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An architecture for high-performance scalar computation is proposed and discussed. The main feature 
of the architecture is a high degree of decoupling between operand access and execution. This results 
in an implementation that has two separate instruction streams that communicate via architectural 
queues. Performance comparisons with a conventional scalar architecture are given, and these show 
that significant performance gains can be realized. Single-instruction-stream versions, both physical 
and conceptual, are discussed, with the primary goal of minimizing the differences with conventional 
architectures. This allows known compilation and programming techniques to be used. Finally, the 
problem of deadlock in a decoupled system is discussed, and a deadlock prevention method is given. 
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1. INTRODUCTION 

Today's supercomputers are probably best known for their vector mode of 
operation where a single instruction can cause streams of data to flow through 
pipelined arithmetic units. Nevertheless, performance in the more traditional 
scalar mode of operation is recognized as being at least as important as vector 
performance, and a good balance between the two is what distinguishes the 
"second-generation" vector processors [15]. Perhaps the most striking example 
is the CDC CYBER 200 series of vector computers [16], which became commer- 
cially viable only after the scalar performance of their first-generation predeces- 
sor, the STAR-100 [14], was significantly upgraded. 
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The need for balance between scalar and vector processing is very clearly 
articulated by J. Worlton in [25]. His discussion centers on what he terms 
"Amdahl's law," which appeared in [2] and which says that if a computer system 
has a high-speed mode of operation and a low-speed mode, then overall perform- 
ance will be dominated by the low-speed mode unless the fraction of results 
generated in low-speed mode can be essentially eliminated. In modern supercom- 
puter terms, the high-speed mode is vector operation, and the low-speed mode is 
scalar operation. Empirical evidence of the validity of Amdahl's law is substantial, 
with some benchmark results by Arnold [4] being a very good example. 

In recent years there has been significantly more architectural and organiza- 
tional innovation in the vector area than the scalar area. Furthermore, the vector 
mode of operation exploits parallelism that is characterized by minimal data 
dependencies. This is the same type of parallelism for which arrays of identical 
processors will be most effective. Hence, most of the proposed methods for 
exploiting very large-scale integration (VLSI) by bringing large numbers of 
identical processors to bear on a single problem will yield the best results on 
what are currently vectorizable problems. Unless there is innovation in processing 
scalar tasks containing little inherent parallelism, there is danger of a growing 
imbalance between high-speed and low-speed modes of computation and a 
limiting of overall system performance as predicted by Amdahl's law. 

In this paper, we explore a class of computer architectures and underlying 
organizations that can substantially improve scalar performance. This is done by 
using two separate instruction streams that cooperate in executing the same 
scalar process; the two streams communicate via hardware queues. Instruction 
decode/issue logic in each stream is simple and requires nothing beyond the 
current state of the art as exemplified by the CRAY-1 and CYBER 205. Fur- 
thermore, demands on software for scheduling of code--a  common practice in 
pipelined processors--are reduced. This paper discusses high-performance pipe- 
lined processors, as the preceding remarks suggest. Nevertheless, the basic 
principle can also be applied to much simpler and less expensive processors 
[23]. 

1.1 Design Issues for Pipelined Scalar Processors 

Most scalar performance improvements made in the last fifteen years have been 
due to faster logic and memory technology, along with improved packaging and 
cooling methods. For example, the CRAY-1 [10], representing the state of the 
art in scalar as well as vector processing, performs scalar computation in funda- 
mentally the same way as the CDC 7600 [5]. In fact, the CDC 6600 [24] and 
IBM 360/91 [3] were in many ways more sophisticated in their scalar organization 
than are more recent computers. 

Both the CDC 6600 and IBM 360/91 processors attempted to maximize overlap 
by allowing instructions to be issued out of program sequence, but their complex 
issue methods have been abandoned by their respective manufacturers. There 
are at least three reasons for this retrenchment to simpler methods, and 
these reasons shed some light on the trade-offs involved in high-performance- 
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processor design: 

(1) Complex instruction issue methods tend to require more complicated 
control, which means longer control paths and a slower clock rate. The reduced 
clock rate can offset performance gains due to the sophisticated issue schemes. 

(2) Complex issue methods lead to more problems in hardware debugging and 
maintenance; errors are more difficult to reproduce due to less determinism in 
the order in which instructions are issued and executed. 

(3) Some of the performance loss caused by simple issue methods can be 
compensated for by instruction scheduling by the compiler or assembly language 
programmer [20]. Of course, this places a significantly greater burden on software. 

It has long been known that a practical impediment to scalar performance is 
that any straightforward instruction decoding/issuing scheme has some bottle- 
neck through which instructions pass at the maximum rate of one per clock 
period. This bottleneck was first mentioned by Flynn [12] and will henceforth 
be referred to as the Flynn bottleneck. As previously mentioned, modern super- 
computer implementations [10, 16] additionally constrain instructions to issue 
in program sequence. 

The architectures discussed in this paper permit improved scalar performance 
in two important ways. First, the Flynn bottleneck is sidestepped by using two 
instruction streams. This effectively doubles the maximum available instruction 
bandwidth. Second, because hardware queues are used for communication be- 
tween the instruction streams, the streams can "slip" with respect to each other. 
This leads to what is essentially dynamic scheduling of instructions, previously 
provided only by the sophisticated issue methods used in the CDC 6600 and IBM 
360/91. Moreover, the instruction issue logic used in each instruction stream 
remains simple. 

