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Abstract

To improve the performance of a single application on Chip
Multiprocessors (CMPs), the application must be split into
threads which execute concurrently on multiple cores. In
multi-threaded applications, critical sections are used to en-
sure that only one thread accesses shared data at any given
time. Critical sections can serialize the execution of threads,
which significantly reduces performance and scalability.
This paper proposes Accelerated Critical Sections (ACS),
a technique that leverages the high-performance core(s) of
an Asymmetric Chip Multiprocessor (ACMP) to accelerate
the execution of critical sections. In ACS, selected critical
sections are executed by a high-performance core, which
can execute the critical section faster than the other, smaller
cores. Consequently, ACS reduces serialization: it lowers the
likelihood of threads waiting for a critical section to finish.
Our evaluation on a set of 12 critical-section-intensive work-
loads shows that ACS reduces the average execution time
by 34% compared to an equal-area 32-core symmetric CMP
and by 23% compared to an equal-area ACMP. Moreover,
for 7 of the 12 workloads, ACS also increases scalability
(i.e. the number of threads at which performance saturates).

Categories and Subject Descriptors C.0 [General]: Sys-

tem architectures

General Terms Design, Performance

Keywords CMP, Critical Sections, Heterogeneous Cores,
Multi-core, Parallel Programming, Locks

1. Introduction

It has become difficult to build large monolithic processors
because of their excessive design complexity and high power
consumption. Consequently, industry has shifted to Chip-
Multiprocessors (CMP) [22, 47, 44] that provide multiple
processing cores on a single chip. To extract high perfor-
mance from such architectures, an application must be di-
vided into multiple entities called threads. In such multi-
threaded applications, threads operate on different portions
of the same problem and communicate via shared memory.
To ensure correctness, multiple threads are not allowed to
update shared data concurrently, known as the mutual ex-
clusion principle [25]. Instead, accesses to shared data are
encapsulated in regions of code guarded by synchroniza-
tion primitives (e.g. locks). Such guarded regions of code
are called critical sections.
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The semantics of a critical section dictate that only one
thread can execute it at a given time. Any other thread that re-
quires access to shared data must wait for the current thread
to complete the critical section. Thus, when there is con-
tention for shared data, execution of threads gets serialized,
which reduces performance. As the number of threads in-
creases, the contention for critical sections also increases.
Therefore, in applications that have significant data synchro-
nization (e.g. Mozilla Firefox, MySQL [1], and operating
system kernels [36]), critical sections limit both performance
(at a given number of threads) and scalability (the number of
threads at which performance saturates). Techniques to ac-
celerate the execution of critical sections can reduce serial-
ization, thereby improving performance and scalability.

Previous research [24, 15, 30, 41] proposed the Asymmet-
ric Chip Multiprocessor (ACMP) architecture to efficiently
execute program portions that are not parallelized (i.e., Am-
dahl’s “serial bottleneck™ [6]). An ACMP consists of at least
one large, high-performance core and several small, low-
performance cores. Serial program portions execute on a
large core to reduce the performance impact of the serial bot-
tleneck. The parallelized portions execute on the small cores
to obtain high throughput.

We propose the Accelerated Critical Sections (ACS)
mechanism, in which selected critical sections execute on
the large core' of an ACMP. In traditional CMPs, when a
core encounters a critical section, it acquires the lock asso-
ciated with the critical section, executes the critical section,
and releases the lock. In ACS, when a core encounters a crit-
ical section, it requests the large core to execute that critical
section. The large core acquires the lock, executes the crit-
ical section, and notifies the requesting small core when the
critical section is complete.

To execute critical sections, the large core may require
some private data from the small core e.g. the input pa-
rameters on the stack. Such data is transferred on demand
from the cache of the small core via the regular cache coher-
ence mechanism. These transfers may increase cache misses.
However, executing the critical sections exclusively on the
large core has the advantage that the lock and shared data al-
ways stays in the cache hierarchy of the large core rather than
constantly moving between the caches of different cores.
This improves locality of lock and shared data, which can
offset the additional misses incurred due to the transfer of
private data. We show, in Section 6, that critical sections of-
ten access more shared data than private data. For example,
a critical section that inserts a single node of private data in a
sorted linked list (shared data) accesses several nodes of the
shared list. For the 12 workloads used in our evaluation, we

' For simplicity, we describe the proposed technique assuming an imple-
mentation that contains one large core. However, our proposal is general
enough to work with multiple large cores. Section 3 briefly describes our
proposal for such a system.



find that, on average, ACS reduces the number of L2 cache
misses inside the critical sections by 20%.?

On the other hand, executing critical sections exclusively
on a large core of an ACMP can have a negative effect.
Multi-threaded applications often try to improve concur-
rency by using data synchronization at a fine granularity:
having multiple critical sections, each guarding a disjoint set
of the shared data (e.g., a separate lock for each element of
an array). In such cases, executing all critical sections on
the large core can lead to “false serialization” of different,
disjoint critical sections that could otherwise have been exe-
cuted in parallel. To reduce the impact of false serialization,
ACS includes a dynamic mechanism that decides whether or
not a critical section should be executed on a small core or
a large core. If too many disjoint critical sections are con-
tending for execution on the large core (and another large
core is not available), this mechanism selects which critical
section(s) should be executed on the large core(s).

Contributions: This paper makes two contributions:

1. It proposes an asymmetric multi-core architecture, ACS,
to accelerate critical sections, thereby reducing thread se-
rialization. We comprehensively describe the instruction
set architecture (ISA), compiler/library, hardware, and
the operating system support needed to implement ACS.

2. We analyze the performance trade-offs of ACS and eval-
uate design options to further improve performance. We
find that ACS reduces the average execution time by 34%
over an equal-area 32-core symmetric CMP (SCMP) and
by 23% over an equal-area ACMP.

2. Background and Motivation

2.1 Amdahl’s Law and Critical Sections

A multi-threaded application consists of two parts: the se-
rial part and the parallel part. The serial part is the classical
Amdahl’s bottleneck [6] where only one thread exists. The
parallel part is where multiple threads execute concurrently.
When multiple threads execute, accesses to shared data are
encapsulated inside critical sections. Only one thread can ex-
ecute a particular critical section at any given time. Criti-
cal sections are different from Amdahl’s serial bottleneck:
during the execution of a critical section, other threads that
do not need to execute the same critical section can make
progress. In contrast, no other thread exists in Amdahl’s se-
rial bottleneck. We use a simple example to show the perfor-
mance impact of critical sections.

Figure 1(a) shows the code for a multi-threaded kernel
where each thread dequeues a work quantum from the prior-
ity queue (PQ) and attempts to solve it. If the thread cannot
solve the problem, it divides the problem into sub-problems
and inserts them into the priority queue. This is a very com-
mon parallel implementation of many branch-and-bound al-
gorithms [27]. In our benchmarks, this kernel is used to solve
the popular 15-puzzle problem [50]. The kernel consists of
three parts. The initial part A and the final part E are the
serial parts of the program. They comprise Amdahl’s serial
bottleneck since only one thread exists in those sections. Part
B is the parallel part, executed by multiple threads. It con-
sists of code that is both inside the critical section (C1 and
C2, both protected by lock X) and outside the critical sec-
tion (D1 and D2). Only one thread can execute the critical
section at a given time, which can cause serialization of the
parallel part and reduce overall performance.

