/store interlocks, every high-performance processor must resolve
hazards involving the sequencing of memory reads and writes; a decoupled
architecture is no exception. As mentioned earlier, memory addresses for stores
may be computed well in advance of when the data are available. These addresses
are held in the SAQ, and as store data are placed on the XSQ, they are lined up
with their addresses in the SAQ and are sent to memory. The issuing of store
instructions before data become available is an important factor in improving
performance because it reduces pipeline blockages.

One problem that arises, however, is that a load instruction might use the same
memory location (address) as a previously issued, but not yet completed, store.
The solution in [7] is to provide the programmer with interlock flags to block
instruction issuing when there is any danger of a load bypassing a store to the
same location.

An alternative, but slightly more expensive, solution that relieves the program-
mer (or compiler) of inserting interlocks is to compare each newly issued load
address with all the addresses in the SAQ. If there is a match, then the load
should be held (and all subsequent loads should be held, possibly by blocking
their issue) until the match condition goes away. This associative compare would
be a limiting factor on the size of the SAQ, but a size of 8-16 addresses seems
feasible and would probably be adequate. This solution can be made more
elaborate by "short-circuiting" store data to the load path when the load address
matches a store address in the SAQ.

A second problem is the sequencing of stores involving A-processor and X-
processor data. If two such stores are to the same location, they should be
performed by the A-processor in program sequence. This can be accomplished
by strictly forcing all stores to leave the A-processor in order. This might mean
buffering an A-processor store address and data behind some earlier store address
that is awaiting X-processor data. This could be incorporated into the SAQ
mechanism. An alternative would be to treat A-register stores in the same way
as the loads. A store address for an A-register store could be compared with the
SAQ and blocked if there is a match. With this scheme, A-register stores could
pass X-processor stores waiting in the SAQ, provided there are no address
conflicts.

2.2 Queue Architecture and Implementation

In order to simplify the instruction set of a decoupled architecture, we reserve a
register designator to represent the queue heads and tails. In this way queue
operands can be referred to just as registers are, and no special instructions or
addressing modes are needed to access the queues. In particular, in the X-
processor instruction set we let the highest numbered X-register, X,-1, refer to
the XLQ head when it is in a source field, and the XSQ tail when it is in a
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 297

destination field. For example,

XSQ *-- XLQ + X2

takes the first data word off the X load queue, adds to it the content of register
X2, and places the result in the XSQ, to be stored in memory. In an 8-register
X-processor (Xo - X~), we could also have used

X7 (-- X7 + X2

to achieve the same end.
In the A-processor, the instruction

XLQ (-- "address"

causes data to be loaded into the tail of the XLQ; the destination can be
interpreted from the opcode, and a destination register field is unused with
respect to the CRAY-1 counterpart because the CRAY-1 can load into any scalar
register. Similarly, a store can be denoted: "address" ~-- XSQ, although strictly
speaking this instruction places the address in the SAQ, where it waits for data
to arrive via the XSQ.

A more general alternative is to give the processor access to the top two (or
more) elements of a queue, when, for example, the top two elements of a queue
are both operands for an add or multiply. In this case, one could use separate
register designators for each position in the queue to be accessed. For example,
Xn-1 and Xn-2 could be the first two elements in the XLQ. The instruction
X1 (-- X,-1 + X,-2 adds the first two members of the XLQ. A third alternative
is to use one register designator for the queues, but to interpret an instruction
such as X1 (-- X,-1 + X,_I to mean that the top two elements on the XLQ are to
be added. For a noncommutative operation like subtraction, a convention would
have to be used so that the elements come off the queue in a predefined order.
This method has the advantage of using only one register designator for queues,
but it adds somewhat to control complexity because the issue of such an instruc-
tion would have to be blocked if either the queue is empty or has only one
element. This third alternative is the one used in the simulations reported in
Section 3.