1.2 Related Work 

The main ingredient in the architecture/organization discussed here is the 
separation of computer processing into two parts: access to memory to fetch 
operands and store results, and function execution to produce the results. This 
separation of tasks has been a particularly important feature of several high- 
performance computers, including those from IBM, Amdahl, CDC, and Cray 
Research. 

The IBM and Amdahl high-performance implementations of the System 360/ 
370 architecture [1, 8] almost invariably decompose the design into an I-unit and 
an E-unit. The I-unit  fetches the single-instruction stream and makes the 
appropriate data access requests from memory; meanwhile, instruction control 
information is forwarded to the E-unit. The data from memory rejoin the control 
at the E-unit, and the instruction is executed. 

CDC and Cray Research architectures further separate the memory access and 
function execution tasks. They use separate short precision registers for indexing 
and addressing and longer precision registers for floating-point data. There is a 
separate set of instructions for each set of registers to support the accessing and 
execution tasks. 
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The CSPI MAP-200 [7], an array processor, has pushed the degree of access 
and execution decoupling beyond that of any of the large-scale computers 
mentioned above. The MAP-200 uses two instruction streams--one for data 
access and the other for execution. In this paper the same basic scheme is used, 
but the MAP-200 architecture places much more of the burden for hardware 
coordination and synchronization on the software, as is often the case in array 
processors. 

In related work, Hammerstrom and Davidson [13] proposed and studied a 
theoretical processor model that  separates operand access from execution. Partly 
on the basis of this theoretical study, Pleszkun and Davidson [19] have recently 
proposed a structured memory access architecture that  is somewhat reminiscent 
of the IBM and Amdahl I-unit/E-unit approach, except that  in [19] both the I- 
and E-units can capture program loops. This results in what are effectively two 
instruction streams during loop execution. In addition, the structured memory 
access architecture employs several sophisticated techniques that reduce memory 
references for data. 

Finally, architectures that have architectural queues but use a single-instruc- 
tion stream have been proposed in [6, 22]. Architectures of this type are included 
in the discussion in Section 4. 

1.3 Paper Overview 

This paper begins with an overview of decoupled access/execute computer archi- 
tectures. Then some specific implementation issues are discussed. These are 
handling of stores, conditional branches, and queues. All three of these are 
handled in ways intended to place the burden of synchronization and interlocking 
on the hardware. Next, results of a performance analysis of the 14 Lawrence 
Livermore Loops [17] are given. This is followed by a discussion of ways in which 
the two instruction streams of a decoupled access/execute architecture can be 
merged while retaining most, if not all, of the performance improvement. Finally, 
a discussion of deadlock, its causes, detection, and prevention, is given. 

2. DECOUPLED ARCHITECTURE OVERVIEW 

A decoupled access/execute, or simply decoupled, architecture is separated into 
two major functional units: the access processor, or A-processor, and the execute 
processor, or X-processor (Figure 1). Each of the processors has its own instruc- 
tion stream. Hence the two instruction decode/issue units shown in Figure 1 are 
an essential part of the basic architecture. The instruction caches, on the other 
hand, are needed to increase instruction fetch bandwidth to match the increased 
instruction issue bandwidth that  a decoupled architecture provides. 

Each of the two processors has its own distinct set of registers. In the A- 
processor these are denoted as registers Ao, A 1 , . . . ,  An-1  and in the X-processor 
they are Xo, X1, . . . ,  Xm-1. Th~two processors do not necessarily have the same 
number of registers, nor do the registers have to be the same length. 

The two processors execute separate programs that  have a similar flowchart 
structure but perform two different functions. The A-processor performs all 
operations necessary for transferring data to and from main memory. That  is, it 
does all address computation and performs all memory read and write requests. 
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984. 
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Fig. 1. Block d iagram of a decoupled archi tecture.  

In the process, it uses its own set of functional units and registers. Data fetched 
from memory are either used internally in the A-processor, or are placed in a 
first-in, first-out (FIFO) queue going to the X-processor. This is the X Load 
Queue, or XLQ. The X-processor removes operands from the XLQ as it needs 
them, uses them for computation with its functional units and registers, and 
places any results into a second FIFO queue, the X-Store Queue or XSQ. 

The A-processor issues memory store instructions as soon as it can compute 
the store address; it does not wait until the store data are received via the XSQ. 
Store addresses awaiting X data are held in the Store Address Queue or SAQ. As 
a data item becomes available in the XSQ, it is paired with the first store address 
in the SAQ and is sent to memory. This pairing takes place automatically when 
the data become available. 

The shared copy unit is used to provide a quick path for data in one processor's 
register to be passed to the other processor's registers. This is an alternative to 
passing data through main memory. When the data transfer Xi ~-- Aj is required, 
an instruction is placed in each processor's program. The A-processor instruction 
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reads Aj and places it in a queue in the copy unit. The X-processor instruction 
reads the copy unit queue and places the content in Xi. A similar pair of 
instructions is used for an Ai*-- Xj. copy. A full queue blocks issue of an instruction 
that places data in it. Similarly, an empty queue blocks issue of an instruction 
that reads it. At a minimum, there is a length-one queue (actually a simple 
register) in the copy unit for each type of copy. There might be instances when 
a longer queue would lead to better performance, but for simplicity of implemen- 
tation length-one queues were used for generating the performance results given 
in Section 3. 

In order for the A- and X-processors to track each other, they must be able to 
coordinate conditional jumps or branches. FIFO queues are also used for this 
purpose. These are the X-Branch Queue (XBQ) and A-Branch Queue (ABQ) in 
Figure 1. 