2 We simulated a CMP with private L1 and L2 caches and a shared L3 cache.
Section 5 describes our experimental methodology.
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LEGEND
A,E: Amdahl’s serial part
B: Parallel Portion
C1,C2: Critical Sections
D: Outside critical section

InitPriorityQueue(PQ);
SpawnThreads();
ForEach Thread:

®

while (problem not solved)
Lock (X)
SubProblem = PQ.remove(); ‘ (1)
Unlock(X);
Solve(SubProblem);

If(problem solved) break;

NewSubProblems = Partition(SubProblem);

Lock(X)
c2

PQ.insert(NewSubProblems);

Unlock(X)

PrintSolution(); @

time
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Figure 1. Serial part, parallel part, and critical section in a multi-
threaded 15-puzzle kernel (a) Code example, and execution time-
line on (b) the baseline CMP (c) accelerated critical sections

end

2.2 Serialization due to Critical Sections

Figure 1(b) shows the execution timeline of the kernel shown
in Figure 1(a) on a 4-core CMP. After the serial part A, four
threads (T1, T2, T3, and T4) are spawned, one on each core.
Once part B is complete, the serial part E is executed on
a single core. We analyze the serialization caused by the
critical section in steady state of part B. Between time t(
and t;, all threads execute in parallel. At time ¢;, T2 starts
executing the critical section while T1, T3, and T4 continue
to execute the code independent of the critical section. At
time to, T2 finishes the critical section and three threads
(T1, T3, and T4) contend for the critical section — T3 wins
and enters the critical section. Between time ¢, and t3, T3
executes the critical section while T1 and T4 remain idle,
waiting for T3 to finish. Between time ¢3 and ¢4, T4 executes
the critical section while T1 continues to wait. T1 finally gets
to execute the critical section between time ¢4 and 5.

This example shows that the time taken to execute a crit-
ical section significantly affects not only the thread that ex-
ecutes it but also the threads that are waiting to enter the
critical section. For example, between ¢ and t3 there are
two threads (T1 and T4) waiting for T3 to exit the critical
section, without performing any useful work. Therefore, ac-
celerating the execution of the critical section not only im-
proves the performance of T3 but also reduces the useless
waiting time of T1 and T4. Figure 1(c) shows the execution
of the same kernel assuming that critical sections take half
as long to execute. Halving the time taken to execute criti-
cal sections reduces thread serialization, which significantly
reduces the time spent in the parallel portion. Thus, accel-
erating critical sections can provide significant performance
improvement. On average, the critical section shown in Fig-



ure 1(a) executes 1.5K instructions. During an insert, the
critical section accesses multiple nodes of the priority queue
(implemented as a heap) to find a suitable place for insertion.
Due to its lengthy execution, this critical section incurs high
contention. When the workload is executed with 8 threads,
on average 4 threads wait for this critical section at a given
time. The average number of waiting threads increases to 16
when the workload is executed with 32 threads. In contrast,
when this critical section is accelerated using ACS, the aver-
age number of waiting threads reduces to 2 and 3, for 8 and
32-threaded execution respectively.

We find that similar behavior exists in commonly-used
large-scale workloads. Figure 2 shows a section of code from
the database application MySQL [1]. The lock, LOCK_open,
protects the data structure open_cache, which tracks all ta-
bles opened by all transactions. The code example shown
in Figure 2 executes at the end of every transaction and
closes the tables opened by that transaction. A similar func-
tion (not shown), also protected by LOCK_open, executes are
the start of every transaction and opens the tables for that
transaction. On average, this critical section executes 670
instructions. The average length of each transaction (for the
oltp-simple input set) is 40K instructions. Since critical
sections account for 3% of the total instructions, contention
is high. The serialization due to the LOCK_open critical sec-
tion is a well-known problem in the MySQL developer com-
munity [2]. On average, 5 threads wait for this critical sec-
tion when the workload is executed with 32 threads. When
ACS is used to accelerate this critical section, the average
number of waiting threads reduces to 1.4.

@

pthread_mutex_lock (&LOCK_open) § 7

=6

foreach (table locked by this thread) g 5
table—>lock—>release() 2 4 /Y
Fable—>flle—>release() = 3 : _D_ SCMP
if (table->temporary) g 2 {oACS |
table—>close() g 1 : : : :
@ () ; ; ; ;
pthread_mutex_unlock (&LOCK_open) 8 16 24 32

Area (Small Cores)

Figure 2. Critical section at the
end of MySQL transactions

Figure 3. Scalability of
MySQL

2.3 Poor Application Scalability due to Critical
Sections

As the number of threads increases, contention for critical
sections also increases. This contention can become so high
that every thread might need to wait for several other threads
before it can enter the critical section. In such a case, adding
more threads to the program does not improve (and in fact
can degrade) performance. For example, Figure 3 shows the
speedup when MySQL is executed on multiple cores of a
symmetric CMP (SCMP). As the number of cores increase,
more threads can execute concurrently, which increases con-
tention for critical sections and causes performance to satu-
rate at 16 threads. Figure 3 also shows the speedup of an
equal-area ACS, which we will describe in Section 3. Per-
formance of ACS continues to increase until 32 threads. This
shows that accelerating the critical sections can improve not
only the performance of an application for a given number
of threads but also the scalability of the application.

3. Accelerated Critical Sections

The goal of this paper is to devise a practical mechanism
that overcomes the performance bottlenecks of critical sec-
tions to improve multi-threaded application performance and
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scalability. To this end, we propose Accelerated Critical Sec-
tions (ACS). ACS is based on the ACMP architecture [30,
24, 15, 41], which was proposed to handle Amdahl’s serial
bottleneck. ACS consists of at least one large core and sev-
eral small cores. The critical sections and the serial part of
the program execute on a large core, whereas the remaining
parallel parts execute on the small cores. Executing the crit-
ical sections on a large core reduces the execution latency
of the critical section, thereby improving performance and
scalability.

3.1 Architecture: A high level overview

The ACS mechanism is implemented on a homogeneous-
ISA, heterogeneous-core CMP that provides hardware sup-
port for cache coherence. ACS leverages one or more large
cores to accelerate the execution of critical sections and ex-
ecutes the parallel threads on the remaining small cores. For
simplicity of illustration, we first describe how ACS can be
implemented on a CMP with a single large core and multiple
small cores. In Section 3.9, we discuss ACS for a CMP with
multiple large cores.

Figure 4 shows an example ACS architecture imple-
mented on an ACMP consisting of one large core (PO) and
12 small cores (P1-P12). Similarly to previous ACMP pro-
posals [24, 15, 30, 41], ACS executes Amdahl’s serial bot-
tleneck on the large core. In addition, ACS accelerates the
execution of critical sections using the large core. ACS exe-
cutes the parallel part of the program on the small cores P1-
P12. When a small core encounters a critical section it sends
a “critical section execution” request to PO. PO buffers this
request in a hardware structure called the Critical Section
Request Buffer (CSRB). When PO completes the execution
of the requested critical section, it sends a “done” signal to
the requesting core. To support such accelerated execution
of critical sections, ACS requires support from the ISA (i.e.,
new instructions), from the compiler, and from the on-chip
interconnect. We describe these extensions in detail next.