The use of registers as queue heads and tails also suggests a convenient and
efficient implementation. The XLQ can be implemented as a standard circular
buffer held in a register file. A head counter and a tail counter point to the
elements of the register file that are at the head of the queue and at the tail.

The method of using register designators to specify queue operands simplifies
testing queues for full and empty conditions. In a typical pipelined processor, for
example, the CRAY-1, a set of flip-flops, one for each register, is used to
coordinate the reading and writing of registers so that register contents are read
and updated in correct sequence. When there issues an instruction that changes
a register's contents, the corresponding flip-flop is set to designate the register
as being reserved. Any subsequent instruction using the register as an input or
output operand encounters the reserved bit and is blocked from issuing. After an
instruction that modifies a register completes, the reserved bit is cleared, and
any instruction blocked by the bit is allowed to issue.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

298 • James E. Smith

The queues can be checked for empty/full status by exactly the same reserved
bits. For example, if the XLQ is empty, an X,-1 reserved bit in the X-processor
is set so that any instruction needing an operand for the XLQ is blocked.
Similarly, if the XSQ is full, then a second X,-1 reserved bit in the X-processor
is set so that any instruction needing to place data into the queue is blocked.

2.3 Queue Timing

To support the performance results to be given in the next section, it is necessary
to show that data accesses involving the XLQ will be as fast as those involving
X registers. What follows assumes a CRAY-1 technology, although one can make
a similar argument for most other technologies. The key point is that the queues
are implemented as registers.

In the CRAY-1, when an instruction is latched in CIP (the instruction issue
register), the operand register designators are latched on the register modules. In
fact, CIP is distributed around the machine, and a portion of CIP containing the
register designators resides on the register modules. During the next clock period,
while an issue decision is being made, the register files are read. If the instruction
issues, then the register designators are overwritten as the next instruction is
loaded into CIP.

The XLQ could be implemented with the same parts as the X-register files.
The designator used to address the queue files are held in the head counter,
rather than coming from register designator fields in instructions. In a queue
implementation, the head counter could reside on the same modules as the queue
register files. As an instruction issue decision is being made, the XLQ can be
read exactly as the X registers are. If the instruction issues, then the head counter
can be incremented. Since the counter can be completely set up prior to the/ssue
signal that causes it to be incremented, the actual change in the counter's state
takes no longer than the time required to load the latches. A similar argument
can be made for loading the XLQ from memory and incrementing the tail
counter.

Passing data to the floating point functional units from the XLQ in addition
to X registers means there needs to be multiplexing into the functional units.
But, there is already considerable functional unit input multiplexing in the
CRAY-1. Each floating point functional unit can receive inputs from X registers,
vector registers, and all the other floating-point functional units (to support
vector chaining).

To summarize, the time required to load the address latches for the queue
register files is the same as the load address latches for the X register files; the
time required to read the files is also the same, and the functional unit input
multiplexing is already there. Of course, one could only determine the exact time
required for accessing the XLQ by implementing it. Nevertheless, the preceding
argument is strong enough to support the assumption that XLQ and X register
file timing are the same, as is done in the next section.

2.4 Interrupts and Traps

Interrupts and traps are an important consideration in any highly parallel
computer, including those with decoupled architectures. Here, the term interrupt
means any externally caused interruption, whereas a trap is caused by some

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 299

condition detected in the processor itself. For example, a request for service by
an I/O processor is through an interrupt, whereas a floating-point overflow may
cause a trap. A precise interrupt or trap occurs when the process state is saved
so that it can be restarted following service of the interrupt or trap.

Precise interrupts are supported by virtually every processor in existence, the
only exceptions being some array processors. (Note that by our terminology the
IBM 360/91 provided precise interrupts but did not always provide precise traps.)
To support precise interrupts in a pipelined processor, it is only necessary to
stop instruction issue and wait until all executing instructions complete. This is
also the approach to be used in a decoupled architecture. After instruction
execution has ceased, the two program counters need to be saved by hardware.
Registers and queues can be saved by hardware, software, or some combination.
The use of queues might lead to saving more state information than in a
conventional architecture, but this is not necessarily so; a decoupled architecture
may need fewer general purpose registers.