Either processor could conceivably have the data necessary to decide a condi- 
tional branch. Consequently, each processor has a set of conditional branch 
instructions that use its own data. Each processor also has a Branch From Queue 
(BFQ) instruction that is conditional on the branch outcome at the head of its 
branch queue coming from the opposite processor. When a processor determines 
a conditional branch outcome, it places the outcome (taken or not taken) on the 
tail of the branch queue to the opposite processor. Thus conditional branch 
instructions appear in the two processors as pairs. If a conditional branch in the 
A-processor uses its own internal data, the conditional branch in the X-processor 
is a BFQ, and vice versa. A BFQ that finds its branch queue empty is blocked 
from issuing until an outcome arrives. 

For performance reasons, it is desirable for the A-processor to determine as 
many of the conditional branches as possible. This reduces dependency on the 
X-processor and allows the A-processor to run ahead. Furthermore, if the A- 
processor is running ahead of the X-processor, branch outcomes in the XBQ can 
be used by the instruction-fetch hardware in the X-processor to reduce or 
eliminate instruction-fetch delays related to conditional branches; that is, it is 
as if the X-processor observes unconditional branches rather than conditional 
ones. Often, as when a loop counter is also used as an array index, it happens 
naturally that the A-processor determines conditional branches. 

Throughout this paper, examples and comparisons are made with respect to 
the CRAY-1 architecture and organization. The CRAY-1 was chosen because it 

(1) represents the state of the art in scalar performance, 1 
(2) already has an architecture that to some extent decouples access and execu- 

tion, 
(3) has a straightforward implementation that makes timing calculations rela- 

tively simple. 

Example 1. Figure 2a is the first of the 14 Lawrence Livermore Loops (HYDRO 
EXCERPT) intended to benchmark FORTRAN performance [21]. Figure 2b is 
a compilation onto the CRAY-1 architecture; the compiled code is in CRAY 

The more recent  CRAY X - M P  [22] is nearly identical to the  CRAY-1 in the  way in which it handles 
scalar operations. 
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q = 0.0 
Do 1 = 1, 400 
x(k) = q + y(k)*(r*z(k  + 10) + t*z(k  + 11)) 

(a) 

A4 *-- -400 
A2 *--0 
As*-- 1 
X2 *--- r 

X~ ,-- t 
loop: Xa *-- z + 10, A2 

X7 ,-- z + 11, A2 
X, ~ X2*/Xs 
X8 ,-- X6*/X7 
X7 *-- y, A2 
Xe *-  Xs + fX~ 
A~*-A4 + 1 
X4 *-- X7*/Xs 
Ao *-- A, 
x, A**-  X~ 
A2 *-- A2 + Aa 
JAM loop 

Access 
A4 *-- -400 
A2 *--0 
A a ~ - I  
XLQ ",- r 
XLQ ~ t 

loopa: XLQ ,~- z + 10, A2 loopx: 
X L Q ~ z +  11, A2 
XLQ ,,-- y, A2 
A4*-- A4 + 1 
X, A2 ,,-- XSQ 

Ao*-- A, 
A2 *-- A2 + A3 
JAM loopa • place outcome in XBQ 

(c) 

• negative loop count 
• initialize index (k) 
• index increment 
• load loop invariants 
• into registers 
• load z(k  + 10) 
• load z(k  + 11) 
• r*z(k + 10) - floating multiply 
• t*z(k + 11) 
• load y(k)  

• r*z(k + 10) + t*z(k + 11) 
• increment loop count 
• y (k)*(r*z(k  + 10) + t*z(k + 11)) 
• copy loop count for JAM 
• store into x(k) 

• increment index 
• branch if A0 < 0 

(b) 

Execute  

X2 *- XLQ 
X6 *-- XLQ 
X4 ,~- X2*/XLQ 
Xa ~-- Xs, /XLQ 
Xe ~- Xs + / X ,  
XSQ ,-- XLQ,/X~ 
BFQ loopx • remove outcome from XBQ 

Fig. 2. (a) The first Lawrence Livermore Loop (HYDRO EXCERPT) (b) CRAY-1 compilation. 
(c) Decoupled architecture compilation. 

a s s e m b l y  l a n g u a g e  w i t h  a r r o w s  i n s e r t e d  fo r  r e a d a b i l i t y .  T h e  s c a l a r  r e g i s t e r s  h a v e  

b e e n  r e n a m e d  Xo,  X1,  e tc . ,  r a t h e r  t h a n  So,  $1,  e tc . ,  in  o r d e r  t o  m a k e  c o r r e s p o n d -  

e n c e  w i t h  t h e  d e c o u p l e d  a r c h i t e c t u r e  m o r e  c l ea r .  F i g u r e  2c c o n t a i n s  t h e  A-  a n d  

X - p r o g r a m s  fo r  a d e c o u p l e d  a r c h i t e c t u r e  t h a t  is p a t t e r n e d  a f t e r  t h e  C R A Y - 1 ;  t h e  
m a j o r  d i f f e r e n c e s  a r e  t h a t  t h e r e  a r e  t w o  i n s t r u c t i o n  s t r e a m s ,  a n d  b r a n c h  o u t c o m e s  

a n d  d a t a  a r e  c o m m u n i c a t e d  v i a  q u e u e s .  
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2.1 Memory Interlocks 

The memory system proposed here returns load data in the same order in which 
it is requested and does not include an operand cache. Both out-of-order memory 
loads and an operand cache could be used to implement a decoupled architecture. 
However, their absence considerably simplifies the necessary interlocks and is 
consistent with the CRAY-1 implementation. 

