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Abstract

Performance of multithreaded applications is limited by a vari-
ety of bottlenecks, e.g. critical sections, barriers and slow pipeline
stages. These bottlenecks serialize execution, waste valuable exe-
cution cycles, and limit scalability of applications. This paper pro-
poses Bottleneck Identification and Scheduling (BIS), a cooperative
software-hardware mechanism to identify and accelerate the most
critical bottlenecks. BIS identifies which bottlenecks are likely to
reduce performance by measuring the number of cycles threads
have to wait for each bottleneck, and accelerates those bottle-
necks using one or more fast cores on an Asymmetric Chip Multi-
Processor (ACMP). Unlike previous work that targets specific bot-
tlenecks, BIS can identify and accelerate bottlenecks regardless of
their type. We compare BIS to four previous approaches and show
that it outperforms the best of them by 15% on average. BIS’ per-
formance improvement increases as the number of cores and the
number of fast cores in the system increase.

Categories and Subject Descriptors C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors)

General Terms Design, Performance

Keywords Critical sections, barriers, pipeline parallelism, multi-
core, asymmetric CMPs, heterogeneous CMPs

1. Introduction

Speeding up a single application using Chip Multi-Processors
(CMPs) requires that applications be split into threads that exe-
cute concurrently on multiple cores. In theory, a CMP can provide
speedup equal to the number of cores, however, the speedup is of-
ten lower in practice because of the thread waiting caused by seri-
alizing bottlenecks. These bottlenecks not only limit performance
but also limit application scalability, e.g., performance of the mysq!/
database peaks at 16 threads (Section 5.1.1).

Programmers are often burdened with the task of identifying
and removing serializing bottlenecks. This solution is too costly
because (a) writing correct parallel programs is already a daunting
task, and (b) serializing bottlenecks change with machine configu-
ration, program input set, and program phase (as we show in Sec-
tion 2.2), thus, what may seem like a bottleneck to the programmer
may not be a bottleneck in the field and vice versa. Hence, a so-
Iution that can identify and remove these bottlenecks at run-time
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(without requiring programmer effort) can not only increase paral-
lel program performance and scalability but also reduce the work
of the programmers.

An Asymmetric CMP (ACMP) consists of at least one large, fast
core and several small, slow cores.! Previous research has shown
that faster cores on an ACMP can be used to accelerate serializ-
ing bottlenecks. However, these proposals lack generality and fine-
grained adaptivity. For example, several proposals [5, 13, 21, 26]
use the fast core to accelerate Amdahl’s serial portions (i.e., por-
tions of a program where only one thread exists) but they do not
handle serializing bottlenecks that happen in the parallel portions
of the code. Accelerated Critical Sections (ACS) [36] accelerates
critical sections —code regions that only one thread can execute at
a given time—, but it does not always accelerate the critical sec-
tions that are currently most critical for performance and is limited
to ACMPs with a single large core. Meeting Points [8] acceler-
ates the thread with the longest expected completion time in the
parallel region to reduce barrier synchronization overhead. How-
ever, it only applies to barriers in statically scheduled workloads,
where the work to be performed by each thread is known before
runtime. Feedback-Directed Pipelining (FDP) [34, 37], a software-
only library, assigns threads to cores to balance stage throughput
on pipelined workloads and improve performance or reduce power
consumption, but it is slow to adapt to phase changes because it is
software-based. Realistic workloads contain multiple different bot-
tlenecks that can become critical at different execution phases, as
we show in this paper. Therefore, it is important to have a single
mechanism that is general and adaptive enough to accelerate the
most critical bottlenecks at any given time.

We propose Bottleneck Identification and Scheduling (BIS), a
general cooperative software-hardware framework to identify the
most critical serializing bottlenecks at runtime, and accelerate them
using one or multiple large cores on an ACMP. The key insight
for identification is that the most critical serializing bottlenecks
are likely to make other threads wait for the greatest amount of
time. The programmer, compiler or library delimits potential bot-
tlenecks using BottleneckCall and BottleneckReturn instructions,
and replaces the code that waits for bottlenecks with a Bottleneck-
Wait instruction. The hardware uses these instructions to measure
thread waiting cycles (i.e., number of cycles threads wait due to
the bottleneck) for each bottleneck and tracks them in a Bottleneck
Table. The bottlenecks with the highest number of thread waiting
cycles are selected for acceleration on one or more large cores. On
executing a BottleneckCall instruction, the small core checks if the
bottleneck has been selected for acceleration. If it has, the small
core enqueues an execution request into the Scheduling Buffer of a
large core. The large core dequeues each request from its Schedul-
ing Buffer, executes the bottleneck and notifies the small core once
it encounters the BottleneckReturn instruction.

I'We use the terms fast and large, and slow and small, interchangeably, to
refer to the two types of cores on an ACMP.



This paper makes three main contributions:

1. We propose a cooperative hardware-software mechanism to
identify the most critical bottlenecks of different types, e.g.,
critical sections, barriers and pipeline stages, allowing the pro-
grammer, the software or the hardware to remove or accelerate
those bottlenecks. To our knowledge, this is the first such pro-
posal.

2. We propose an automatic acceleration mechanism that decides
which bottlenecks to accelerate and where to accelerate them.
We use the fast cores on an ACMP as hardware-controlled fine-
grain accelerators for serializing bottlenecks. By using hard-
ware support, we minimize the overhead of execution migration
and allow for quick adaptation to changing critical bottlenecks.

3. This is the first paper to explore the trade-offs of bottleneck
acceleration using ACMPs with multiple large cores. We show
that multiple large cores improve performance when multiple
bottlenecks are similarly critical and need to be accelerated
simultaneously.”

Our evaluation shows that BIS improves performance by 37%
over a 32-core Symmetric CMP and by 32% over an ACMP (which
only accelerates serial sections) with the same area budget. BIS
also outperforms recently proposed dynamic mechanisms (ACS
for non-pipelined workloads and FDP for pipelined workloads) on
average by 15% on a 1-large-core, 28-small-core ACMP. We also
show that BIS’ performance improvement increases as the number
of cores and the number of large cores increase.

2. Motivation

2.1 Bottlenecks: What They Are and Why They Should Be
Accelerated

We define bortleneck as any code segment for which threads con-
tend. A bottleneck may consist of a single thread or multiple
threads that need to reach a synchronization point before other
threads can make progress. We call the threads that stall due to
a bottleneck waiters and the threads executing a bottleneck exe-
cuters. A single instance of a bottleneck can be responsible for one
or many waiters. The effect of bottlenecks on performance can be
substantial because every cycle a bottleneck is running is a cycle
wasted on every one of the waiters of that bottleneck. Bottlenecks
cause thread serialization. Thus, a parallel program that spends a
significant portion of its execution in bottlenecks can lose some or
even all of the speedup that could be expected from parallelization.
Next we describe examples of bottlenecks.

2.1.1 Amdahl’s Serial Portions

When only one thread exists [4], it is on the critical path and
should be scheduled on the fastest core to minimize execution time.
Meanwhile, all other cores are idle.