CSCALL LOCK_ADDR, TARGET_PC

On small core:
STACK_PTR <- SP

CSRET LOCK_ADDR

On large core:
Release lock at

Critical Section Send CSCALL Request to large core LOCK_ADDR
with Arguments: LOCK_ADDR Send CSDONE to
R t Buffer (CSRB; —
equest Buffer (CSRB) | TARGET_PC, STACK_PTR, CORE_ID REQ_CORE
Stall until CSDONE signal received
P1| P2 .
P On large core: On small core:
- Retire CSCALL

P3| P4 Enqueue in CSRB

Wait until HEAD ENTRY in CSRB
Acquire lock at LOCK_ADDR

SP <- STACK_PTR

PC <- TARGET_PC

P5| P6| P7 | P8

P9|P10(P11| P12

Figure 4. ACS Figure 5. Format and operation semantics

of new ACS instructions

3.2 ISA Support

ACS requires two new instructions: CSCALL and CSRET.
CSCALL is similar to a traditional CALL instruction, except
it is used to execute critical section code on a remote, large
processor. When a small core executes a CSCALL instruc-
tion, it sends a request for the execution of critical section to
PO and waits until it receives a response. CSRET is similar to
a traditional RET instruction, except that it is used to return
from a critical section executed on a remote processor. When
PO executes CSRET, it sends a CSDONE signal to the small
core so that it can resume execution. Figure 5 shows the se-
mantics of CSCALL and CSRET. CSCALL takes two argu-
ments: LOCK_ADDR and TARGET_PC. LOCK_ADDR s
the memory address of the lock protecting the critical section
and TARGET_PC is the address of the first instruction in the



critical section. CSRET takes one argument, LOCK_ADDR
corresponding to the CSCALL.

3.3 Compiler/Library Support

The CSCALL and CSRET instructions encapsulate a criti-
cal section. CSCALL is inserted before the “lock acquire”
and CSRET is inserted after the “lock release.” The com-
piler/library inserts these instructions automatically without
requiring any modification to the source code. The com-
piler must also remove any register dependencies between
the code inside and outside the critical section. This avoids
transferring register values from the small core to the large
core and vice versa before and after the execution of the
critical section. To do so, the compiler performs function
outlining [52] for every critical section by encapsulating
it in a separate function and ensuring that all input and
output parameters are communicated via the stack. Several
OpenMP compilers already do function outlining for criti-
cal sections [28, 37, 9]. Therefore, compiler modifications
are mainly limited to the insertion of CSCALL and CSRET
instructions. Figure 6 shows the code of a critical section ex-
ecuted on the baseline (a) and the modified code executed on
ACS (b).

Small Core Small Core Large Core

A = compute(); A = compute();

LOCK X PUSH A

result = CS(A); | CSCALL X, TPC CSCALL Request

UNLOCK X send X, TPC, TPC: POP A

print result STACK_PTR, CORE_ID result = CS(A)

PUSH result
. CsRETX
POP result CSDONE Response

print result

(@) (b)

Figure 6. Source code and its execution: (a) baseline (b) ACS

3.4 Hardware Support
3.4.1 Modifications to the small cores

When a CSCALL is executed, the small core sends a
CSCALL request along with the stack pointer (STACK_PTR)
and its core ID (CORE_ID) to the large core and stalls, wait-
ing for the CSDONE response. The CSCALL instruction
is retired when a CSDONE response is received. Such sup-
port for executing certain instructions remotely already ex-
ists in current architectures: for example, all 8 cores in Sun
Niagara-1 [22] execute floating point (FP) operations on a
common remote FP unit.

3.4.2 Critical Section Request Buffer

The Critical Section Request Buffer (CSRB), located at the
large core, buffers the pending CSCALL requests sent by
the small cores. Figure 7 shows the structure of the CSRB.
Each entry in the CSRB contains a valid bit, the ID of the re-
questing core (REQ_CORE), the parameters of the CSCALL
instruction, LOCK_ADDR and TARGET_PC, and the stack
pointer (STACK_PTR) of the requesting core. When the
large core is idle, the CSRB supplies the oldest CSCALL
request in the buffer to the core. The large core notifies the
CSRB when it completes the critical section. At this point,
the CSRB dequeues the corresponding entry and sends a CS-
DONE signal to the requesting core. The number of entries
in the CSRB is equal to the maximum possible number of
concurrent CSCALL instructions. Because each small core
can execute at most one CSCALL instruction at any time,
the number of entries required is equal to the number of
small cores in the system (Note that the large core does not
send CSCALL requests to itself). For a system with 12 small
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CSRET from large core CSDONE to requesting core
}

AN ENTRY IN CSRB
VALID [REQ_CORE |LOCK_ADDR | TARGET_PC | STACK PTR |

HEAD ENTRY ||

T; CSCALL Requests from small cores
Figure 7. Critical Section Request Buffer (CSRB)

cores, the CSRB has 12 entries, each of which is 25 bytes3
each. Thus, the storage overhead of the CSRB is 300 bytes.

3.4.3 Modifications to the large core

When the large core receives an entry from the CSRB, it
loads its stack pointer register with STACK_PTR and ac-
quires the lock corresponding to LOCK_ADDR (as speci-
fied by program code). It then redirects the program counter
to TARGET_PC and starts executing the critical section.
When the core retires the CSRET instruction, it releases
the lock corresponding to LOCK_ADDR and removes the
HEAD ENTRY from the CSRB. Thus, ACS executes a crit-
ical section similar to a conventional processor by acquiring
the lock, executing the instructions, and releasing the lock.
However, it does so at a higher performance because of the
aggressive configuration of the large core.

3.4.4 Interconnect Extensions

ACS introduces two new transactions on the on-chip inter-
connect: CSCALL and CSDONE. The interconnect trans-
fers the CSCALL request (along with its arguments) from
the smaller core to the CSRB and the CSDONE signal from
the CSRB to the smaller core. Similar transactions already
exist in the on-chip interconnects of current processors. For
example, Sun Niagara-1 [22] uses such transactions to inter-
face cores with the shared floating point unit.

3.5 Operating System Support
ACS requires modest support from the operating system
(OS). When executing on an ACS architecture, the OS al-
locates the large core to a single application and does not
schedule any threads onto it. Additionally, the OS sets the
control registers of the large core to the same values as the
small cores executing the application. As a result, the pro-
gram context (e.g. processor status registers, and TLB en-
tries) of the application remains the same in all cores, in-
cluding the large core. Note that ACS does not require any
special modifications because such support already exists in
current CMPs to execute parallel applications [20].
Handling Multiple Parallel Applications: When mul-
tiple parallel applications are executing concurrently, ACS
can be used if the CMP provides multiple high-performance
contexts of execution (multiple large cores or simultaneous
multithreading (SMT) [48] on the large core). Alternatively,
the OS can time-share the large core between multiple appli-
cations taking performance and fairness into account. ACS
can be enabled only for the application that is allocated the
large core and disabled for the others. This paper introduces
the concept and implementation of ACS; resource allocation
policies are part of our future work.

3.6 Reducing False Serialization in ACS

Critical sections that are protected by different locks can be
executed concurrently in a conventional CMP. However, in
ACS, their execution gets serialized because they are all ex-
ecuted sequentially on the single large core. This “false seri-
alization” reduces concurrency and degrades performance.

3 Each CSRB entry has one valid bit, 4-bit REQ_CORE, 8 bytes each for
LOCK_ADDR, TARGET_PC, and STACK_PTR.



We reduce false serialization using two techniques. First,
we make the large core capable of executing multiple crit-
ical sections concurrently,* using simultaneous multithread-
ing (SMT) [48]. Each SMT context can execute CSRB en-
tries with different LOCK_ADDR. Second, to reduce false
serialization in workloads where a large number of critical
sections execute concurrently, we propose Selective Accel-
eration of Critical Sections (SEL). The key idea of SEL is to
estimate the occurrence of false serialization and adaptively
decide whether or not to execute a critical section on the
large core. If SEL estimates false serialization to be high, the
critical section is executed locally on the small core, which
reduces contention on the large core.

Implementing SEL requires two modifications: 1) a bit
vector at each small core that contains the ACS_DISABLE
bits and 2) logic to estimate false serialization. The
ACS_DISABLE bit vector contains one bit per critical sec-
tion and is indexed using the LOCK_ADDR. When the
smaller core encounters a CSCALL, it first checks the corre-
sponding ACS_DISABLE bit. If the bit is O (i.e., false serial-
ization is low), a CSCALL request is sent to the large core.
Otherwise, the CSCALL and the critical section is executed
locally.