As for load/store interlocks, every high-performance processor must resolve 
hazards involving the sequencing of memory reads and writes; a decoupled 
architecture is no exception. As mentioned earlier, memory addresses for stores 
may be computed well in advance of when the data are available. These addresses 
are held in the SAQ, and as store data are placed on the XSQ, they are lined up 
with their addresses in the SAQ and are sent to memory. The issuing of store 
instructions before data become available is an important factor in improving 
performance because it reduces pipeline blockages. 

One problem that arises, however, is that  a load instruction might use the same 
memory location (address) as a previously issued, but not yet completed, store. 
The solution in [7] is to provide the programmer with interlock flags to block 
instruction issuing when there is any danger of a load bypassing a store to the 
same location. 

An alternative, but slightly more expensive, solution that  relieves the program- 
mer (or compiler) of inserting interlocks is to compare each newly issued load 
address with all the addresses in the SAQ. If there is a match, then the load 
should be held (and all subsequent loads should be held, possibly by blocking 
their issue) until the match condition goes away. This associative compare would 
be a limiting factor on the size of the SAQ, but a size of 8-16 addresses seems 
feasible and would probably be adequate. This solution can be made more 
elaborate by "short-circuiting" store data to the load path when the load address 
matches a store address in the SAQ. 

A second problem is the sequencing of stores involving A-processor and X- 
processor data. If two such stores are to the same location, they should be 
performed by the A-processor in program sequence. This can be accomplished 
by strictly forcing all stores to leave the A-processor in order. This might mean 
buffering an A-processor store address and data behind some earlier store address 
that is awaiting X-processor data. This could be incorporated into the SAQ 
mechanism. An alternative would be to treat A-register stores in the same way 
as the loads. A store address for an A-register store could be compared with the 
SAQ and blocked if there is a match. With this scheme, A-register stores could 
pass X-processor stores waiting in the SAQ, provided there are no address 
conflicts. 

2.2 Queue Architecture and Implementation 

In order to simplify the instruction set of a decoupled architecture, we reserve a 
register designator to represent the queue heads and tails. In this way queue 
operands can be referred to just as registers are, and no special instructions or 
addressing modes are needed to access the queues. In particular, in the X- 
processor instruction set we let the highest numbered X-register, X,-1, refer to 
the XLQ head when it is in a source field, and the XSQ tail when it is in a 
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destination field. For example, 

XSQ *-- XLQ + X2 

takes the first data word off the X load queue, adds to it the content of register 
X2, and places the result in the XSQ, to be stored in memory. In an 8-register 
X-processor (Xo - X~), we could also have used 

X7 (-- X7 + X2 

to achieve the same end. 
In the A-processor, the instruction 

XLQ (-- "address" 

causes data to be loaded into the tail of the XLQ; the destination can be 
interpreted from the opcode, and a destination register field is unused with 
respect to the CRAY-1 counterpart because the CRAY-1 can load into any scalar 
register. Similarly, a store can be denoted: "address" ~-- XSQ, although strictly 
speaking this instruction places the address in the SAQ, where it waits for data 
to arrive via the XSQ. 

A more general alternative is to give the processor access to the top two (or 
more) elements of a queue, when, for example, the top two elements of a queue 
are both operands for an add or multiply. In this case, one could use separate 
register designators for each position in the queue to be accessed. For example, 
Xn-1 and Xn-2 could be the first two elements in the XLQ. The instruction 
X1 (-- X,-1 + X,-2 adds the first two members of the XLQ. A third alternative 
is to use one register designator for the queues, but to interpret an instruction 
such as X1 (-- X,-1 + X,_I to mean that the top two elements on the XLQ are to 
be added. For a noncommutative operation like subtraction, a convention would 
have to be used so that  the elements come off the queue in a predefined order. 
This method has the advantage of using only one register designator for queues, 
but it adds somewhat to control complexity because the issue of such an instruc- 
tion would have to be blocked if either the queue is empty or has only one 
element. This third alternative is the one used in the simulations reported in 
Section 3. 

The use of registers as queue heads and tails also suggests a convenient and 
efficient implementation. The XLQ can be implemented as a standard circular 
buffer held in a register file. A head counter and a tail counter point to the 
elements of the register file that  are at the head of the queue and at the tail. 

The method of using register designators to specify queue operands simplifies 
testing queues for full and empty conditions. In a typical pipelined processor, for 
example, the CRAY-1, a set of flip-flops, one for each register, is used to 
coordinate the reading and writing of registers so that register contents are read 
and updated in correct sequence. When there issues an instruction that  changes 
a register's contents, the corresponding flip-flop is set to designate the register 
as being reserved. Any subsequent instruction using the register as an input or 
output operand encounters the reserved bit and is blocked from issuing. After an 
instruction that modifies a register completes, the reserved bit is cleared, and 
any instruction blocked by the bit is allowed to issue. 
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The queues can be checked for empty/full status by exactly the same reserved 
bits. For example, if the XLQ is empty, an X,-1 reserved bit in the X-processor 
is set so that any instruction needing an operand for the XLQ is blocked. 
Similarly, if the XSQ is full, then a second X,-1 reserved bit in the X-processor 
is set so that any instruction needing to place data into the queue is blocked. 