2.1.2 Critical Sections

Critical sections ensure mutual exclusion, i.e. only one thread can
execute a critical section at a given time, and any other thread
wanting to execute the critical section must wait. That is, there
is only one executer and possibly multiple waiters. Figure 1(a)
shows the execution of four threads (T1-T4) that run a simple loop
that consists of a critical section C1 and a non-critical section N.
Threads can execute in parallel until time 30, at which T3 acquires
the lock and prevents T1 and T4 from doing so. Then, T1 and T4
become idle, waiting on T3. Accelerating the execution of C1 on
T3 during this time would not only accelerate T3 and reduce the
total execution time (because this instance of code segment C1 is

2 We also evaluate large cores with Simultaneous Multithreading (SMT) in
Section 5.2.
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Figure 1. Examples of bottleneck execution.

on the critical path), but also reduce the wait for both T1 and T4.
However, accelerating the same C1 on T2 between times 20 and
30 would not help because all the other threads are running useful
work and no thread is waiting for the lock.

2.1.3 Barriers

Threads that reach a barrier must wait until all threads reach the
barrier. There can be multiple executers and multiple waiters. Fig-
ure 1(b) shows the execution of four threads reaching a barrier. T1
and T4 reach the barrier at time 30 and start waiting on T2 and
T3. T2 reaches the barrier at time 40, leaving T3 as the only run-
ning thread until time 60, when T3 reaches the barrier and all four
threads can continue. Therefore, every cycle saved by accelerating
T3 gets subtracted from the total execution time, up to the differ-
ence between the arrivals of T2 and T3 at the barrier.

2.1.4 Pipeline Stages

In a pipelined parallel program, loop iterations are split into stages
that execute on different threads. Threads executing other pipeline
stages wait for the slowest pipeline stages. There can be multiple
executers and multiple waiters. Figure 1(c) shows the execution of
apipelined program with three stages (S1-S3) on four threads. S1 is
scalable and runs on both T1 and T2. S2 is not scalable, so it runs on
a single thread (T3). S3 is shorter and runs on T4. The throughput
of a pipeline is the throughput of the slowest stage. Since S2 has a
smaller throughput than S1, S2’s input queue gets full and S1 has to
stall to produce work for S2 at the pace S2 can deal with it, which
introduces idle time on T1 and T2. On the other side, S3 is faster
than S2 and finishes each iteration before S2 can feed it more work
to do, which introduces idle time on T4. Therefore, T1, T2 and
T4 are all waiters on T3 at some point. If S2 could be accelerated
by a factor of 2, the pipeline throughput would be balanced (i.e.,
each stage would deal with one iteration every 5 time units) and
all idle time would be eliminated. Since S2 is not scalable, this
acceleration is only feasible with higher single-thread performance
on T3. Note that only accelerating the actual slowest stage improves
performance. Accelerating any other stage does not. Also note that
the best way to accelerate a scalable stage is to add more threads
(cores) to work on it.

From these examples, we can conclude that accelerating the
bottlenecks that are making other threads wait is likely to improve
multithreaded program performance.



2.2 How Bottlenecks Change Over Time

Let’s first consider a simple example, Program 1, where elements
X are moved from linked list A to linked list B. Removal from A
and insertion into B are protected by critical sections to avoid races
that could corrupt the lists. The amount of work performed inside
each of those critical sections varies over time, because list A is
shrinking while list B is growing. Figure 2 shows that contention
(i.e. the number of threads waiting to enter each critical section)
with 32 threads changes as follows: in the first phase, critical
section A is the bottleneck, while in the second phase, critical
section B becomes the bottleneck. Successful acceleration of this
program at runtime requires dynamic identification of which code
is the current critical bottleneck and then running it on a fast core.

Program 1 Example of time-variant critical sections

A=full linked list; B=empty linked list
repeat
Lock A
Traverse list A
Remove X from A
Unlock A
Compute on X
Lock B
Traverse list B
Insert X into B
Unlock B
until A is empty
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Figure 2. Contention for each critical section on Program 1.

Similar examples exist in important real-life workloads. For ex-
ample, the most contended critical section in the widely used mysq!/
database changes over short periods of time. The two most con-
tended critical sections in mysgl/ with the OLTP-nontrx input set are
LOCK _open and LOCK _log. LOCK _open is used to ensure mutual
exclusion while opening and closing tables in the open_table and
close_thread_tables functions. LOCK _log is used to protect access
to the log file, which happens in the MYSQL_LOG: :write function.

Figure 3 shows contention for LOCK _open and LOCK _log over
the first 8M cycles of mysql with 16 threads (the optimal number of
threads) while being driven by SysBench [3] with the OLTP-nontrx
input set® (mysql-3 in our benchmark set, Table 6). The graph shows
three clearly different phases: A) the initial use of LOCK _log by ev-
ery thread, B) the heavy use of LOCK _open while all threads simul-
taneously want to open the tables they need, C) the steady state pe-
riod where transactions continue executing and LOCK _log is usu-
ally the most contended, but LOCK _open sporadically gets highly
contended (e.g., see arrows around 4.8Mcycles and 7.7Mcycles).
This last phase continues for the rest of the program: the most con-
tended lock changes intermittently for the duration of this phase.
The temporal behavior of the critical sections depends entirely on
the database operations that are executed, i.e., the input set. For ex-
ample, with the OLTP-complex input set, LOCK _open gets highly
contended even more often.

3 SysBench is a widely used multi-threaded benchmark to measure system
and database performance.
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Figure 3. Most contended critical sections on mysql.

Previously proposed ACS [36] can accelerate only one critical
section at a time on a single large core (or two critical sections on
a 2-way SMT large core, but this reduces the benefit of acceler-
ation due to resource sharing between SMT threads). When there
are multiple critical sections contending to be accelerated, ACS dis-
ables acceleration of critical sections that are less frequent, in order
to avoid false serialization (i.e., serialized execution of different
critical sections at the large core). Periodically (every 10M instruc-
tions in [36]), ACS re-enables acceleration of all critical sections,
allowing for some false serialization while it relearns which criti-
cal sections should be disabled. This mechanism works well when
contention for critical sections is stable for long periods but it is
suboptimal for applications like mysql, because it ignores the fre-
quent changes on which critical section is currently the most limit-
ing bottleneck, as shown in Figure 3. In addition, ACS is specific to
critical sections and cannot handle other types of bottlenecks such
as barriers and slow pipeline stages.

Our goal is to design a mechanism that identifies at any given
time which bottlenecks of any type are currently limiting perfor-
mance, and accelerates those bottlenecks.

3. Bottleneck Identification and Scheduling

3.1 Key Insight

The benefit of parallel computing comes from concurrent execution
of work; the higher the concurrency, the higher the performance.
Every time threads have to wait for each other, less work gets done
in parallel, which reduces parallel speedup and wastes opportunity.
To maximize performance and increase concurrency, it is pivotal
to minimize thread waiting as much as possible. Consequently, a
large amount of effort is invested by parallel programmers in re-
ducing bottlenecks that can lead to thread waiting. For example,
programmers spend an enormous amount of effort in reducing false
sharing, thread synchronization, thread load imbalance, etc. Previ-
ous research on computer architecture also targets thread waiting,
e.g., transactional memory [12], primitives like test-and-test-and-
set [31], lock elision [29], speculative synchronization [24], etc.
‘We use this conventional wisdom —that reducing thread waiting im-
proves performance- to identify the best bottlenecks for accelera-
tion. Our key idea is thus simple: measure the number of cycles
spent by threads waiting for each bottleneck and accelerate the bot-
tlenecks responsible for the highest thread waiting cycles.