Providing precise traps is typically more difficult than precise interrupts. An
approach often used is to force the instructions to complete (and modify the
process state) in order. This approach has been used in all the high-performance
IBM 360/370 implementations following the IBM 360/91. A similar approach
could be applied to a decoupled architecture, but to each of the instruction
streams separately. This approach may also lead to reduced performance because
fast instructions cannot pass slow ones.

The CRAY-1 allows instructions to complete out of order and does not provide
precise traps. In order to provide a fair performance comparison, the decoupled
implementation described in this paper does the same.

One of the major reasons for providing precise traps is to support page faults
in a virtual memory system. Because page faults involving instruction fetches
can be handled in much the same way as interrupts (stop instruction issue and
wait), they pose no particular problem. Page faults involving data can be made
precise in a decoupled architecture by forcing the A instructions to finish in order
and by treating the page fault like an interrupt in the X-processor; the X
instructions may still finish out of order. Hence, in a decoupled architecture it
may be possible to support virtual memory with less performance loss than with
a conventional architecture.

3. PERFORMANCE STUDY

In this section, estimates of possible performance improvement with decoupled
architecture are made. These focus on scientific programs and use the CRAY-1
for comparison, as discussed prior to Example 1. To get single instruction stream
estimates, the 14 Lawrence Livermore Loops [21] were compiled onto the CRAY-
1 scalar architecture. The actual object code generated by the CRAY FORTRAN
compiler (CFT) was used as a guide, so the level of code optimization and
scheduling is realistic. Because of our interest in scalar performance, the CFT
vectorizer was turned off. The only change made in the CFT scalar code deals
with the way index values are manipulated. The CFT compiler keeps the indices
in S and T registers, increments them in S registers, and copies them into A
registers for indexing. This is not essential and is a quirk of the current version
of the CFT compiler [personal communication from D. Hendrickson, Cray

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

300 ° James E. Smith

Research, Inc]. In order to provide a fair comparison with a decoupled architec-
ture, the CFT code was changed so that indices are held and incremented in A
registers. This was one of the originally intended uses of the A register as
described in [10], and it results in about a 10 percent performance improvement.

The 14 loops represent a mix of programs, some of which are vectorizable, and
some of which are not. Loop 1, shown in Figure 2, happens to be vectorizable.
Loops 4, 5, 6, 8, 11, 13 and 14 are not vectorized by the CFT compiler.

All timing was done with a CRAY-1 simulator [18] and a decoupled architecture
simulator developed at the University of Wisconsin. Execution times were
calculated in clock periods, using the number of clock periods required by the
CRAY-1 for each operation; for example, a load from memory is 11 clock periods,
a floating-point add is 6, and a floating-point multiply is 7. Loads, stores, and
conditional branches are assumed to require two clock periods to issue, as in the
CRAY-1. In [21] loads, stores, and conditional branches in a simplified CRAY-1
model were assumed to issue in only one clock period; also branch instruction
timing was assumed to be optimum, and memory bank conflicts were ignored.
These and other simplifications resulted in the differences in performance figures
given in [21] and the more accurate simulator-derived figures given here.

The decoupled compilation was extracted directly from the CFT compilation.
No further optimization was done, except for the manipulation of loop index
values discussed earlier. Each of the two instruction streams was assumed to
issue in strict program sequence, just as in the CRAY-1. The register X,-1 is
used to designate queue heads and tails, as discussed earlier. As argued in Section
2.3, the time needed to communicate through a queue should be no longer than
to communicate through a register. This was assumed in making the time
estimates given below.

Figure 3a shows the steady-state timings for the HYDRO E XC E R PT loop.
The CRAY-1 takes 41 clock periods for each pass through the loop (36 clock
periods to get through the loop, plus 5 more for the taken branch at the bottom).