False serialization is estimated at the large core by aug-
menting the CSRB with a table of saturating counters, which
track the false serialization incurred by each critical sec-
tion. We quantify false serialization by counting the num-
ber of critical sections present in the CSRB for which the
LOCK_ADDR is different from the LOCK_ADDR of the in-
coming request. If this count is greater than 1 (i.e. if there are
at least two independent critical sections in the CSRB), the
estimation logic adds the count to the saturating counter cor-
responding to the LOCK_ADDR of the incoming request.
If the count is 1 (i.e. if there is exactly one critical sec-
tion in the CSRB), the corresponding saturating counter is
decremented. If the counter reaches its maximum value, the
ACS_DISABLE bit corresponding to that lock is set by send-
ing a message to all small cores. Since ACS is disabled in-
frequently, the overhead of this communication is negligible.
To adapt to phase changes, we reset the ACS_DISABLE bits
for all locks and halve the value of the saturating counters
periodically (every 10 million cycles). We reduce the hard-
ware overhead of SEL by hashing lock address into a small
number of sets. Our implementation of SEL hashes lock ad-
dresses into 16 sets and uses 6-bit counters. The total storage
overhead of SEL is 36 bytes: 16 counters of 6-bits each and
16 ACS_DISABLE bits for each of the 12 small cores.

3.7 Handling Nested Critical Sections

A nested critical section is embedded within another critical
section. Such critical sections can cause deadlocks in ACS
with SEL.> To avoid deadlocks without extra hardware com-
plexity, our design does not convert nested critical sections
to CSCALLs. Using simple control-flow analysis, the com-
piler identifies the critical sections that can possibly become

4 Another possible solution to reduce false serialization is to add additional
large cores and distribute the critical sections across these cores. Further
investigation of this solution is an interesting research direction, but is
beyond the scope of this paper.

5 For example, consider three nested critical sections: the outermost (O),
inner (), and the innermost (/). ACS is disabled for N and enabled for O
and /. The large core is executing O and another small core is executing
executing N locally (because ACS was disabled). The large core encounters
N, and waits for the small core to finish N. Meanwhile, the small core
encounters /, sends a CSCALL request to the large core, and waits for the
large core to finish /. Therefore, deadlock ensues.
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nested at run-time. Such critical sections are not converted
to CSCALLs.

3.8 Handling Interrupts and Exceptions

ACS supports precise interrupts and exceptions. If an inter-
rupt or exception happens outside a critical section, ACS
handles it similarly to the baseline. If an interrupt or excep-
tion occurs on the large core while it is executing the critical
section, the large core disables ACS for all critical sections,
pushes the CSRB on the stack, and handles the interrupt or
exception. If the interrupt is received by the small core while
it is waiting for a CSDONE signal, it delays servicing the in-
terrupt until the CSDONE signal is received. Otherwise, the
small core may miss the CSDONE signal as it is handling
the interrupt, leading to a deadlock.

Because ACS executes critical sections on a separate
core, temporary register values outside the critical section
are not visible inside the critical section and vice versa. This
is not a concern in normal program execution because the
compiler removes any register dependencies between the
critical section and the code outside it. If visibility to tem-
porary register values outside the critical section is required
inside the critical section, e.g. for debugging purposes, the
compiler can ensure the transfer of all register values from
the small core to the large core by inserting additional stack
operations in the debug version of the code.

3.9 Accommodating Multiple Large Cores

We have described ACS for an ACMP that contains only
one large core. ACS can also leverage multiple large cores
in two ways: 1) to execute different critical sections from
the same multi-threaded application, thereby reducing “false
serialization,” 2) to execute critical sections from different
applications, thereby increasing system throughput. Evalua-
tion of ACS using multiple large cores is out of the scope of
this paper.

4. Performance Trade-offs in ACS

There are three key performance trade-offs in ACS that de-
termine overall system performance:

1. Faster critical sections vs. fewer threads: ACS ex-
ecutes selected critical sections on a large core, the area
dedicated to which could otherwise be used for executing
additional threads. ACS could improve performance if the
performance gained by accelerating critical sections (and
serial program portions) outweighs the loss of throughput
due to the unavailability of additional threads. ACS’s perfor-
mance improvement becomes more likely when the number
of cores on the chip increases because of two reasons. First,
the marginal loss in parallel throughput due to the large core
becomes relatively small (for example, if the large core re-
places four small cores, then it eliminates 50% of the smaller
cores in a 8-core system but only 12.5% of cores in a 32-core
system). Second, more cores allow concurrent execution of
more threads, which increases contention by increasing the
probability of each thread waiting to enter the critical sec-
tion [36]. When contention is high, faster execution of a crit-
ical section reduces not only critical section execution time
but also the contending threads’ waiting time.

2. CSCALL/CSDONE signals vs. lock acquire/release:
To execute a critical section, ACS requires the communi-
cation of CSCALL and CSDONE transactions between a
small core and a large core. This communication over the
on-chip interconnect is an overhead of ACS, which the con-
ventional lock acquire/release operations do not incur. On
the other hand, a lock acquire operation often incurs cache
misses [33] because the lock needs to be transferred from



one cache to another. Each cache-to-cache transfer requires
two transactions on the on-chip interconnect: a request for
the cache line and the response, which has similar latency
to the CSCALL and CSDONE transactions. ACS can re-
duce such cache-to-cache transfers by keeping the lock at
the large core, which can compensate for the overhead of
CSCALL and CSDONE. ACS actually has an advantage in
that the latency of CSCALL and CSDONE can be over-
lapped with the execution of another instance of the same
critical section. On the other hand, in conventional locking,
a lock can only be acquired after the critical section has been
completed, which always adds a delay before critical section
execution. Therefore, the overhead of CSCALL/CSDONE is
likely not as high as the overhead of lock acquire/release.

3. Cache misses due to private data vs. cache misses due
to shared data: In ACS, private data that is referenced in
the critical section needs to be transferred from the cache of
the small core to the cache of the large core. Conventional
locking does not incur this cache-to-cache transfer overhead
because critical sections are executed at the local core and
private data is often present in the local cache. On the other
hand, conventional systems incur overheads in transferring
shared data: in such systems, shared data “ping-pongs” be-
tween caches as different threads execute the critical section
and reference the shared data. ACS eliminates the transfers
of shared data by keeping it at the large core,® which can off-
set the misses it causes to transfer private data into the large
core. In fact, ACS can decrease cache misses if the critical
section accesses more shared data than private data. Note
that ACS can improve performance even if there are equal
or more accesses to private data than shared data because
the large core can still 1) improve performance of other in-
structions and 2) hide the latency of some cache misses using
latency tolerance techniques like out-of-order execution.

In summary, ACS can improve overall performance if its
performance benefits (faster critical section execution, im-
proved lock locality, and improved shared data locality) out-
weigh its overheads (reduced parallel throughput, CSCALL
and CSDONE overhead, and reduced private data locality).
Next, we will evaluate the performance of ACS on a variety
of CMP configurations.