Our proposal, BIS, consists of two parts: identification of criti-
cal bottlenecks and acceleration of those bottlenecks.

3.2 Identifying Bottlenecks

Identification of critical bottlenecks is done in hardware based on
information provided by the software. The programmer, compiler
or library assigns a unique bottleneck ID (bid) to each potential se-
rializing bottleneck, and encapsulates the bottleneck code between
BottleneckCall and BottleneckReturn instructions. Using these in-
structions, the hardware keeps track of the bottlenecks and which
hardware threads (core ID and SMT context) they execute on.



BottleneckCall bid, targetPC
targetPC: while cannot acquire lock targetPC:
BottleneckWait bid

. enter barrier
acquire lock

release lock

BottleneckReturn bid exit barrier

(a) Critical section (b) Barrier

BottleneckCall bid, targetPC

code running for the barrier

while not all threads in barrier
BottleneckWait bid

BottleneckReturn bid

while not done
BottleneckCall bid, targetPC

targetPC: while empty queue

BottleneckWait prev_bid
dequeue work
do the work ...
while full queue

BottleneckWait next_bid
enqueue next work
BottleneckReturn bid

(c) Pipeline

// previous stage
// caused the waiting

// next stage
// caused the waiting

Figure 4. Modifications to code implementing bottlenecks.

To identify which bottlenecks cause thread waiting, we use a
new instruction BottleneckWait. The purpose of this instruction is
twofold: it implements waiting for a memory location to change
(similarly to existing instructions like mwait in x86 [17]), and it al-
lows the hardware to keep track of how many cycles each thread
is waiting for each bottleneck. Typically, when threads are waiting
for a bottleneck, they are waiting for the value of a particular mem-
ory location watch_addr to satisfy a condition. For example, for
critical sections, watch_addr can be the lock address; for barriers it
can be the address of the counter of threads that have reached the
barrier; and for pipeline stages it can be the address of the size of
the queue where work quanta are read from [37]. In most cases bid
can be the same as watch_addr, but we separate them to provide the
flexibility required for some implementations, e.g. MCS locks [25].
Table 1 summarizes the format and purpose of the new instructions
required by BIS.

BottleneckCall bid, targetPC

Marks the beginning of the bottleneck identified by bid and calls the bottleneck
subroutine starting at targetPC

BottleneckReturn bid

Marks the end of the bottleneck identified by bid and returns from the bottleneck
subroutine

BottleneckWait bid[, watch_addr|, timeout]]

Waits for a maximum of timeout cycles for the content of memory address
watch_addr associated with bottleneck bid to change, while keeping track of the
number of waiting cycles

Table 1. ISA support for BIS.

The new instructions required by BIS do not affect the seman-
tics or the implementation of the bottlenecks and can be easily
added to any existing bottleneck implementation. The compiler en-
capsulates potential bottlenecks into functions using function out-
lining [40] and inserts BottleneckCall, BottleneckReturn and Bot-
tleneckWait instructions. Figure 4 shows the use of these instruc-
tions for critical sections, barriers and pipeline stages. Since pro-
gramming primitives that become bottlenecks are usually imple-
mented inside libraries, the changes can be hidden so that the pro-
grammer does not need to change the program.

We track waiting cycles for each bottleneck, and identify the
critical bottlenecks with low overhead in hardware using a Bottle-
neck Table (BT). Each BT entry corresponds to a bottleneck and
includes a thread waiting cycles (TWC) field. TWC is computed
by aggregating the number of waiters on the bottleneck (i.e., the
number of threads currently running a BottleneckWait instruction)
over time. The exact computation is described in Sections 3.5.1
and 3.5.2. The number of waiters is another field in the BT entry,
and is incremented when a BottleneckWait instruction starts exe-
cuting for that bid and decremented when the BottleneckWait in-
struction commits, i.e., after the wait for the bottleneck ends. The
Bottleneck Table contains logic to identify the most critical bottle-
necks, i.e. the entries with top N highest thread waiting cycles. We
provide more details about the implementation of the BT in Sec-
tion 3.5.2.
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3.3 Accelerating Bottlenecks

There are multiple ways to accelerate a bottleneck, e.g. increasing
core frequency [5], giving a thread higher priority in shared hard-
ware resources [9], or migrating the bottleneck to a faster core with
a more aggressive microarchitecture or higher frequency [26, 36].
The bottleneck identification component of BIS can work with any
of these schemes. As an example, we show how our identification
mechanism can use the fast/large cores of an ACMP as fine-grain
hardware-controlled bottleneck accelerators, and the slow/small
cores for running the remaining parallel code. We first assume a
single large core context and in Section 3.4 we extend the design to
multiple large core contexts.

When the BT updates thread waiting cycles (TWC), bottlenecks
with TWC greater than a threshold are enabled for acceleration and
the rest are disabled.*

When a small core encounters a BottleneckCall instruction, it
checks whether or not the bottleneck is enabled for acceleration.
To avoid accessing the global BT on every BottleneckCall, each
small core is augmented with an Acceleration Index Table (AIT)
that caches the bid and acceleration enable bit of bottlenecks.® If
a bid is not present in the AIT, it is assumed to be disabled for
acceleration. If the bottleneck is disabled for acceleration, the small
core executes the bottleneck locally. If acceleration is enabled, the
small core sends a bottleneck execution request to the large core
and stalls waiting for a response.

When the large core receives a bottleneck execution request
from a small core, it enqueues the request into a new structure
called Scheduling Buffer (SB). Each SB entry has: bid, originating
small core/hardware thread ID, target PC, stack pointer and thread
waiting cycles (TWC, copied from the BT entry). The SB works
as a priority queue based on TWC: the first bottleneck that runs
on the large core is the oldest instance of the bottleneck with the
highest TWC. When the large core executes the BottleneckReturn
instruction, it sends a BottleneckDone signal to the small core.
On receiving BottleneckDone, the small core continues executing
the instruction after the BottleneckCall. As we will explain in
Section 3.3.2, the large core may also abort the request while it
is on the SB. If that happens, the large core removes the request
from the SB and sends a BottleneckCallAbort signal to the small
core. On receiving BottleneckCallAbort, the small core executes
the bottleneck locally.

3.3.1 Threads Waiting on the Scheduling Buffer

A thread executing a BottleneckCall instruction that was sent to
the large core and is waiting on the SB also incurs thread waiting
cycles that must be attributed to the bottleneck. To account for these
waiting cycles, when a bottleneck execution request is enqueued
into the SB, the large core sends an update to the BT, incrementing
waiters. It also increments a new field waiters_sb, which separately

4 A threshold of 1024 works well for our workloads.

5When a bottleneck gets enabled or disabled for acceleration, the BT
broadcasts the updates to the AITs on all small cores.




keeps track of the number of waiters on the Scheduling Buffer
for purposes we explain in Section 3.3.2. When the bottleneck
execution request is dequeued from the SB, to be executed or
aborted, the large core updates the BT, decrementing waiters and
waiters_sb.