2.3 Queue Timing 

To support the performance results to be given in the next section, it is necessary 
to show that data accesses involving the XLQ will be as fast as those involving 
X registers. What follows assumes a CRAY-1 technology, although one can make 
a similar argument for most other technologies. The key point is that the queues 
are implemented as registers. 

In the CRAY-1, when an instruction is latched in CIP (the instruction issue 
register), the operand register designators are latched on the register modules. In 
fact, CIP is distributed around the machine, and a portion of CIP containing the 
register designators resides on the register modules. During the next clock period, 
while an issue decision is being made, the register files are read. If the instruction 
issues, then the register designators are overwritten as the next instruction is 
loaded into CIP. 

The XLQ could be implemented with the same parts as the X-register files. 
The designator used to address the queue files are held in the head counter, 
rather than coming from register designator fields in instructions. In a queue 
implementation, the head counter could reside on the same modules as the queue 
register files. As an instruction issue decision is being made, the XLQ can be 
read exactly as the X registers are. If the instruction issues, then the head counter 
can be incremented. Since the counter can be completely set up prior to the/ssue 
signal that causes it to be incremented, the actual change in the counter's state 
takes no longer than the time required to load the latches. A similar argument 
can be made for loading the XLQ from memory and incrementing the tail 
counter. 

Passing data to the floating point functional units from the XLQ in addition 
to X registers means there needs to be multiplexing into the functional units. 
But, there is already considerable functional unit input multiplexing in the 
CRAY-1. Each floating point functional unit can receive inputs from X registers, 
vector registers, and all the other floating-point functional units (to support 
vector chaining). 

To summarize, the time required to load the address latches for the queue 
register files is the same as the load address latches for the X register files; the 
time required to read the files is also the same, and the functional unit input 
multiplexing is already there. Of course, one could only determine the exact time 
required for accessing the XLQ by implementing it. Nevertheless, the preceding 
argument is strong enough to support the assumption that XLQ and X register 
file timing are the same, as is done in the next section. 

2.4 Interrupts and Traps 

Interrupts and traps are an important consideration in any highly parallel 
computer, including those with decoupled architectures. Here, the term interrupt 
means any externally caused interruption, whereas a trap is caused by some 
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condition detected in the processor itself. For example, a request for service by 
an I/O processor is through an interrupt, whereas a floating-point overflow may 
cause a trap. A precise interrupt or trap occurs when the process state is saved 
so that it can be restarted following service of the interrupt or trap. 

Precise interrupts are supported by virtually every processor in existence, the 
only exceptions being some array processors. (Note that by our terminology the 
IBM 360/91 provided precise interrupts but did not always provide precise traps.) 
To support precise interrupts in a pipelined processor, it is only necessary to 
stop instruction issue and wait until all executing instructions complete. This is 
also the approach to be used in a decoupled architecture. After instruction 
execution has ceased, the two program counters need to be saved by hardware. 
Registers and queues can be saved by hardware, software, or some combination. 
The use of queues might lead to saving more state information than in a 
conventional architecture, but this is not necessarily so; a decoupled architecture 
may need fewer general purpose registers. 

Providing precise traps is typically more difficult than precise interrupts. An 
approach often used is to force the instructions to complete (and modify the 
process state) in order. This approach has been used in all the high-performance 
IBM 360/370 implementations following the IBM 360/91. A similar approach 
could be applied to a decoupled architecture, but to each of the instruction 
streams separately. This approach may also lead to reduced performance because 
fast instructions cannot pass slow ones. 

The CRAY-1 allows instructions to complete out of order and does not provide 
precise traps. In order to provide a fair performance comparison, the decoupled 
implementation described in this paper does the same. 

One of the major reasons for providing precise traps is to support page faults 
in a virtual memory system. Because page faults involving instruction fetches 
can be handled in much the same way as interrupts (stop instruction issue and 
wait), they pose no particular problem. Page faults involving data can be made 
precise in a decoupled architecture by forcing the A instructions to finish in order 
and by treating the page fault like an interrupt in the X-processor; the X 
instructions may still finish out of order. Hence, in a decoupled architecture it 
may be possible to support virtual memory with less performance loss than with 
a conventional architecture. 

3. PERFORMANCE STUDY 

In this section, estimates of possible performance improvement with decoupled 
architecture are made. These focus on scientific programs and use the CRAY-1 
for comparison, as discussed prior to Example 1. To get single instruction stream 
estimates, the 14 Lawrence Livermore Loops [21] were compiled onto the CRAY- 
1 scalar architecture. The actual object code generated by the CRAY FORTRAN 
compiler (CFT) was used as a guide, so the level of code optimization and 
scheduling is realistic. Because of our interest in scalar performance, the CFT 
vectorizer was turned off. The only change made in the CFT scalar code deals 
with the way index values are manipulated. The CFT compiler keeps the indices 
in S and T registers, increments them in S registers, and copies them into A 
registers for indexing. This is not essential and is a quirk of the current version 
of the CFT compiler [personal communication from D. Hendrickson, Cray 
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Research, Inc]. In order to provide a fair comparison with a decoupled architec- 
ture, the CFT code was changed so that indices are held and incremented in A 
registers. This was one of the originally intended uses of the A register as 
described in [10], and it results in about a 10 percent performance improvement. 

The 14 loops represent a mix of programs, some of which are vectorizable, and 
some of which are not. Loop 1, shown in Figure 2, happens to be vectorizable. 
Loops 4, 5, 6, 8, 11, 13 and 14 are not vectorized by the CFT compiler. 