5. Experimental Methodology

Table 1 shows the configuration of the simulated CMPs, us-
ing our in-house cycle-accurate x86 simulator. The large
core occupies the same area as four smaller cores: the
smaller cores are modeled after the Intel Pentium proces-
sor [19], which requires 3.3 million transistors, and the large
core is modeled after the Intel Pentium-M core, which re-
quires 14 million transistors [12]. We evaluate three different
CMP architectures: a symmetric CMP (SCMP) consisting of
all small cores; an asymmetric CMP (ACMP) with one large
core with 2-way SMT and remaining small cores; and an
ACMP augmented with support for the ACS mechanism
(ACS). Unless specified otherwise, all comparisons are done
at equal area budget. We specify the area budget in terms
of the number of small cores. Unless otherwise stated, the
number of threads for each application is set equal to the
number of threads that minimizes the execution time for the
particular configuration; e.g. if the best performance of an
application is obtained on an 8-core SCMP when it runs with

6By keeping shared data in the large core’s cache, ACS reduces the cache
space available to shared data compared to conventional locking (where
shared data can reside in any on-chip cache). This can increase cache
misses. However, we find that such cache misses are rare and do not degrade
performance because the private cache of the large core is large enough.
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3 threads, then we report the performance with 3 threads. In
both ACMP and SCMP, conventional lock acquire/release
operations are implemented using the Monitor/Mwait in-
structions, part of the SSE3 extensions to the x86 ISA [17].
In ACS, lock acquire/release instructions are replaced with
CSCALL/CSRET instructions.

Small core 2-wide In-order, 2GHz, 5-stage. L1: 32KB write-through. L2:
256KB write-back, 8-way, 6-cycle access

Large core 4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB, 12-
stage, L1: 32KB write-through. L2: 1-MB write-back, 16-way, 8-
cycle

Interconnect | 64-bit wide bi-directional ring, all queuing delays modeled, ring
hop latency of 2 cycles (latency between one cache to the next)

Coherence MESI, On-chip distributed directory similar to SGI Origin [26],
cache-to-cache transfers. # of banks = # of cores, 8K entries/bank

L3 Cache 8MB, shared, write-back, 20-cycle, 16-way

Memory 32 banks, bank conflicts and queuing delays modeled. Row buffer
hit: 25ns, Row buffer miss: 50ns, Row buffer conflict: 75ns

Memory 4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipelined bus, 40-

bus cycle latency

| Area-equivalent CMPs. Area = N small cores. N varies from 1 to 32 |
SCMP

N small cores, One small core runs serial part, all N cores run
parallel part, conventional locking (Max. concurrent threads = N)

ACMP 1 large core and N-4 small cores; large core runs serial part, 2-way
SMT on large core and small cores run parallel part, conventional
locking (Maximum number of concurrent threads = N-2)

ACS 1 large core and N-4 small cores; (N-4)-entry CSRB on the large

core, large core runs the serial part, small cores run the parallel
part, 2-way SMT on large core runs critical sections using ACS
(Max. concurrent threads = N-4)

Table 1. Configuration of the simulated machines

5.1 Workloads

Our main evaluation focuses on 12 critical-section-intensive
workloads shown in Table 2. We define a workload to be
critical-section-intensive if at least 1% of the instructions in
the parallel portion are executed within critical sections. We
divide these workloads into two categories: workloads with
coarse-grained locking and workloads with fine-grained
locking. We classify a workload as using coarse-grained
locking if it has at most 10 critical sections. Based on this
classification, 7 out of 12 workloads use coarse-grain lock-
ing and the remaining 5 use fine-grain locking. All work-
loads were simulated to completion. A description of the
benchmarks whose source code is not publicly available is
provided in [42].

[ Locks [ Workload ] Description [ Source ] Tnput set |
ep Random number generator [7] 262144 nums.
is Integer sort [7] n = 64K

Coarse | pagemine Data mining kernel [31] 10Kpages
puzzle 15-Puzzle game [50] 3x3
qsort Quicksort [11] 20K elem.
sqlite sqlite3 [3] database engine 4] OLTP-simple
tsp Traveling salesman prob. [23] 11 cities
iplookup IP packet routing [49] 2.5K queries
oltp-1 MySQL server [1] [4] OLTP-simple
Fine oltp-2 MySQL server [1] [4] OLTP-complex
specjbb JAVA business benchmark [40] 5 seconds
webcache Cooperative web cache [45] 100K queries

Table 2. Simulated workloads

6. Evaluation

We make three comparisons between ACMP, SCMP, and
ACS. First, we compare their performance on systems where
the number of threads is set equal to the optimal number of
threads for each application under a given area constraint.
Second, we compare their performance assuming the num-
ber of threads is set equal to the number of cores in the sys-
tem, a common practice employed in many existing systems.



Third, we analyze the impact of ACS on application scalabil-
ity i.e., the number of threads over which performance does
not increase.

6.1 Performance with the Optimal Number of Threads
Systems sometimes use profile or run-time information to
choose the number of threads that minimizes execution
time [43]. We first analyze ACS with respect to ACMP and
SCMP when the optimal number of threads are used for each
application on each CMP configuration.” We found that do-
ing so provides the best baseline performance for ACMP and
SCMP, and a performance comparison results in the lowest
performance improvement of ACS. Hence, this performance
comparison penalizes ACS (as our evaluations in Section 6.2
with the same number of threads as the number of thread
contexts will show). We show this performance comparison
separately on workloads with coarse-grained locks and those
with fine-grained locks.

6.1.1 Workloads with Coarse-Grained Locks

Figure 8 shows the execution time of each application on
SCMP and ACS normalized to ACMP for three different
area budgets: 8, 16, and 32. Recall that when area budget
is equal to N, SCMP, ACMP, and ACS can execute up to
N, N-2, and N-4 parallel threads respectively. In the ensu-
ing discussion, we ask the reader to refer to Table 3, which
shows the characteristics of critical sections in each applica-
tion, to provide insight into the performance results.

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(c) Area budget=32 small cores

Figure 8. Execution time of workloads with coarse-grained lock-
ing on ACS and SCMP normalized to ACMP

7We determine the optimal number of threads for an application by simu-
lating all possible number of threads and using the one that minimizes exe-
cution time. The interested reader can obtain the optimal number of threads
for each benchmark and each configuration by examining the data in Fig-
ure 10. Due to space constraints, we do not explicitly quote these thread
counts.
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Systems area-equivalent to 8 small cores: When area
budget equals 8, ACMP significantly outperforms SCMP for
workloads with high percentage of instructions in the serial
part (85% in is and 29% in gsort as Table 3 shows). In
puzzle, even though the serial part is small, ACMP im-
proves performance because it improves cache locality of
shared data by executing two of the six threads on the large
core, thereby reducing cache-to-cache transfers of shared
data. SCMP outperforms ACMP for sqlite and tsp be-
cause these applications spend a very small fraction of their
instructions in the serial part and sacrificing two threads for
improved serial performance is not a good trade-off. Since
ACS devotes the two SMT contexts on the large core to
accelerate critical sections, it can execute only four paral-
lel threads (compared to 6 threads of ACMP and 8 threads
of SCMP). Despite this disadvantage, ACS reduces the av-
erage execution time by 22% compared to SCMP and by
11% compared to ACMP. ACS improves performance of
five out of seven workloads compared to ACMP. These five
workloads have two common characteristics: 1) they have
high contention for the critical sections, 2) they access more
shared data than private data in critical sections. Due to these
characteristics, ACS reduces the serialization caused by crit-
ical sections and improves locality of shared data.

Why does ACS reduce performance in gsort and tsp?
The critical section in gsort protects a stack that contains
indices of the array to be sorted. The insert operation pushes
two indices (private data) onto the stack by changing the
stack pointer (shared data). Since indices are larger than the
stack pointer, there are more accesses to private data than
shared data. Furthermore, contention for critical sections
is low. Therefore, gsort can take advantage of additional
threads in its parallel portion and trading off several threads
for faster execution of critical sections lowers performance.
The dominant critical section in tsp protects a FIFO queue
where an insert operation reads the node to be inserted (pri-
vate data) and adds it to the queue by changing only the head
pointer (shared data). Since private data is larger than shared
data, ACS reduces cache locality. In addition, contention is
low and the workload can effectively use additional threads.