3.3.2 Avoiding False Serialization and Starvation

Since multiple bottlenecks can be scheduled on a large core, a
bottleneck may have to wait for another bottleneck with higher
priority (i.e. higher thread waiting cycles) for too long, while it
could have been executing on the small core. This problem is
called false serialization® and BIS mitigates it by aborting a request
enqueued on the SB if the bottleneck: (a) does not have the highest
thread waiting cycles in the SB, and (b) would be ready to run on
its original small core. A bottleneck is considered ready to run if no
other instance of that bottleneck is currently executing and all the
waiters are on the SB. This situation results in unnecessary delaying
of all those waiters and can be easily detected when the BT is
updated. To perform this detection, each BT entry keeps the number
of executers (incremented by BottleneckCall and decremented by
BottleneckReturn), the number of waiters (incremented while a
BottleneckWait instruction is executing or a bottleneck is waiting
on the SB), and the number of waiters on the SB (waiters_sb,
incremented while a request is waiting on the SB). If executers
is zero and waiters is non-zero and equal to waiters_sb, the BT
sends a BottleneckReady signal to the SB. Upon receiving this
signal, the SB dequeues the oldest request for the bottleneck and
sends a BottleneckCallAbort to the originating small core. This
mechanism also prevents starvation of requests in the SB. As a
failsafe mechanism to avoid starvation, the SB also aborts requests
that have been waiting for more than 50K cycles.

3.3.3 Preemptive Acceleration

Bottleneck instances can vary in length. Since our mechanism uses
history to decide whether or not to accelerate a bottleneck, it is
possible for a long instance to get scheduled on a small core and
later become responsible for high thread waiting cycles. To fix this
problem, we introduce a preemptive mechanism: if upon updating
thread waiting cycles, the BT detects that a bottleneck running on a
small core has become the bottleneck with the highest thread wait-
ing cycles, the bottleneck is shipped to the large core. BT sends a
preempt signal to the small core informing it to stall execution, push
the architectural state on the stack and send a request to the large
core to continue execution. The large core pops the architectural
state from the stack and resumes execution until BottleneckReturn.
Acceleration of barriers relies on this preemptive mechanism.

3.4 Support for Multiple Large Core Contexts

Our mechanism can scale to multiple large cores or a large core
with multiple hardware contexts (Simultaneous Multithreading,
SMT) with only three modifications:

First, each large core has its own Scheduling Buffer. SMT con-
texts at a large core share the Scheduling Buffer but execute differ-
ent bottlenecks because otherwise they would wait for each other.

Second, each bottleneck that is enabled for acceleration is as-
signed to a fixed large core context to preserve cache locality and
avoid different large cores having to wait for each other on the same
bottlenecks. To that effect, each BT entry and Acceleration Index
Table entry is augmented with the ID of the large core the bottle-
neck is assigned to. If there are N large core contexts, the Bottle-
neck Table assigns each of the top N bottlenecks to a different large
core context to eliminate false serialization among them. Then, the
rest of the bottlenecks that are enabled for acceleration are assigned
to a random large core.

6 False serialization can also introduce deadlocks on a deadlock-free pro-
gram [36].

227

Third, the preemptive mechanism described in Section 3.3.3 is
extended so that in case a bottleneck scheduled on small cores (a)
becomes the top bottleneck, and (b) its number of executers is less
than or equal to the number of large core contexts, the BT sends
signals to preemptively migrate those threads to the large cores.
This mechanism allows acceleration on N large core contexts of
the last N threads running for a barrier.

3.5 Implementation Details
3.5.1 Tracking Dependent and Nested Bottlenecks

Sometimes a thread has to wait for one bottleneck while it is ex-
ecuting another bottleneck. For example, in a pipelined workload,
a thread executing stage S2 may wait for stage S1. Similar situa-
tions occur when bottlenecks are nested. For example, a thread T1
is running B1 but stalls waiting for a nested bottleneck B2. Con-
currently, T2 also stalls waiting for B1, which means it is indirectly
waiting for B2. In these scenarios, the thread waiting cycles should
be attributed to the bottleneck that is the root cause of the wait, e.g.,
waiting cycles incurred by T2 should not be attributed to bottleneck
B1 which is not really running, but to bottleneck B2.

In general, to determine the bottleneck Bj that is the root cause
of the wait for each bottleneck Bi, we need to follow the depen-
dency chain between bottlenecks until a bottleneck Bj is found not
to be waiting for a different bottleneck. Then, the current number
of waiters for Bi, i.e. the required increment in TWC, is added to
the TWC for Bj. To follow the dependency chain we need to know
(a) which threads is executing a bottleneck and (b) which bottle-
neck, if any, that thread is currently waiting for. To know (a), we
add an executer_vec bit vector on each BT entry (one bit per hard-
ware thread) that records all current executers of each bottleneck
(set on BottleneckCall and reset on BottleneckReturn). To know
(b), we add a small Current Bottleneck Table (CBT) associated
with the BT and indexed with hardware thread ID that gives the bid
that the thread is currently waiting for (set during the execution of
BottleneckWait, or zero at all other times). To summarize, the BT
updates TWC for each bottleneck Bi with the following algorithm:
foreach Bi in BottleneckTable:

B = Bi; done = false
while (not done):
=B
randomly picked Executer of B // uniformly distribute TWC
CurrentBottleneck(E)
ne = (B == 0) or // Bj is running or
(B == Bj) // waiting for another instance of itself

TWC(Bj) += waiters(Bi)

Bj
E
B
do:

The basic idea of the algorithm is to follow the dependence
chain between bottlenecks until a bottleneck Bj is found not to be
waiting for a different bottleneck. This algorithm is also applicable
when there are no dependencies, i.e. the loop will execute once
and will result in Bj = Bi. Note that the algorithm is not exact
and only attempts to assign thread waiting cycles to a bottleneck
that is actually running and making other threads wait, so that if
that bottleneck were accelerated, the cycles spent by other threads
waiting would also be reduced. The computation of TWC does not
need to be perfect because BIS is solely for performance and does
not affect correctness.

3.5.2 Bottleneck Table

The new instructions update the Bottleneck Table after committing
and off the critical path of execution. Table 2 describes each BT
entry. When a BottleneckCall or BottleneckWait instruction is exe-
cuted with a bid that is not in the BT, a new entry is inserted in the
BT. Since BIS is solely for performance and not for correctness,
the BT only needs enough entries to track the major bottlenecks
in each phase of a program. Our studies (not included here due to
space constraints) show that a BT with 32 entries is sufficient for
our workloads.