Figure 3b shows the timings for the Access and Execute programs in the
decoupled version. In this program, the A-processor decides all the conditional
branches and computes all addressing information itself. This means the A-
processor is never delayed by the X-processor. The timings given in Figure 3
reflect the steady-state situation where the X-program always finds a nonempty
XLQ, although initially the X-program will be held up waiting for its operands.

The A-processor can make each pass through its loop in 16 clock periods
(including the 5 for the taken branch). The X-processor takes 20 clock periods
and would lag behind the A-processor. Nevertheless, after the first two passes
through its loop (where there is a wait by the X-processor for the XLQ) the
computation proceeds at the steady-state rate of 20 clock periods per i teration--
slightly over twice the speed of the single stream version.

All 14 of the original Lawrence Livermore Loops were simulated as just
described. The results are given in Table I. The speedup is computed by dividing
the CRAY-1 clock periods by the decoupled architecture clock periods. The
speedups vary between 1.1 and 2.1. The average speedup is 1.58. For the 7
nonvectorizable loops the average speedup is 1.41. The higher speedups for loops
that are vectorizable occur because the loop iterations are independent, and the
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 301

Issue Time (clock period)
0 loop: Xs *-- Z + 10, A2
2 X7 .,--- Z + 11, A2

11 X4 ~ X2*/Xs
13 Xs (-- Xs*/X7
14 X7 (--- y, As
20 Xs (--- Xs + [X4
21 A4 ~-- A4 + 1
26 X4 ~-- X7*/Xe
27 Ao *-- A4
33 X, A2 *-- X4
35 As *-- As + As
36 JAM loop

(a)

Issue Time Access
0 loopa: XLQ *-- Z + 10, A2
2 XLQ .-- Z + 11, A2
4 XLQ ~ y, A2
6 A4*-- A4 + 1
7 X, A2 *-- XSQ
9 Ao *-- A4

10 A2 *-- A2 + As
11 JAM loopa

(b)

Issue Time Execute
0 loopx: X4 ~-- X2*/XLQ
1 X3 ,,-- Xs*/XLQ
8 Xe ~ X3 + [X,

14 XSQ ,-- XLQ.fXs
15 BFQ loopx

(c)

Fig. 3. Performance comparison for the first Lawrence Liv-
ermore Loop. (a) CRAY-1 machine code and issue timing.
(b) Access processor machine code and issue timing. (c)
Execute processor machine code and issue timing.

access/execute decoupling is complete. Loops 13 and 14 show the least amount
of speedup. This is because data need to be passed from the X-unit to the A-
unit. This severely restricts the freedom of the A-unit to run ahead and fetch
data in advance of when it is needed. As for the other loops that show relatively
low performance, the major reason is that they store data at the bottom of the
loop, which are subsequently reloaded when the top of the loop is entered.
Memory loads are then delayed because X-unit results must be computed first.
Furthermore, because we chose a straightforward memory implementation where
the data are not short-circuited, there is additional delay while the data are
stored and then reloaded.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

302 • James E Smith

Table I. Performance Simulation Results for the
14 Lawrence Livermore Loops

Loop CRAY-1 Decoupled Speedup

1 41 20 2.1
2 60 32 1.9
3 26 14 1.9

*4 38 20 1.9
*5 62 48 1.3
*6 64 47 1.4
7 81 56 lI! t

*8 200 118
9 96 58 1.7

10 101 63 1.6
*11 27 21 1.3
12 27 17 1.6

"13 146 135 1.1
"14 149 126 1.2
Average 1.58

° All times are in clock periods per loop iteration.
Loops that cannot be vectorized by the CFT com-
piler are marked with an asterisk (*).