Systems area-equivalent to 16 and 32 small cores: Re-
call that as the area budget increases, the overhead of ACS
decreases. This is due to two reasons. First, the parallel
throughput reduction caused by devoting a large core to ex-
ecute critical sections becomes smaller, as explained in Sec-
tion 4. Second, more threads increases contention for crit-
ical sections because it increases the probability that each
thread is waiting to enter the critical section. When the area
budget is 16, ACS improves performance by 32% compared
to SCMP and by 22% compared to ACMP. When the area
budget is 32, ACS improves performance by 42% compared
to SCMP and by 31% compared to ACMP. In fact, the two
benchmarks (qsort and tsp) that lose performance with
ACS when the area budget is 8 experience significant per-
formance gains with ACS over both ACMP and SCMP for
an area budget of 32. For example, ACS with an area budget
of 32 provides 17% and 22% performance improvement for
gsort and tsp respectively over an equal-area ACMP. With
an area budget of at least 16, ACS improves the performance
of all applications with coarse-grained locks. We conclude
that ACS is an effective approach for workloads with coarse-
grained locking even at small area budgets. However, ACS
becomes even more attractive as the area budget in terms of
number of cores increases.



Workload % of instr. % of parallel instr. # of disjoint What is Protected by CS? Avg. instr. in Shared/Private Contention
‘ in Serial Part ‘ in critical sections | critical sections critical section | (at4 threads) 4 | 8 | 16 | 32
ep 133 14.6 3 reduction into global data 620618.1 1.0 1418 | 40| 82
is 84.6 8.3 1 buffer of keys to sort 9975.0 1.1 23 [ 43 | 81 | 164
pagemine 0.4 5.7 1 global histogram 531.0 1.7 23 [ 43 |82 159
puzzle 2.4 69.2 2 work-heap, memoization table 926.9 1.1 22143 |83 16.1
qsort 28.5 16.0 1 global work stack 127.3 0.7 1.1 [ 3.0 | 9.6 | 25.6
sqlite 0.2 17.0 5 database tables 933.1 24 1412237 64
tsp 0.9 4.3 2 termination cond., solution 29.5 0.4 12116 [20] 3.6
iplookup 0.1 8.0 # of threads routing tables 683.1 0.6 1211315 1.9
oltp-1 2.3 13.3 20 meta data, tables 277.6 0.8 12|12 15] 22
oltp-2 1.1 12.1 29 meta data, tables 309.6 0.9 1.1 12]14] 16
specjbb 1.2 0.3 39 counters, warehouse data 1002.8 0.5 1.0 1.0 | 1.0 1.2
webcache 3.5 94.7 33 replacement policy 2257.0 1.1 1.1 1.1 | L1 1.4

Table 3. Characteristics of Critical Sections. Shared/Private is the ratio of shared data (number of cache lines that are transferred from
caches of other cores) to private data (number of cache lines that hit in the private cache) accessed inside a critical section. Contention is the
average number of threads waiting for critical sections when the workload is executed with 4, 8, 16, and 32 threads on the SCMP.

6.1.2 Workloads with Fine-Grained Locks

Figure 9 shows the execution time of workloads with fine-
grained locking for three different area budgets: 8, 16, and
32. Compared to coarse-grained locking, fine-grained lock-
ing reduces contention for critical sections and hence the se-
rialization caused by them. As a result, critical section con-
tention is negligible at low thread counts, and the workloads
can take significant advantage of additional threads executed
in the parallel section. When the area budget is 8, SCMP
provides the highest performance (as shown in Figure 9(a))
for all workloads because it can execute the most number of
threads in parallel. Since critical section contention is very
low, ACS essentially wastes half of the area budget by dedi-
cating it to a large core because it is unable to use the large
core efficiently. Therefore, ACS increases execution time
compared to ACMP for all workloads except iplookup. In
iplookup, ACS reduces execution time by 20% compared
to ACMP but increases it by 37% compared to SCMP. The
critical sections in iplookup access more private data than
shared data, which reduces the benefit of ACS. Hence, the
faster critical section execution benefit of ACS is able to
overcome the loss of 2 threads (ACMP) but is unable to pro-
vide enough improvement to overcome the loss of 4 threads
(SCMP).

As the area budget increases, ACS starts providing per-
formance improvement over SCMP and ACMP because the
loss of parallel throughput due to the large core reduces.
With an area budget of 16, ACS performs similarly to SCMP
(within 2%) and outperforms ACMP (by 6%) on average.
With an area budget of 32, ACS’s performance improve-
ment is the highest: 17% over SCMP and 13% over ACMP;
in fact, ACS outperforms both SCMP and ACMP on all
workloads. Hence, we conclude that ACS provides the best
performance compared to the alternative chip organizations,
even for critical-section-intensive workloads that use fine-
grained locking.

Depending on the scalability of the workload and the
amount of contention for critical sections, the area budget
required for ACS to provide performance improvement is
different. Table 4 shows the area budget required for ACS
to outperform an equivalent-area ACMP and SCMP. In gen-
eral, the area budget ACS requires to outperform SCMP is
higher than the area budget it requires to outperform ACMP.
However, webcache and gsort have a high percentage of
serial instructions; therefore ACMP becomes significantly
more effective than SCMP for large area budgets. For all
workloads with fine-grained locking, the area budget ACS
requires to outperform an area-equivalent SCMP or ACMP
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Figure 9. Execution time of workloads with fine-grained locking
on ACS and SCMP normalized to ACMP

is less than or equal to 24 small cores. Since chips with 8
and 16 small cores are already in the market [22], and chips
with 32 small cores are being built [47, 38], we believe ACS
can be a feasible and effective option to improve the perfor-
mance of workloads that use fine-grained locking in near-
future multi-core processors.
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Table 4. Area budget (in terms of small cores) required for ACS
to outperform an equivalent-area ACMP and SCMP



Summary: Based on the observations and analyses we made
above for workloads with coarse-grained and fine-grained
locks, we conclude that ACS provides significantly higher
performance than both SCMP and ACMP for both types
of workloads, except for workloads with fine-grained locks
when the area budget is low. ACS’s performance benefit
increases as the area budget increases. In future systems with
a large number of cores, ACS is likely to provide the best
system organization among the three choices we examined.
For example, with an area budget of 32 small cores, ACS
outperforms SCMP by 34% and ACMP by 23% averaged
across all workloads, including both fine-grained and coarse-
grained locks.

6.2 Performance with Number of Threads Set Equal to

the Number of Available Thread Contexts
In the previous section, we used the optimal number of
threads for each application-configuration pair. When an es-
timate of the optimal number of threads is not available,
many current systems use as many threads as there are avail-
able thread contexts [18, 32]. We now evaluate ACS assum-
ing the number of threads is set equal to the number of avail-
able contexts. Figure 10 shows the speedup curves of ACMP,
SCMP, and ACS over one small core as the area budget is
varied from 1 to 32. The curves for ACS and ACMP start at
4 because they require at least one large core which is area-
equivalent to 4 small cores.