[ Field [ Description |
bid Bottleneck ID
pid Process ID

executers Current number of threads that are running the bottleneck, i.e.,
executing between a BottleneckCall and a BottleneckReturn
Bit vector of threads executing the bottleneck, each bit set on

BottleneckCall and reset on BottleneckReturn

executer_vec

waiters Current number of threads that are waiting for the bottleneck,
i.e. executing a BottleneckWait or enqueued on the SB

waiters_sb Current number of threads that are waiting on the SB, i.e. exe-
cuting a BottleneckCall that was sent to a large core

TWC Thread waiting cycles

large_core_id ID of the large core assigned for acceleration

Table 2. Bottleneck Table entry.

We implement the BT as an associative cache. The replacement
algorithm evicts the entry with the smallest thread waiting cycles.
We update thread waiting cycles for each bottleneck by increment-
ing it by the number of waiters every cycle (for practicality we add
32 * number of waiters every 32 cycles). We halve the thread wait-
ing cycles for all entries every 100K cycles to allow for the replace-
ment of stale entries. We find that a centralized BT structure is not a
bottleneck, however, if need arises, the BT can be partitioned with-
out much effort using the principles of a distributed directory.

3.5.3 Hardware Cost

Figure 5 shows the location of the new structures required by BIS
on an ACMP, and Table 3 describes their storage cost, which is
only 18.7 KB for a CMP with 2 large cores and 56 small cores
(area budget of 64). The storage cost for a CMP with 2 large cores
and 120 small cores (area budget of 128) would be 39.6 KB.

Small Core

AT

* On-chip interconnect *

Small Core

AT

Large Core

SB

BT —CBT

Figure 5. Hardware structures for BIS.

3.5.4 Handling Interrupts

The Operating System may interrupt the cores, e.g., on time quan-
tum expiration or for I/O. If a small core gets an interrupt while
waiting for a large core to execute a bottleneck, it does not ser-
vice the interrupt until a BottleneckDone or BottleneckCallAbort
is received. If a small core gets an interrupt while executing a Bot-
tleneckWait instruction, the BottleneckWait instruction is forced
to finish, which removes the waiter from the BT, but it is reex-
ecuted after returning from the interrupt. If a large core gets an
interrupt while accelerating a bottleneck, it aborts all bottlenecks
in its Scheduling Buffer, finishes the current bottleneck, and then
services the interrupt.

3.5.5 Transfer of Cache State to the Large Core

A bottleneck executing remotely on the large core may require data
that resides in the small core, thereby producing cache misses that
reduce the benefit of acceleration. Data Marshaling [35] (DM) has
been proposed to reduce these cache misses, by identifying and
marshaling the cache lines required by the remote core. It is easy to
integrate DM with our proposal and we evaluate our proposal with
and without DM in Section 5.4.

3.5.6 Compiler Support

The compiler can trivially convert bottlenecks that start and end in
the same scope to use BottleneckCall/BottleneckReturn. Complex
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bottlenecks spanning multiple functions or modules may require
programmer intervention and certainly BIS may not be applicable
when not even the programmer can perform function outlining on
the bottlenecks. A more flexible ISA with two separate instructions
BottleneckBegin and BottleneckEnd to delimit bottlenecks without
encapsulating them in functions can expand the applicability of BIS
at the expense of potentially higher overheads, but we have not
explored it. The consequences of failing to mark code segments
as potential bottlenecks depend on their actual criticality. There is
no penalty for failing to mark non-critical bottlenecks. However, if
critical bottlenecks are not marked, BIS misses the opportunity to
improve performance. Marking too many non-critical bottlenecks
does not significantly reduce performance because the Bottleneck
Table retains only the currently most critical bottlenecks.

We have targeted same-ISA ACMPs. However, BIS could be
extended to heterogeneous-ISA ACMPs by including two binary
implementations for each bottleneck in the executable image, one
to be executed on the small core and the other to be executed on the
large core. This is part of our future work.

3.5.7 Support for Program Tuning

BIS can increase programmer productivity by providing feedback
to programmers about the most critical bottlenecks. Programmers
can then decide which bottlenecks to optimize to get the best
results from their effort. We propose adding a set of performance
counters to the BT to store bid and cumulative thread waiting cycles
(TWC) for the bottlenecks with highest TWC. These counters can
be accessed by tools such as Vtune and Intel Parallel Studio [18] to
guide the programmer. Due to space limitations we do not describe
the structure and the interface, but these are straightforward since
the BT already has the required information.

4. Experimental Methodology

We use an x86 cycle-level simulator that models symmetric and
asymmetric CMPs. Symmetric CMPs (SCMPs) consist of only
small cores. The small in-order cores are modeled after the Intel
Pentium processor and the fast cores are modeled after the Intel
Core 2 architecture. Details are shown in Table 4. We model all
latency overheads associated with our mechanism faithfully. We
evaluate our proposal on different processor configurations with
equal area budget. We compare our proposal to previous work,
summarized in Table 5. SCMP and ACMP use different thread
scheduling policies for non-pipelined and pipelined workloads. We
apply ACS and MC-ACS only to non-pipelined workloads, while
FDP only applies to pipelined workloads by design. BIS is general
and applies to both. Our evaluation is based on the 12 workloads
shown in Table 6, which we simulate to completion. We use mysq!
with three different input sets because (a) mysql is a widely used
commercial workload, and (b) its behavior significantly depends
on the input set.

5. Evaluation
5.1 Single Large Core

It is difficult to determine before runtime the optimal number of
threads (and this number varies dynamically), thus it is common
practice to run applications with as many threads as available
cores [16, 28]. On applications that are not I/O-intensive, this pol-
icy can maximize resource utilization without oversubscribing the
cores, but may result in inferior performance if the application per-
formance peaks at fewer threads than the number of cores. Thus,
we evaluate two situations: number of threads equal to the number
of cores and optimal number of threads, i.e., the number of threads
at which performance is maximum. Table 7 summarizes the aver-
age speedups of BIS over other techniques in both situations for
different area budgets.



[ Structure [[ Purpose [ Location and entry structure (field sizes in parenthesis) [ Cost |
Bottleneck Table (BT) To decide which bottlenecks are more One global 32-entry table for the CMP. Each entry has 192 bits: bid(64), pid(16), 768 B
critical and where to accelerate them executers(6), executer_vec(64), waiters(6), waiters_sb(6), TWC(24), large_core_id(6)
Current Bottleneck Table To help track the root cause of thread wait- Attached to the BT, 64-entries. Each entry has 64 bits, the bid of the bottleneck the 512B
(CBT) ing on nested or dependent bottlenecks thread is waiting for, and is indexed by hardware thread ID.
Acceleration Index Ta- To reduce global accesses to BT to find if | One 32-entry table per small core. Each entry has 66 bits: bid(64), enabled (1), large 144KB
bles (AIT) a bottleneck is enabled for acceleration core ID (1). Each AIT has 264 bytes.
Scheduling Buffers (SB) To store and prioritize bottleneck execu- One 56-entry buffer per large core. Each entry has 222 bits: bid(64), small core ID (6), 3.1 KB
tion requests on each large core target PC(64), stack pointer (64), thread waiting cycles (24). Each SB has 1554 bytes.
Total 18.7KB

Table 3. Description of hardware structures for BIS and storage cost on a 56-small-core, 2-large-core CMP.