All timing was done with a CRAY-1 simulator [18] and a decoupled architecture 
simulator developed at the University of Wisconsin. Execution times were 
calculated in clock periods, using the number of clock periods required by the 
CRAY-1 for each operation; for example, a load from memory is 11 clock periods, 
a floating-point add is 6, and a floating-point multiply is 7. Loads, stores, and 
conditional branches are assumed to require two clock periods to issue, as in the 
CRAY-1. In [21] loads, stores, and conditional branches in a simplified CRAY-1 
model were assumed to issue in only one clock period; also branch instruction 
timing was assumed to be optimum, and memory bank conflicts were ignored. 
These and other simplifications resulted in the differences in performance figures 
given in [21] and the more accurate simulator-derived figures given here. 

The decoupled compilation was extracted directly from the CFT compilation. 
No further optimization was done, except for the manipulation of loop index 
values discussed earlier. Each of the two instruction streams was assumed to 
issue in strict program sequence, just as in the CRAY-1. The register X,-1 is 
used to designate queue heads and tails, as discussed earlier. As argued in Section 
2.3, the time needed to communicate through a queue should be no longer than 
to communicate through a register. This was assumed in making the time 
estimates given below. 

Figure 3a shows the steady-state timings for the HYDRO E XC E R PT  loop. 
The CRAY-1 takes 41 clock periods for each pass through the loop (36 clock 
periods to get through the loop, plus 5 more for the taken branch at the bottom). 

Figure 3b shows the timings for the Access and Execute programs in the 
decoupled version. In this program, the A-processor decides all the conditional 
branches and computes all addressing information itself. This means the A- 
processor is never delayed by the X-processor. The timings given in Figure 3 
reflect the steady-state situation where the X-program always finds a nonempty 
XLQ, although initially the X-program will be held up waiting for its operands. 

The A-processor can make each pass through its loop in 16 clock periods 
(including the 5 for the taken branch). The X-processor takes 20 clock periods 
and would lag behind the A-processor. Nevertheless, after the first two passes 
through its loop (where there is a wait by the X-processor for the XLQ) the 
computation proceeds at the steady-state rate of 20 clock periods per i teration-- 
slightly over twice the speed of the single stream version. 

All 14 of the original Lawrence Livermore Loops were simulated as just 
described. The results are given in Table I. The speedup is computed by dividing 
the CRAY-1 clock periods by the decoupled architecture clock periods. The 
speedups vary between 1.1 and 2.1. The average speedup is 1.58. For the 7 
nonvectorizable loops the average speedup is 1.41. The higher speedups for loops 
that are vectorizable occur because the loop iterations are independent, and the 
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Issue Time (clock period) 
0 loop: Xs *-- Z + 10, A2 
2 X7 .,--- Z + 11, A2 

11 X4 ~ X2*/Xs 
13 Xs (-- Xs*/X7 
14 X7 (--- y, As 
20 Xs (--- Xs + [X4 
21 A4 ~-- A4 + 1 
26 X4 ~-- X7*/Xe 
27 Ao *-- A4 
33 X, A2 *-- X4 
35 As *-- As + As 
36 JAM loop 

(a) 

Issue Time Access 
0 loopa: XLQ *-- Z + 10, A2 
2 XLQ .-- Z + 11, A2 
4 XLQ ~ y, A2 
6 A4*-- A4 + 1 
7 X, A2 *-- XSQ 
9 Ao *-- A4 

10 A2 *-- A2 + As 
11 JAM loopa 

(b) 

Issue Time Execute 
0 loopx: X4 ~-- X2*/XLQ 
1 X3 ,,-- Xs*/XLQ 
8 Xe ~ X3 + [X,  

14 XSQ ,-- XLQ.fXs 
15 BFQ loopx 

( c )  

Fig. 3. Performance comparison for the first Lawrence Liv- 
ermore Loop. (a) CRAY-1 machine code and issue timing. 
(b) Access processor machine code and issue timing. (c) 
Execute processor machine code and issue timing. 

access/execute decoupling is complete. Loops 13 and 14 show the least amount 
of speedup. This is because data need to be passed from the X-unit to the A- 
unit. This severely restricts the freedom of the A-unit to run ahead and fetch 
data in advance of when it is needed. As for the other loops that show relatively 
low performance, the major reason is that  they store data at the bottom of the 
loop, which are subsequently reloaded when the top of the loop is entered. 
Memory loads are then delayed because X-unit results must be computed first. 
Furthermore, because we chose a straightforward memory implementation where 
the data are not short-circuited, there is additional delay while the data are 
stored and then reloaded. 
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Table I. Performance Simulation Results for the 
14 Lawrence Livermore Loops 

Loop CRAY-1 Decoupled Speedup 

1 41 20 2.1 
2 60 32 1.9 
3 26 14 1.9 

*4 38 20 1.9 
*5 62 48 1.3 
*6 64 47 1.4 
7 81 56 lI! t 

*8 200 118 
9 96 58 1.7 

10 101 63 1.6 
*11 27 21 1.3 
12 27 17 1.6 

"13 146 135 1.1 
"14 149 126 1.2 
Average 1.58 

° All times are in clock periods per loop iteration. 
Loops that cannot be vectorized by the CFT com- 
piler are marked with an asterisk (*). 