4. SINGLE INSTRUCTION STREAM ARCHITECTURES

Although the dual ins t ruct ion s t r eam decoupled archi tecture is conceptual ly
simple and leads to s t ra ight forward implementa t ions , it does suffer some disad-
vantages. For the mos t part , these are due to the h u m a n e l e m e n t - - t h e p rogram-
mer and /o r compiler wri ter mus t deal with two in teract ing ins t ruct ion s t reams.
The p r o g r a m m e r prob lem can be overcome if a high-level language is used.
However, this forces the work onto the compiler.

A disadvantage of secondary impor tance is t ha t two separa te ins t ruct ion caches
and decode/issue uni ts are needed, one for each ins t ruct ion s t ream. Th i s hardware
cost p rob lem can probably be par t ia l ly alleviated by duplicat ing the same design
for bo th instruct ion fe tch/decode units.

In this section we briefly outl ine solutions to the above problems tha t

(1) physically merge the two ins t ruct ion s t reams into one, or
(2) conceptual ly merge the two ins t ruct ion s t reams for the purpose of p rogram-

ming and compilat ion, but physical ly separa te the ins t ruct ion s t reams before
the p rogram is loaded into memory .

The s implest way to physical ly achieve a single ins t ruct ion s t r eam is to
interleave the instruct ions f rom the two s treams. Le t al , ae , a , be the
sequence of inst ruct ions in the A-program and let xl, x2, • • •, xm be the sequence
of inst ruct ions in the X-program. An inter leaving consists of merging the two
sequences into one so t ha t

(1) if ai precedes aj in the original A-program, then ai precedes aj in the interleaved
sequence;

(2) if xi precedes xj in the original X-program, then xi precedes xj in the
inter leaved sequence;

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 303

(3) if ak and xt are corresponding branch instructions in the two sequences, that
is, a conditional branch and the corresponding branch from queue or two
corresponding unconditional branches, then a single branch instruction is
placed in the interleaved sequence, which satisfies the precedence constraints
(1) and (2) for both ak and xt.

Since the two sequences are interleaved, a bit can be added to each nonbranch
instruction, say as part of the opcode, to indicate the stream to which it originally
belonged. After instructions are fetched from memory and decoded, the bit can
be used to guide instructions to the correct processor for execution. Queues in
front of the processors can be used to hold the decoded instructions so that the
processors retain the freedom to "slip" with respect to each other. With this
scheme, only one program counter is required, and the BFQ instructions are no
longer needed.

Eliminating the BFQ instructions may reduce the execution time of the X-
program and improve overall performance. In [22] a single-stream architecture
that retains the Flynn bottleneck is studied. In some cases, performance is
reduced as compared with a two-instruction-stream processor due to the Flynn
bottleneck. In other cases, performance is improved because BFQ instructions
are removed.

A disadvantage of this method is that the instruction pipeline may be
lengthened so that branch performance may be degraded. Also, it should be noted
that this approach may reintroduce the one instruction per clock period bottle-
neck in the instruction fetch/decode pipeline. These would in some instances
result in reduced performance. However, it is also true that if one could split the
two instruction streams at a rate higher than one instruction per clock period,
then the Flynn bottleneck would still be widened. Because the splitting operation
is so simple, this is very likely to be possible.

Example 2. An interleaving of the HYDRO EXCERPT program is shown in
Figure 4. The processor to which each instruction belongs is noted in parentheses.
This particular interleaving places an instruction sending data via a queue
immediately before the instruction in the other processor that receives the data.
In addition, we use "XT" as the convention for denoting the queue heads and
tails.

From the above example, it can be seen that we are very close to a conventional
architecture, which uses different registers for addressing and functional unit
execution, that is, the CDC and CRAY architectures. The only difference is that
the only X register that may be loaded or stored is X7 (recall that X7 is really
representing the XLQ or XSQ).