Small core 2-wide, 5-stage in-order, 4GHz, 32 KB write-through, 1-cycle, 8-way, separate I and D L1 caches, 256KB write-back, 6-cycle, 8-way, private unified
L2 cache
Large core 4-wide, 12-stage out-of-order, 128-entry ROB, 4GHz, 32 KB write-through, 1-cycle, 8-way, separate I and D L1 caches, IMB write-back, 8-cycle,
8-way, private unified L2 cache
Cache coherence MESI protocol, on-chip distributed directory, L2-to-L2 cache transfers allowed, 8K entries/bank, one bank per core
L3 cache Shared 8MB, write-back, 16-way, 20-cycle
On-chip interconnect Bidirectional ring, 64-bit wide, 2-cycle hop latency
Off-chip memory bus 64-bit wide, split-transaction, 40-cycle, pipelined bus at 1/4 of CPU frequency
Memory 32-bank DRAM, modeling all queues and delays, row buffer hit/miss/conflict latencies = 25/50/75ns
CMP configurations with area equivalent to N small cores.
SCMP N small cores
ACMP 1 large core and N-4 small cores, the large core always runs any single-threaded code
ACS 1 large core and N-4 small cores, the large core always runs any single-threaded code and accelerates critical sections as proposed in [36]
BIS L large cores and S=N-4*L small cores, one large core always runs any single-threaded code, 32-entry Bottleneck Table, N-entry Current Bottleneck
Table, each large core is equipped with an S-entry Scheduling Buffer, each small core is equipped with a 32-entry Acceleration Index Table
Table 4. Baseline processor configuration.
[ Mechanism [ Non-pipelined workloads [ Pipelined workloads |
SCMP One thread per core Best static integer schedule described in [37]
ACMP Serial portion on large core, parallel portion on all cores [5, 26] Best static integer schedule including large cores [34]
ACS Serial portion and critical sections on large core, parallel portion on small cores [36] Not used, because in our workloads it is more profitable to schedule
MC-ACS To compare to the best possible baseline, we extend ACS to multiple large cores by the large core/s to accelerate pipeline stages using FDP, as described
retrying once more the acceleration of falsely serialized critical sections on a different in [34], instead of critical sections within stages
large core before disabling their acceleration
FDP Not applicable (designed for pipelined workloads) Dynamic scheduling of all cores to stages described in [34]
BIS Our proposal
Table 5. Experimental configurations.
[ Workload [[ Description [ Source [ Input set [ #of Bottl. [ Bottleneck description
iplookup IP packet routing [39] 2.5K queries # of threads Critical sections (CS) on routing tables
mysql-1 MySQL server [1] SysBench [3] OLTP-complex 29 CS on meta data, tables
mysql-2 MySQL server [1] SysBench [3] OLTP-simple 20 CS on meta data, tables
mysql-3 MySQL server [1] SysBench [3] OLTP-nontrx 18 CS on meta data, tables
specjbb JAVA business benchmark [33] 5 seconds 39 CS on counters, warehouse data
sqlite sqlite3 [2] DB engine SysBench [3] OLTP-simple 5 CS on database tables
tsp Traveling salesman [20] 11 cities 2 CS on termination condition, solution
webcache Cooperative web cache [38] 100K queries 33 CS on replacement policy
mg Multigrid solver NASP [6] S input 13 Barriers for omp single/master
ft FFT computation NASP [6] T input 17 Barriers for omp single/master
rank Rank strings based on similarity to another string [37] 800K strings 3 Pipeline stages
pagemine Computes a histogram of string similarity Rsearch [27] 1M pages 5 Pipeline stages

Table 6. Evaluated workloads.

[ Num. of threads [[ Equal to number of cores |] Optimal |

| AreaBudget [[ 8 [ 16 [ 32 ] 64 [[ 8 [ 16 [ 32 | 64 |
SCMP -20 10 45 75 -20 10 37 43
ACMP 6.9 13 43 70 1.4 12 32 36
ACS/FDP 2.4 6.2 17 34 24 6.2 15 19

Table 7. Average speedups (%) of BIS over SCMP, ACMP and
ACS/FDP.

5.1.1 Number of Threads Equal to Number of Cores

Figure 6 shows speedups over a single small core for different
area budgets (measured in equivalent number of small cores). The
figure shows the speedups of SCMP, ACMP and ACS (for non-
pipelined workloads) or FDP (for pipelined workloads) and BIS.
Our proposal improves performance over ACMP and SCMP and
matches or improves over ACS/FDP on all benchmarks for an area
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budget of 32 cores. On average, it improves performance by 43%
over ACMP, 45% over SCMP and 17% over ACS/FDP. Three key
observations are in order.

First, as the number of cores increases, so does the
benefit of BIS. On average, BIS outperforms ACS/FDP by
2.4%16.2%/17%/34% for 8/16/32/64-core area budget. Recall from
Table 4 that the large core replaces 4 small cores, reducing the
maximum number of threads by 3 for ACMP and FDP (because
they run only one thread on the large core), and by 4 for ACS and
BIS (because they dedicate the large core for critical sections and
bottlenecks) with respect to SCMP. With a small area budget, this
loss of parallel throughput cannot be offset by the benefit of ac-
celeration because contention for bottlenecks is smaller at fewer
threads. Therefore, with a small area budget, BIS performs simi-
lar to ACS/FDP and underperforms SCMP (e.g. for an 8-core area
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Figure 6. Speedup over a single small core, x-axis is area budget (in equivalent small cores).

budget). As the area budget increases, the marginal loss of parallel
throughput due to the large core becomes relatively smaller, and
with more threads running, contention for serializing bottlenecks
increases. Therefore, the dynamic mechanisms that accelerate those
bottlenecks (ACS, FDP and BIS) start to prevail.

Second, with more threads, the benefit of BIS over ACS/FDP
increases on workloads where the critical bottlenecks change over
time (iplookup, all mysql, webcache, mg, ft and rank), because BIS
is better at choosing which bottlenecks to accelerate and quickly
adapts to changes. Additionally, both critical sections and barriers
are limiting bottlenecks in mg and ft at different times, and BIS
accelerates both types of bottlenecks, unlike ACS. On workloads
where the critical bottlenecks do not change over time (specjbb,
sqlite and tsp), BIS matches the performance of ACS. Pagemine
has two very similar non-scalable pipeline stages (the reduction
of local histograms into a global histogram) that are frequently
the limiting bottlenecks. Therefore, BIS with a single large core
is unable to significantly improve performance over FDP because
that would require both stages to be simultaneously accelerated.
However, BIS is able to improve performance when multiple large
cores are employed, as we will show in Section 5.2.

Third, BIS increases the scalability (the number of threads at
which performance peaks) of four of the workloads (all versions
of mysql and rank) beyond the already-improved scalability of
ACS/FDP over ACMP or SCMP. By accelerating bottlenecks more
effectively than previous proposals, BIS reduces contention and
thread waiting, allowing the workloads to take advantage of a larger
number of threads before performance gets limited by bottlenecks.