4. SINGLE INSTRUCTION STREAM ARCHITECTURES 

Although the dual ins t ruct ion s t r eam decoupled archi tecture  is conceptual ly  
simple and  leads to s t ra ight forward  implementa t ions ,  it does suffer some disad- 
vantages.  For  the  mos t  part ,  these are due to the  h u m a n  e l e m e n t - - t h e  p rogram-  
mer  and /o r  compiler  wri ter  mus t  deal with two in teract ing ins t ruct ion s t reams.  
The  p r o g r a m m e r  prob lem can be overcome if a high-level language is used. 
However,  this  forces the  work onto the  compiler.  

A disadvantage of secondary impor tance  is t ha t  two separa te  ins t ruct ion caches 
and  decode/issue uni ts  are needed, one for each ins t ruct ion s t ream. Th i s  hardware  
cost p rob lem can probably  be par t ia l ly  alleviated by  duplicat ing the same design 
for bo th  instruct ion fe tch/decode units.  

In this section we briefly outl ine solutions to the  above problems tha t  

(1) physically merge the  two ins t ruct ion s t reams  into one, or 
(2) conceptual ly merge the two ins t ruct ion s t reams  for the purpose  of p rogram-  

ming and  compilat ion,  but  physical ly separa te  the  ins t ruct ion s t reams  before 
the p rogram is loaded into memory .  

The  s implest  way to physical ly achieve a single ins t ruct ion s t r eam is to 
interleave the instruct ions f rom the two s treams.  Le t  al ,  ae . . . .  , a ,  be the 
sequence of inst ruct ions in the  A-program and let xl, x2, • • •, xm be the sequence 
of inst ruct ions in the X-program.  An inter leaving consists  of  merging the two 
sequences into one so t ha t  

(1) if ai precedes aj in the original A-program, then ai precedes aj in the interleaved 
sequence; 

(2) if xi precedes xj in the original X-program,  then  xi precedes xj in the  
inter leaved sequence; 
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(3) if ak and xt are corresponding branch instructions in the two sequences, that  
is, a conditional branch and the corresponding branch from queue or two 
corresponding unconditional branches, then a single branch instruction is 
placed in the interleaved sequence, which satisfies the precedence constraints 
(1) and (2) for both ak and xt. 

Since the two sequences are interleaved, a bit can be added to each nonbranch 
instruction, say as part of the opcode, to indicate the stream to which it originally 
belonged. After instructions are fetched from memory and decoded, the bit can 
be used to guide instructions to the correct processor for execution. Queues in 
front of the processors can be used to hold the decoded instructions so that  the 
processors retain the freedom to "slip" with respect to each other. With this 
scheme, only one program counter is required, and the BFQ instructions are no 
longer needed. 

Eliminating the BFQ instructions may reduce the execution time of the X- 
program and improve overall performance. In [22] a single-stream architecture 
that retains the Flynn bottleneck is studied. In some cases, performance is 
reduced as compared with a two-instruction-stream processor due to the Flynn 
bottleneck. In other cases, performance is improved because BFQ instructions 
are removed. 

A disadvantage of this method is that the instruction pipeline may be 
lengthened so that branch performance may be degraded. Also, it should be noted 
that this approach may reintroduce the one instruction per clock period bottle- 
neck in the instruction fetch/decode pipeline. These would in some instances 
result in reduced performance. However, it is also true that if one could split the 
two instruction streams at a rate higher than one instruction per clock period, 
then the Flynn bottleneck would still be widened. Because the splitting operation 
is so simple, this is very likely to be possible. 

Example 2. An interleaving of the HYDRO EXCERPT program is shown in 
Figure 4. The processor to which each instruction belongs is noted in parentheses. 
This particular interleaving places an instruction sending data via a queue 
immediately before the instruction in the other processor that  receives the data. 
In addition, we use "XT" as the convention for denoting the queue heads and 
tails. 

From the above example, it can be seen that  we are very close to a conventional 
architecture, which uses different registers for addressing and functional unit 
execution, that  is, the CDC and CRAY architectures. The only difference is that  
the only X register that may be loaded or stored is X7 (recall that  X7 is really 
representing the XLQ or XSQ). 

The interleaved architecture appears to be so similar to conventional architec- 
tures that many standard compiler techniques can probably be used. Only two 
special rules regarding the use of X7 must be followed in order to follow the 
underlying queue discipline: 

(1) After X7 is loaded, it must bo. used once and only once. 
(2) After data are put into X7 by an execute instruction, they must be stored. 
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Fig. 4. 

loop: 

A4 (-- -400 (A) 

A2 (-- 0 (A) 

A3 ~-- 1 (A) 

Xv ~-- r (A) 

X2 '-- X7 (X) 
X7 (-- r (A) 

X5 ,-- X7 (X) 
X7 (-- z + I0, A2 (A) 

X, <-- X2*/X7 (X) 
X7 --+ z + 11, A2 (A) 

X3 <-- X6*/X7 (X) 
X6 ,-- X3 + [X, (X) 

X7 <-- y, A2 (A) 

X7 ,-- X7*/Xe (X) 
A4 (-- A4 + 1 (A) 
x, A~ (- X7 (X) 
Ao ~-- A4 (A) 
A2 <-- A~ + A3 (A) 
JAM Loop 

An inter leaved version of the  first  Lawrence Livermore  Loop. 

If one physical instruction stream is to be used, the opcodes are marked by the 
compiler so they can be split at run time. 

If two instruction streams are to be used, then as a final step the compiler can 
pull apart the two instruction streams, by inserting BFQ instructions. 

From the preceding discussion it is apparent that  many standard compilation 
techniques can be used for decoupled architectures. Furthermore, the code 
scheduling problem usually found in a pipelined computer is somewhat reduced 
because the ability of the A-processor to run ahead of the X-processor results in 
dynamic code scheduling by the hardware. 