The interleaved architecture appears to be so similar to conventional architec-
tures that many standard compiler techniques can probably be used. Only two
special rules regarding the use of X7 must be followed in order to follow the
underlying queue discipline:

(1) After X7 is loaded, it must bo. used once and only once.
(2) After data are put into X7 by an execute instruction, they must be stored.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

304 • James E. Smith

Fig. 4.

loop:

A4 (-- -400 (A)

A2 (-- 0 (A)

A3 ~-- 1 (A)

Xv ~-- r (A)

X2 '-- X7 (X)
X7 (-- r (A)

X5 ,-- X7 (X)
X7 (-- z + I0, A2 (A)

X, <-- X2*/X7 (X)
X7 --+ z + 11, A2 (A)

X3 <-- X6*/X7 (X)
X6 ,-- X3 + [X, (X)

X7 <-- y, A2 (A)

X7 ,-- X7*/Xe (X)
A4 (-- A4 + 1 (A)
x, A~ (- X7 (X)
Ao ~-- A4 (A)
A2 <-- A~ + A3 (A)
JAM Loop

An inter leaved version of the first Lawrence Livermore Loop.

If one physical instruction stream is to be used, the opcodes are marked by the
compiler so they can be split at run time.

If two instruction streams are to be used, then as a final step the compiler can
pull apart the two instruction streams, by inserting BFQ instructions.

From the preceding discussion it is apparent that many standard compilation
techniques can be used for decoupled architectures. Furthermore, the code
scheduling problem usually found in a pipelined computer is somewhat reduced
because the ability of the A-processor to run ahead of the X-processor results in
dynamic code scheduling by the hardware.

5. DEADLOCK

In a decoupled architecture, an instruction can be blocked from issuing if it needs
data (or a branch outcome) from a queue and the queue is empty, or if it needs
to place data (or a branch outcome) into a queue and the queue is full {this
include copy queues). Deadlock occurs if both instruction streams are simulta-
neously blocked for either of the above reasons. An example of this is shown in
Figure 5. The first instruction in each stream is blocked by an empty queue; the
next instruction in both streams places data in the other's queue. Note that we
are assuming that instructions in a given stream are constrained to issue in
program sequence, as has been the case throughout this paper.

Deadlock detection and prevention are both important problems. Deadlock
can be detected by simply determining when instruction issue is blocked in both
processors owing to full or empty queues, possibly after a delay to ensure that no
data are in transit. This should be flagged as a program error, and the program
should be purged.

Deadlock prevention is more complicated. We give a sufficient condition for
deadlock-free operation and show that meeting the sufficient condition occurs
quite naturally.
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 305

Access Execute

:

BFQ L1 Xa <--- XLQ
XLQ <--- As, disp JAM L2

:

Fig. 5. A deadlock situation in a decoupled
architecture.

Consider the instruction streams as they flow through the processors. Both
data and control information (in the form of branch outcomes) are passed via
queues. For each data or control transfer through a queue, there is an instruction
in one processor that sends the data or control item, and an instruction in the
other processor that receives the item. We refer to the instruction that sends a
particular item i as S E N D i, and the instruction that receives it as R E C E I V E i.
For example, in Figure 5, "XLQ <--- A3, disp" sends a data item i that is received
by the instruction "X3 *-- XLQ." Hence, the first instruction is SEND i and the
second is RECEIVE i. A branch instruction is a SEND i and its corresponding
branch from a queue is a RECEIVE i. In general, if an instruction is both a
SEND and a RECEIVE, then it can be considered to be a RECEIVE immediately
followed by a SEND. For the discussion that follows, we assume queues of length
one since this is the most restrictive case.

An interleaving of instructions (Section 4) is defined to be proper if the
instruction causing SEND i immediately precedes the instruction causing RE-
CEIVE i for all data or control transfers i. The interleaving shown in Figure 4 is
proper.

THEOREM. I f the A and X processor instruction streams can be properly inter-
leaved, then deadlock cannot occur.

PROOF. Deadlock occurs when both instruction streams are blocked due to
queues being empty or full. To be more specific, a SEND instruction can be
blocked if its queue is full, or a RECEIVE instruction can be blocked if its queue
is empty. One such deadlock situation is shown below.