We conclude that BIS improves performance and scalability of
applications over ACS/FDP. As the area budget increases, so does
the performance benefit of BIS.

5.1.2 Optimal Number of Threads

Figure 7 shows the speedups of our proposal for different area bud-
gets with the optimal number of threads, relative to the ACMP con-
figuration. We determine the optimal number of threads for each
application-configuration pair by simulating all possible numbers
of threads and reporting results for the one that minimizes execu-
tion time. For example, the optimal number of threads for iplookup-
BIS on the 32-core area budget is 20.
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With an area budget of 8 cores, all benchmarks except sqlite
run with the maximum number of threads (8 for SCMP, 5 for
ACMP/FDP and 4 for ACS and BIS) and with low contention for
bottlenecks. Therefore, SCMP performs the best because the loss of
throughput on the configurations with a large core is greater than
the benefit of acceleration. The exception is sqlite, which becomes
critical-section limited at 4 threads and can take full advantage of
the acceleration mechanisms. Since sglife has only one dominant
critical section during the whole execution, both ACS and BIS
provide the same performance improvement. On average, ACS,
BIS and ACMP perform within 2% of each other.

With higher area budgets, the relative impact of running fewer
threads due to the presence of a large core becomes less signif-
icant, which progressively reduces the advantage of SCMP and
favors ACMP, ACS/FDP and BIS. On average, BIS outperforms
SCMP by 10%/37%/43%, ACMP by 12%/32%/36% and ACS/FDP
by 6.2%/15%/19% on a 16/32/64-core budget. As contention in-
creases, it becomes more important to focus the acceleration ef-
fort on the most critical bottlenecks. While BIS actively identifies
and accelerates the bottlenecks that are stopping more threads from
making progress, ACS disables acceleration of critical sections that
suffer from false serialization, even though such critical sections
can be causing the most thread waiting. Additionally, BIS is more
adaptive to changes in the important bottlenecks, while both ACS
and FDP maintain the decisions they make for a fixed and relatively
long period (10Mcycles for ACS and until the next major phase
change for FDP). As a result of these two factors, BIS significantly
outperforms ACS and FDP.

The only benchmark where BIS does not outperform ACS is tsp
because BIS accelerates many more bottlenecks than ACS, increas-
ing core-to-core cache misses. Since those bottlenecks are only 52-
instruction long on average, the benefit of accelerating them does
not overcome the cache miss penalty, which causes BIS’ perfor-
mance to be lower than that of ACS. BIS is able to improve perfor-
mance of zsp over ACS with the Data Marshaling mechanism [35]
that reduces cache misses incurred by the bottlenecks, as we show
in Section 5.4.

We conclude that even with optimal number of threads, BIS
improves performance and its benefit over all other mechanisms
increases as the number of cores (area budget) increases.
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Figure 8. Speedup with multiple large core contexts, normalized to ACMP with a single large core (LC: large core).

5.2 Multiple Large Core Contexts

We first explain the trade-offs of multiple large cores with two ex-
amples. Figure 8(a) shows the performance of iplookup with op-
timal number of threads as we increase the number of large cores
while keeping the same area budget. The figure also shows results
for large cores with 2-way Simultaneous Multithreading. Iplookup
executes a large number of independent critical sections that are
contended. Therefore, it can significantly benefit from extra large
cores that can simultaneously accelerate more of those equally-
critical bottlenecks. The performance improvement of BIS over
ACMP steadily grows from 10% for one large core to 25% with
three large 2-way SMT cores. On the other hand, Figure 8(b) shows
that for mysql-2 additional large cores decrease performance with
MC-ACS or BIS because the benefit of simultaneously acceler-
ating multiple critical sections that are not heavily contended is
much smaller than the cost of reducing the number of threads that
can be executed concurrently to accommodate the additional large
cores. The conclusion is that the best number of large cores dedi-
cated to bottleneck acceleration significantly depends on the appli-
cation and number of threads. Therefore, achieving the best perfor-
mance requires either software tuning to tailor bottleneck behavior
to what the available hardware configuration can efficiently accel-
erate, or building reconfigurable “large” cores that can either run
more threads with lower performance or a single thread with higher
performance. Both are interesting avenues for future work.

Figure 9 shows the geometric mean of speedups for all of
our benchmarks on different core configurations with the same
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area budget, ranging from an area budget of 8 small cores to
64 small cores. The workloads run with the optimal number of
threads for each configuration. An area budget of 8 small cores
only allows for a single-large-core ACMP configuration, and on
average there is not much contention for bottlenecks that either
ACS/FDP or BIS can provide benefit for. With an area budget of 16
cores, performance decreases with additional large cores because
the benefit of acceleration on the extra large cores is not enough to
compensate for the loss of parallel performance due to the reduced
number of threads. When the area budget is 32 cores, the average
performance benefit of BIS remains stable for different numbers of
large cores. With an area budget of 64 cores, there is no loss of
parallel throughput with 2 or 3 large cores, because Figure 6 shows
that performance peaks at fewer than 40 threads on all workloads.
Therefore, BIS’ performance increases by 3.4% and 6% with 2 and
3 large cores, respectively, with respect to a single large core. We
conclude that having more large cores increases the benefit of BIS
at large area budgets.

Having SMT on the large core does not change BIS’ perfor-
mance by more than 2% in any configuration. The trade-off is
that a 2-way SMT large core can accelerate two different bottle-
necks concurrently, but the two hardware threads share all proces-
sor resources and therefore the acceleration benefit of each thread is
lower than if the thread were running alone on the large core. Two
effects reduce the acceleration benefit when SMT is used on the
large core. First, since local data is frequently accessed inside criti-
cal sections and pipeline stages and stays resident in the cache, our
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Figure 9. Speedup with multiple large core contexts, normalized to ACMP with a single large core (LC: large core).

workloads rarely need to access main memory (average L3 MPKI
is 0.79 on BIS with the 32-core budget), hence SMT’s main benefit
on an out-of-order core, cache miss latency tolerance, rarely gets
exercised. Second, tight resource sharing between threads degrades
performance of each thread. We conclude that using SMT to in-
crease the number of large core contexts available for bottleneck
acceleration is not useful for BIS.

5.3 Analysis

Figure 10 shows the normalized execution time spent accelerating
code segments on and off the critical path for ACS/FDP and BIS
on a 32-core area budget running 28 threads. To avoid changing
the critical path on the fly due to acceleration, we disable accelera-
tion and only perform bottleneck identification in this experiment.
Then the actual critical path is computed off-line and compared
to the code segments identified as bottlenecks by ACS/FDP and
BIS. We define coverage as the fraction of the critical path that
is actually identified as bottleneck. BIS matches or improves cov-
erage of ACS/FDP on every benchmark and the average coverage
of BIS (59%) is significantly better than the average coverage of
ACS/FDP (39%). We define accuracy as the fraction of execution
time of identified bottlenecks that is actually on the critical path.
The average accuracy of BIS (73.5%) is slightly better than that of
ACS/FDP (72%). We conclude that the significantly better cover-
age and similar accuracy of BIS vs. ACS/FDP results in the perfor-
mance improvements we showed in Sections 5.1 and 5.2.
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Figure 10. Bottleneck identification on and off the critical path.