[ Number of threads [[ No. of max. thread contexts | Optimal |
| AreaBudget [[8 [16 [32 I8 [1T6 32 |
[ _sScMP__ 093 [104 [1i1s__ 094 [105 [LI5 ]
| ACS [097 [077 [064 _ [[096 [083 [077 |

Table 5. Average execution time normalized to area-equivalent
ACMP

Table 5 summarizes the data in Figure 10 by showing
the average execution time of ACS and SCMP normalized
to ACMP for area budgets of 8, 16, and 32. For compari-
son, we also show the data with optimal number of threads.
With an area budget of 8, ACS outperforms both SCMP and
ACMP on 5 out of 12 benchmarks. ACS degrades average
execution time compared to SCMP by 3% and outperforms
ACMP by 3%. When the area budget is doubled to 16, ACS
outperforms both SCMP and ACMP on 7 out of 12 bench-
marks, reducing average execution time by 26% and 23%,
respectively. With an area budget of 32, ACS outperforms
both SCMP and ACMP on all benchmarks, reducing aver-
age execution time by 46% and 36%, respectively. Note that
this performance improvement is significantly higher than
the performance improvement ACS provides when the opti-
mal number of threads is chosen for each configuration (34%
over SCMP and 23% over ACMP). Also note that when the
area budget increases, ACS starts to consistently outperform
both SCMP and ACMP. This is because ACS tolerates con-
tention among threads better than SCMP and ACMP. Table 6
compares the contention of SCMP, ACMP, and ACS at an
area budget of 32. For ep, on average more than 8 threads
wait for each critical section in both SCMP and ACMP. ACS
reduces the waiting threads to less than 2, which improves
performance by 44% (at an area budget of 32).

We conclude that, even if a developer is unable to deter-
mine the optimal number of threads for a given application-
configuration pair and chooses to set the number of threads
at a point beyond the saturation point, ACS provides signif-
icantly higher performance than both ACMP and SCMP. In
fact, ACS’s performance benefit is even higher in systems

261

@ @ @
4 LT 4 A A 22
B H A ee—
g1 —+SCMP g‘l g
= —2—ACMP! = [ s 1
] -O-ACS ] ]
() SR S S 2 S N S S 2 S N SR S
8 16 24 32 8 16 24 32 8 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(a)ep (b) is (c) pagemine
Zs = =
3 33 F4
g4 g £,
23 g2 g
g2 g g’
= <] = 1
g 19 g g
2N J S S 2 J S S 28 J S S
8 16 24 32 8 16 24 32 8 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(d) puzzle (e) gsort () sqlite
@ @
; £y 57
= =7 =6
g E g3
@ A @4
4 2 > 4 >3
2 23 a3
= § E] 22
=1 =2 =1
g : i] gg_l
o RS T 28 J S S 28 IR S
8 16 24 32 8 16 24 32 8 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(g) tsp (h) iplookup (i) oltp-1
10 £ 10
= = = 8
= = =
24 g E g
@ 5 2 @ 5
a4 = a4
= 3 ] = 3
< 2 |54 < 2
21 S 2 I 2 lg
@ 0 7 reerrrre @ 0 T T T 7 @« 0 7 frrerr e
8 16 24 32 8§ 16 24 32 8 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)
(j) oltp-2 (k) specjbb (1) webcache
Figure 10. Speedup over a single small core
2 = PR
5| ) slzle|=5]8
S8 |5 |2|ol8|&|518%
Workload || & | .2 g2l a|&|Z|g]||l=|2|c| &=
SCMP 82164 159(16.1256(64(36(19]22]|16[1.2(14
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Table 6. Contention (see Table 3 for definition) at an area budget
of 32 (Number of threads set equal to the number of thread con-
texts)

where the number of threads is set equal to number of thread
contexts because ACS is able to tolerate contention for criti-
cal sections significantly better than ACMP or SCMP.

6.3 Application Scalability

We examine the effect of ACS on the number of threads re-
quired to minimize the execution time. Table 7 shows num-
ber of threads that provides the best performance for each
application using ACMP, SCMP, and ACS. The best number
of threads were chosen by executing each application with
all possible threads from 1 to 32. For 7 of the 12 applica-
tions (is, pagemine, puzzle, gsort,sqlite,oltp-1,and
oltp-2) ACS improves scalability: it increases the number
of threads at which the execution time of the application is
minimized. This is because ACS reduces contention due to



critical sections as explained in Section 6.2 and Table 6. For
the remaining applications, ACS does not change scalabil-
ity.® We conclude that if thread contexts are available on the
chip, ACS uses them more effectively compared to ACMP
and SCMP.

2 o 2
Elal Ll 11El-lalel®
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I8 |Elalll|ele|8]8
Workload || 8| 2 | &| & | & | F |2 || &[S |35 | %] &
SCMP |[4[8 |88 |16] 8 |32][24]|16]16]32]32
ACMP (48] 8|8 |16 8 [32][24[16]|16[32]32
ACS 4112[12(32(32(32(32[24[32[24[32]32

Table 7. Best number of threads for each configuration

6.4 Performance of ACS on Critical Section

Non-Intensive Benchmarks

We also evaluated all 16 benchmarks from the NAS [7] and
SPLASH [51] suites that are not critical-section-intensive.
These benchmarks contain regular data-parallel loops and
execute critical sections infrequently (less than 1% of the
executed instructions). Detailed results of this analysis are
presented in [42]. We find that ACS does not significantly
improve or degrade the performance of these applications.
When area budget is 32, ACS provides a modest 1% perfor-
mance improvement over ACMP and 2% performance re-
duction compared to SCMP. As area budget increases, ACS
performs similar to (within 1% of) SCMP. We conclude that
ACS will not significantly affect the performance of critical
section non-intensive workloads in future systems with large
number of cores.

7. Sensitivity of ACS to System Configuration

7.1 Effect of SEL

ACS uses the SEL mechanism (Section 3.6) to selectively
accelerate critical sections to reduce false serialization of
critical sections. We evaluate the performance impact of
SEL. Since SEL does not affect the performance of work-
loads that have negligible false serialization, we focus our
evaluation on the three workloads that experience false se-
rialization: puzzle, iplookup, and webcache. Figure 11
shows the normalized execution time of ACS with and with-
out SEL for the three workloads when the area budget is
32. For iplookup and webcache, which has the highest
amount of false serialization, using SEL improves perfor-
mance by 11% and 5% respectively over the baseline. The
performance improvement is due to acceleration of some
critical sections which SEL allows to be sent to the large
core because they do not experience false serialization. In
webcache, multiple threads access pages of different files
stored in a shared cache. Pages from each file are protected
by a different lock. In a conventional system, these critical
sections can execute in parallel, but ACS without SEL seri-
alizes the execution of these critical sections by forcing them
to execute on a single large core. SEL disables the accelera-
tion of 17 out of the 33 locks, which eliminates false serial-
ization and reduces pressure on the large core. In iplookup,
multiple copies of the routing table (one for each thread) are
protected by disjoint critical sections that get serialized with-
out SEL. puzzle contains two critical sections protecting a
heap object (PQ in Figure 1) and a memoization table. Ac-
cesses to PQ are more frequent than to the memoization ta-
ble, which results in false serialization for the memoization

8 Note that Figure 10 provides more detailed information on ACS’s effect on
the scalability of each application. However, unlike Table 7, the data shown
on the x-axis is area budget and not number of threads.
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table. SEL detects this serialization and disables the acceler-
ation of the critical section for the memoization table. On av-
erage, across all 12 workloads, ACS with SEL outperforms
ACS without SEL by 15%. We conclude that SEL can suc-
cessfully improve the performance benefit of ACS by elim-
inating false serialization without affecting the performance
of workloads that do not experience false serialization.
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7.2 ACS on Symmetric CMPs: Effect of Only Data
Locality

Part of the performance benefit of ACS is due to improved
locality of shared data and locks. This benefit can be real-
ized even in the absence of a large core. A variant of ACS
can be implemented on a symmetric CMP, which we call
symmACS. In symmACS, one of the small cores is dedicated
to executing critical sections. This core is augmented with a
CSRB and executes the CSCALL requests and CSRET in-
structions. Figure 12 shows the execution time of symmACS
and ACS normalized to SCMP when area budget is 32. Sym-
mACS reduces execution time by more than 5% compared
to SCMP in is, puzzle, sqlite, and iplookup because
more shared data is accessed than private data in critical
sections.’ In ep, pagemine, gsort, and tsp, the overhead
of CSCALL/CSRET messages and transferring private data
offsets the shared data/lock locality advantage of ACS. Thus,
overall execution time increases. On average, symmACS
reduces execution time by only 4% which is much lower
than the 34% performance benefit of ACS. Since the per-
formance gain due to improved locality alone is relatively
small, we conclude that most of the performance improve-
ment of ACS comes from accelerating critical sections using
the large core.