A-stream X-stream
blocked --* RECEIVE i RECEIVE'j ~ blocked

SEND j SEND i

Here, both streams are blocked with "empty queues waiting to RECEIVE, while
the matching SENDs occur later in the streams. Figure 5 is an example of the
preceding situation. We see, however, that a proper interleaving of the two
streams is impossible: if SEND i is placed ahead of RECEIVE i, as it must be,
then because RECEIVE j precedes SEND i in the X-stream, it must also precede
SEND j in any interleaving.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

306 • James E. Smith

There are three other cases to be considered; these are shown below.

A-stream X-stream
blocked --* RECEIVE i SEND j (--- blocked

RECEIVE j SEND i

A-stream X-stream
blocked --* SEND j RECEIVE i *-- blocked

SEND i RECEIVE j

A-stream X-stream
blocked --) SEND i SEND j (-- blocked

RECEIVE j RECEIVE i

For each of these three other cases, it can be seen that a proper interleaving is
impossible. We have just examined all four of the possible deadlock situations
and have shown that a proper interleaving is impossible in each case. Using the
contrapositive completes the proof.

Code compiled as in Section 4 automatically has this property, since it is
compiled so that the static code sections are properly interleaved before being
separated.

The program in Figure 4 is a proper interleaving for the HYDRO E XC E R PT
compilation, so the program must be deadlock free. Turning to Figure 5, it can
be seen that it is impossible to interleave the A- and X-programs properly, and
the preceding sufficient condition is not satisfied.

6. CONCLUSIONS

It has been shown that a decoupled architecture has the following advantages.

(1) It permits high-speed instruction issue; up to two instructions can be issued
per clock period. This is twice the rate for traditional single-instruction stream
processors that contain the Flynn bottleneck, that is, some bottleneck in the
instruction fetch/decode path where instructions can pass at only one per clock
period.

(2) It permits a constrained type of out-of-order instruction issue that allows
data access operations to be done well in advance of when they are needed, but
without resorting to complicated methods that have been used in the past for
out-of-order issue.

(3) Unpredictable (and long) memory access delays can be smoothed and
possibly hidden. This is particularly important in modern multiprocessor systems
where memory bandwidth is a critical resource.

Decoupled architectures are relatively new, and many variations are possible.
Although large-scale implementations are emphasized here, application to smaller
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

Decoupled Access/Execute Computer Architectures • 307

scale systems also seems to be in order. A decoupled architecture offers oppor-
tunities for VLSI implementations where coprocessors have become an accepted
technique for improving performance [9]. By using features of a decoupled
architecture, overlap of coprocessors may be significantly increased and effects
of memory access delays may be reduced.

ACKNOWLEDGMENT

The author would like to thank Nicholas Pang'for developing the performance
simulators used in this study and David Anderson for his assistance in obtaining
CFT object listings for the Livermore Loops. The author would also like to thank
David Patterson, the referees, and the editor for their numerous comments and
helpful suggestions.

REFERENCES
1. AMDAHL CORPORATION. Amdah1580 Technical Introduction. Amdahl Corporation, Sunnyvale,

Calif. 1982.
2. AMDAHL, G. The validity of the single processor approach to achieving large-scale computing

capabilities. In Proceedings of AFIPS Spring Joint Computer Conference (Atlantic City, N.J.,
Apr. 18-20), AFIPS Press, Reston, Va., pp. 483-485.

3. ANDERSON, D.W., SPARACIO, F.J., AND TOMASULO, R.M. The IBM System/360 Model 91:
Machine philosophy and instruction handling. IBM J. Res. Devel. 11, 1 (Jan. 1967), 8-24.

4. ARNOLD, C.N. Performance evaluation of three automatic vectorizer packages. In 1982 Inter-
national Conference on Parallel Processing (Bellaire, Mich., Aug.) IEEE, New York 1982, pp.
235-242.