5. DEADLOCK 

In a decoupled architecture, an instruction can be blocked from issuing if it needs 
data (or a branch outcome) from a queue and the queue is empty, or if it needs 
to place data (or a branch outcome) into a queue and the queue is full {this 
include copy queues). Deadlock occurs if both instruction streams are simulta- 
neously blocked for either of the above reasons. An example of this is shown in 
Figure 5. The first instruction in each stream is blocked by an empty queue; the 
next instruction in both streams places data in the other's queue. Note that  we 
are assuming that instructions in a given stream are constrained to issue in 
program sequence, as has been the case throughout this paper. 

Deadlock detection and prevention are both important problems. Deadlock 
can be detected by simply determining when instruction issue is blocked in both 
processors owing to full or empty queues, possibly after a delay to ensure that  no 
data are in transit. This should be flagged as a program error, and the program 
should be purged. 

Deadlock prevention is more complicated. We give a sufficient condition for 
deadlock-free operation and show that  meeting the sufficient condition occurs 
quite naturally. 
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Access Execute  

: 

BFQ L1 Xa <--- XLQ 
XLQ <--- As, disp JAM L2 

: 

Fig. 5. A deadlock situation in a decoupled 
architecture. 

Consider the instruction streams as they flow through the processors. Both 
data and control information (in the form of branch outcomes) are passed via 
queues. For each data or control transfer through a queue, there is an instruction 
in one processor that sends the data or control item, and an instruction in the 
other processor that receives the item. We refer to the instruction that  sends a 
particular item i as S E N D  i, and the instruction that receives it as R E C E I V E  i. 
For example, in Figure 5, "XLQ <--- A3, disp" sends a data item i that  is received 
by the instruction "X3 *-- XLQ." Hence, the first instruction is SEND i and the 
second is RECEIVE i. A branch instruction is a SEND i and its corresponding 
branch from a queue is a RECEIVE i. In general, if an instruction is both a 
SEND and a RECEIVE, then it can be considered to be a RECEIVE immediately 
followed by a SEND. For the discussion that follows, we assume queues of length 
one since this is the most restrictive case. 

An interleaving of instructions (Section 4) is defined to be proper if the 
instruction causing SEND i immediately precedes the instruction causing RE- 
CEIVE i for all data or control transfers i. The interleaving shown in Figure 4 is 
proper. 

THEOREM. I f  the A and X processor instruction streams can be properly inter- 
leaved, then deadlock cannot occur. 

PROOF. Deadlock occurs when both instruction streams are blocked due to 
queues being empty or full. To be more specific, a SEND instruction can be 
blocked if its queue is full, or a RECEIVE instruction can be blocked if its queue 
is empty. One such deadlock situation is shown below. 

A-stream X-stream 
blocked --* RECEIVE i RECEIVE'j ~ blocked 

SEND j SEND i 

Here, both streams are blocked with "empty queues waiting to RECEIVE, while 
the matching SENDs occur later in the streams. Figure 5 is an example of the 
preceding situation. We see, however, that a proper interleaving of the two 
streams is impossible: if SEND i is placed ahead of RECEIVE i, as it must be, 
then because RECEIVE j precedes SEND i in the X-stream, it must also precede 
SEND j in any interleaving. 

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984. 



306 • James E. Smith 

There are three other cases to be considered; these are shown below. 

A-stream X-stream 
blocked --* RECEIVE i SEND j (--- blocked 

RECEIVE j SEND i 

A-stream X-stream 
blocked --* SEND j RECEIVE i *-- blocked 

SEND i RECEIVE j 

A-stream X-stream 
blocked --) SEND i SEND j (-- blocked 

RECEIVE j RECEIVE i 

For each of these three other cases, it can be seen that a proper interleaving is 
impossible. We have just examined all four of the possible deadlock situations 
and have shown that a proper interleaving is impossible in each case. Using the 
contrapositive completes the proof. 

Code compiled as in Section 4 automatically has this property, since it is 
compiled so that the static code sections are properly interleaved before being 
separated. 

The program in Figure 4 is a proper interleaving for the HYDRO E XC E R PT  
compilation, so the program must be deadlock free. Turning to Figure 5, it can 
be seen that it is impossible to interleave the A- and X-programs properly, and 
the preceding sufficient condition is not satisfied. 

6. CONCLUSIONS 

It has been shown that a decoupled architecture has the following advantages. 

(1) It permits high-speed instruction issue; up to two instructions can be issued 
per clock period. This is twice the rate for traditional single-instruction stream 
processors that contain the Flynn bottleneck, that is, some bottleneck in the 
instruction fetch/decode path where instructions can pass at only one per clock 
period. 

(2) It permits a constrained type of out-of-order instruction issue that allows 
data access operations to be done well in advance of when they are needed, but 
without resorting to complicated methods that have been used in the past for 
out-of-order issue. 

(3) Unpredictable (and long) memory access delays can be smoothed and 
possibly hidden. This is particularly important in modern multiprocessor systems 
where memory bandwidth is a critical resource. 

Decoupled architectures are relatively new, and many variations are possible. 
Although large-scale implementations are emphasized here, application to smaller 
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scale systems also seems to be in order. A decoupled architecture offers oppor- 
tunities for VLSI implementations where coprocessors have become an accepted 
technique for improving performance [9]. By using features of a decoupled 
architecture, overlap of coprocessors may be significantly increased and effects 
of memory access delays may be reduced. 
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