8. Related Work

The major contribution of our paper is a comprehensive
mechanism to accelerate critical sections using a large core.
The most closely related work is the numerous proposals to
optimize the implementation of lock acquire/release opera-
tions and the locality of shared data in critical section using
OS and compiler techniques. We are not aware of any work
that speeds up the execution of critical sections using more
aggressive execution engines. To our knowledge, this is the
first paper that comprehensively accelerates critical sections
by improving both the execution speed of critical sections
and locality of shared data/locks.

9 Note that these numbers do not correspond to those shown in Table 3. The
Shared/Private ratio reported in Table 3 is collected by executing the work-
loads with 4 threads. On the other hand, in this experiment, the workloads
were run with the optimal number of threads for each configuration.



8.1 Improving Locality of Shared Data and Locks
Sridharan et al. [39] propose a thread scheduling algorithm
for SMP machines to increase shared data locality in criti-
cal sections. When a thread encounters a critical section, the
operating system migrates the thread to the processor that
has the shared data. This scheme increases cache locality of
shared data but incurs the substantial overhead of migrating
complete thread state on every critical section. ACS does not
migrate thread contexts and therefore does not need OS in-
tervention. Instead, it sends a CSCALL request with mini-
mal data to the core executing the critical sections. More-
over, ACS accelerates critical section execution, a benefit
unavailable in [39]. Trancoso and Torrellas [46] and Ran-
ganathan et al. [35] improve locality in critical sections us-
ing software prefetching. These techniques can be combined
with ACS for improved performance.

Several primitives (e.g., Test&Test&Set, Compare&Swap)
were proposed to efficiently implement lock acquire and
release operations [10]. Recent research has also studied
hardware and software techniques to reduce the overhead of
lock operations [16, 5]. The Niagara-2 processor improves
cache locality of locks by executing the “lock acquire” in-
structions [13] remotely at the cache bank where the lock
is resident. However, none of these techniques increase the
speed of critical section processing or the locality of shared
data.

8.2 Hiding the Latency of Critical Sections
Several proposals try to hide the latency of a critical sec-
tion by executing it speculatively with other instances of the
same critical section as long as they do not have data con-
flicts with each other. Examples include transactional mem-
ory (TM) [14], speculative lock elision (SLE) [33], trans-
actional lock removal (TLR) [34], and speculative synchro-
nization (SS) [29]. SLE is a hardware technique that allows
multiple threads to execute the critical sections speculatively
without acquiring the lock. If a data conflict is detected, only
one thread is allowed to complete the critical section while
the remaining threads roll back to the beginning of the crit-
ical section and try again. TLR improves upon SLE by pro-
viding a timestamp-based conflict resolution scheme that en-
ables lock-free execution. ACS is partly orthogonal to these
approaches due to three major reasons:
1. TLR/SLE/SS/TM improve performance when the concur-
rently executed instances of the critical sections do not have
data conflicts with each other. In contrast, ACS improves
performance even for critical section instances that have data
conflicts. If data conflicts are frequent, TLR/SLE/SS/TM can
degrade performance by rolling back the speculative execu-
tion of all but one instance to the beginning of the critical
section. In contrast, ACS’s performance is not affected by
data conflicts in critical sections.
2. TLR/SLE/SS/TM amortize critical section latency by con-
currently executing non-conflicting critical sections, but they
do not reduce the latency of each critical section. In contrast,
ACS reduces the execution latency of critical sections.
3. TLR/SLE/SS/TM do not improve locality of lock and
shared data. In contrast, as Section 7.2 showed, ACS im-
proves locality of lock and shared data by keeping them in a
single cache.

We compare the performance of ACS and TLR. Fig-
ure 13 shows the execution time of an ACMP augmented
with TLR!? and the execution time of ACS normalized to

I0TLR was implemented as described in [34]. We added a 128-entry buffer
to each small core to handle speculative memory updates.
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ACMP (area budget is 32 and number of threads set to the
optimal number for each system). TLR reduces average exe-
cution time by 6% while ACS reduces it by 23%. In applica-
tions where critical sections often access disjoint data (e.g.,
puzzle, where the critical section protects a heap to which
accesses are disjoint), TLR provides large performance im-
provements. However, in workloads where critical sections
conflict with each other (e.g., is, where each instance of
the critical section updates all elements of a shared array),
TLR degrades performance. ACS outperforms TLR on all
benchmarks, and by 18% on average because ACS acceler-
ates many critical sections, whether or not they have data
conflicts, thereby reducing serialization.

Exec. Time Norm. to ACMP

Figure 13. ACS vs. TLR performance.

8.3 Asymmetric CMPs

CMPs with heterogeneous cores have been proposed to re-
duce power consumption and improve performance. Morad
et al. [30] proposed an analytic model of a CMP with one
large core and multiple small, low-performance cores. The
large core would be used to accelerate the serial bottleneck.
Suleman et al. [41] show that the ACMP model can im-
prove programmer efficiency. Hill at al. [15] further show
that there is potential in improving the performance of the
serial part of an application. Kumar et al. [24] use hetero-
geneous cores to reduce power and increase throughput for
multi-programmed workloads. We use the ACMP to accel-
erate critical sections as well as the serial part in multi-
threaded workloads.

Ipek et al. [21] propose Core Fusion, where multiple
small cores can be combined, i.e. fused, to form a powerful
core at runtime. They apply Core Fusion to speed up the
serial portion of programs. Our technique can be combined
with Core Fusion. A powerful core can be built by fusing
multiple small cores to accelerate critical sections.

8.4 Other Related Work

The idea of executing critical sections remotely on a differ-
ent processor resembles the Remote Procedure Call (RPC) [8]
mechanism used in network programming to ease the con-
struction of distributed, client-server based applications.
RPC is used to execute (client) subroutines on remote
(server) computers. In ACS, the small cores are analogous to
the “client,” and the large core is analogous to the “server”
where the critical sections are remotely executed. ACS has
two major differences from RPC. First, ACS executes “re-
mote” critical section calls within the same address space
and the same chip as the callee, thereby enabling the acceler-
ated execution of shared-memory multi-threaded programs.
Second, ACS’s purpose is to accelerate shared-memory par-
allel programs and hence reduce the burden of parallel pro-
gramming, whereas RPC’s purpose is to ease network pro-
gramming.



9. Conclusion

We proposed Accelerated Critical Sections (ACS) to im-
prove the performance and scalability of multi-threaded ap-
plications. ACS accelerates execution of critical sections by
executing them on the large core of an Asymmetric CMP
(ACMP). Our evaluation with 12 critical section intensive
workloads shows that ACS reduces the average execution
time by 34% compared to an equal-area baseline with 32-
core symmetric CMP and by 23% compared to an equal-area
ACMP. Furthermore, ACS improves the scalability of 7 of
the 12 workloads. As such, ACS is a promising approach to
overcome the performance bottlenecks introduced by critical
sections.
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