5. BONSEIGNEUR, P. Description of the 7600 computer system. Comput. Group News 3, 5 (May
1969) 11-15.

6. BRANTLEY, W.C., AND WIESS, J. Organization and architecture tradeoffs in FOM. In IEEE
International Workshop on Computer Systems Organization, (New Orleans, La. Mar. 29-31),
IEEE, New York, 1983, pp. 139-143.

7. COHLER, E.U., AND STORER, J.E. Functionally parallel architecture for array processors.
Computer 14, 9 (Sept. 1981), 28-36.

8. CONNORS, W.D., FLORKOWSKI, J.H., AND PATTON, S.K. The IBM 3033: An inside look.
Datamation 25, 5 (May 1979), 198-218.

9. Co-Processor cooperates with 8 or 16-bit microprocessors. Electron. Des. 28, (Mar. 1980), p. 19.
10. CRAY RESEARCH. CRAY X-MP Series Mainframe Reference Manual. Cray Research, Inc.,

Chippewa Falls, Wis. 1982.
11. CRAY RESEARCH. CRA Y-1 Computer System Hardware Reference Manual. Cray Research, Inc.,

Chippewa Falls, Wis. 1976.
12. FLYNN, M.J. Very high-speed computing systems. In Proceedings of the IEEE 54, 12 (Dec.

1966), 1901-1909.
13. HAMMERSTROM, D.W., AND DAVXDSON, E.S. Information content of CP memory referencing

behavior. In Proceedings of the 4th Annual Symposium on Computer Architecture (Mar.). IEEE,
New York, 1977, pp. 184-192.

14. H1NTZ, R.G., AND TATE, D.P. Control data STAR-100 processor design. In Proceedings of the
IEEE Comcon 1972, IEEE, New York, (Sept.). 1972, pp. 1-4.

15. KOZDROWlCKI, E.W., AND THEIS, D.J. Second generation of vector supercomputers. Computer
13, 11 (Nov. 1980), 71-83.

16. LINCOLN, N.R. Technology and design tradeoffs in the creation of a modern supercomputer.
IEEE Trans. Comp. C-31, 5 (May 1982), 349-362.

17. MCMAHON, F.H. FORTRAN CPU performance analysis. Lawrence Livermore Laboratories,
Livermore, Calif., 1972.

18. PANG, N.R., AND SMITH, J.E. CRAY-1 simulation tools. Tech. Rep. Electrical and Computer
Engineering Dept., Univ. of Wisconsin, Madison, Wis. Dec. 1983.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

308 • James E. Smith

19. PLESZKUN, A.R., AND DAVIDSON, E.S. A structural memory access architecture. In 1983
International Conference on Parallel Processing (Bellaire Mich., Aug. 23-26) IEEE, New York,
1983.

20. RYMARCZYK, J. Coding guidelines for pipelined processors. In Symposium on Architectural
Support for Programming Languages and Operating Systems. ACM SIGARCH Comput. News
10, 2 (Mar. 1982), 12-19.

21. SMITH, J.E. Decoupled access/execute computer architectures. In Proceedings of the 9th Annual
Symposium on Computer Architecture (May), 1982.

22. SMITH, J.E., AND KAMINSKI, T.J. Varieties of decoupled access/execute architectures. In
Proceedings o[the 20th Allerton Conference (Oct.). Univ. of Illinois, Monticello, Ill. 1982, pp.
577-586.

23. SMITH, J.E., PLESZKUN, A.R., KATZ, R.H., AND GOODMAN, J.R. PIPE: A high performance
VLSI architecture. In IEEE International Workshop on Computer Systems Organization (Mar.).
IEEE, New York, 1983, pp. 131-138.

24. THORNTON, J.E. Design o[a Computer--The Control Data 6600. Scott, Foresman, Glenview,
Ill., 1970.

25. WORLTON, J. Supercomputers: The philosophy behind the machines. Computerworld IN
DEPTH Sect. (Nov. 9, 1981), In depth 1-14

Received June 1983; revised April 1984; accepted June 1984

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