Table 8 shows the number of dynamic instances of annotated
bottlenecks that are executed and identified for acceleration, along
with their average length in number of instructions. Bottlenecks

are most numerous and only 52-instruction long on #sp, which in-
creases the overhead since even a single cache-to-cache transfer
due to migration introduces a penalty in the same order of magni-
tude as the benefit of acceleration, resulting in a performance loss
unless Data Marshaling is used, as we will show next.

[ Annotated Bottlenecks [ Average Length
Workload | Executed | Tdentified | (Instructions)

iplookup 19184 888 (4.6%) 2130
mysql-1 18475 9342 (50.6%) 391
mysql-2 11761 1486 (12.6%) 378
mysql-3 25049 2593 (10.4%) 453
specjbb 1652 1008 (61.0%) 1468

sqlite 174 116 (66.7%) 29595
tsp 31932 | 12704 (57.9%) )
webcache 15118 2099 (13.9%) 1908

mg 516 515 (99.8%) 11585

ft 228 227 (99.6%) 39804
rank 3003 1024 (34.1%) 1800
pagemine 5005 1030 (20.6%) 1160

Table 8. Bottleneck characterization.

5.4 Interaction with Data Marshaling

Bottlenecks that are accelerated on a large core may need to ac-
cess data that was produced in the code segment running on the
small core before execution migrated to the large core. These inter-
segment memory accesses become cache misses that may limit the
performance benefit of acceleration. To reduce these cache misses,
Suleman et al. [35] proposed Data Marshaling (DM), which can
be easily integrated with BIS. DM identifies and marshals the data
needed by a bottleneck to the large core using compiler and hard-
ware support. The compiler uses profiling to find the store instruc-
tions that generate the data to be produced in the small core and
consumed by a bottleneck. The hardware keeps track of the cache
lines modified by those special store instructions and pushes those
cache lines into the large core’s cache as soon as the bottleneck is
shipped to the large core. When the bottleneck starts executing, af-
ter waiting in the Scheduling Buffer, the inter-segment data is likely
to be available in the large core’s cache.

Figure 11 shows performance of BIS and ACS/FDP with and
without DM on 32-core area budget with 28 threads, normalized
to ACMP. In general, DM improves ACS and BIS, but it improves
BIS more, because BIS migrates bottlenecks to a large core more
frequently than ACS. In particular, BIS underperforms ACS on tsp
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Figure 11. Speedup with and without Data Marshaling.

due to inter-segment cache misses, which are eliminated by DM,
which results in BIS+DM outperforming ACS+DM. On average on
the 32-core budget, BIS+DM improves performance by 5.2% over
BIS, while ACS+DM improves by 3.8% over ACS. We conclude
that BIS interacts positively with techniques that can reduce cache
misses incurred due to bottleneck acceleration.

6. Related Work

Our proposal is a comprehensive mechanism to identify and accel-
erate bottlenecks (using heterogeneous cores) in a multithreaded
program. To our knowledge, this is the first proposal that reduces
thread waiting caused by bottlenecks regardless of bottleneck type.
The mechanism is unique as it requires no significant programmer
support and uses the fast cores on the ACMP to accelerate the bot-
tlenecks. Most related to our work are previous proposals to reduce
the performance impact of bottlenecks and other techniques to ac-
celerate specific bottlenecks using heterogeneous cores.

6.1 Reducing the Impact of Bottlenecks

Removing or alleviating serializing bottlenecks has been a topic of
wide interest for decades. For example, test-and-test-and-set [31]
was proposed to reduce the serialization caused by thread commu-
nication. These primitives are only used at the start and the end of
the bottleneck (lock acquire/release). As such, they are orthogonal
to BIS since BIS accelerates the code inside the bottleneck.

Several mechanisms have been proposed to overlap execution
of bottlenecks as long as they do not modify shared data. The first
of these approaches is Transactional Memory (TM) [12], which tar-
gets critical sections. TM’s benefit heavily depends on bottlenecks
not having data conflicts, i.e. if two instances of a transaction have
a data conflict, TM cannot execute them in parallel. In contrast, BIS
speeds up bottlenecks regardless of their data access patterns. BIS
can also complement TM as it can be used to accelerate transac-
tions that cannot be overlapped due to their length or conflicts.

Other proposals like Speculative Lock Elision [29], Trans-
actional Lock Removal [30], and Speculative Synchronization
(SS) [24] can overlap the execution of non-conflicting instances
of the same critical section without requiring programmers to write
code using transactions. In addition to critical sections, SS can also
reduce the overhead of barriers by speculatively allowing threads to
execute past the barrier as long as there are no data conflicts. These
approaches fundamentally differ from BIS for four reasons. First,
they cannot hide the latency of bottlenecks that have data conflicts,
whereas BIS can accelerate such bottlenecks. Second, they best
apply to short bottlenecks as long bottlenecks complicate conflict
detection hardware and are more likely to conflict, while BIS can
accelerate arbitrarily long bottlenecks. Third, these techniques do
not take criticality of the bottleneck into account, which is a main
feature of BIS. Fourth, they are limited to particular types of bot-
tlenecks (e.g., these approaches cannot be applied to bottleneck
pipeline stages), whereas BIS is more general. BIS can comple-
ment these proposals by accelerating bottlenecks to which they are
not applicable.
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Previously proposed techniques [15, 37] to reduce load im-
balance among stages of a parallel pipeline do so by either re-
pipelining the workload via compiler/programmer support or by
choosing the thread-to-stage allocation to reduce imbalance. Their
performance benefit is limited because the decisions are coarse-
grain and they are unable to speedup stages that do not scale with
the number of cores. In BIS, we can leverage these previous mech-
anisms to manage our thread-to-core allocation but we also iden-
tify and accelerate the critical bottlenecks using a large core at a
fine granularity. Using the faster cores allows us to improve perfor-
mance even if the bottleneck pipeline stage does not scale.

In general, our proposal is complementary to mechanisms that
reduce the impact of bottlenecks. Evaluating their interactions is
part of our future work.

6.2 Accelerating Bottlenecks

Annavaram et al. [5] proposed to make the core running the se-
rial bottleneck faster using frequency throttling. Morad et al. [26]
proposed accelerating Amdahl’s serial bottleneck [4] using the fast
core of an ACMP while running the parallel phases on the small
cores. While accelerating the single-threaded bottleneck is prov-
ably beneficial for performance, it does not reduce serialization in
parallel portions of programs. We use their mechanism as a base-
line and provide significant performance improvement on top of it
by also accelerating bottlenecks in the parallel portions.

Suleman et al. [36] use the faster cores to accelerate critical sec-
tions. Their scheme differs from ours because (1) it is limited to
critical sections while BIS targets thread waiting for any bottleneck,
(2) it does not consider critical section criticality when deciding
which critical sections to accelerate while BIS prioritizes bottle-
necks that are predicted to be most critical, and (3) it only supports
a single large core (which can execute only a single bottleneck)
while BIS can schedule multiple bottlenecks for acceleration on
any arbitrary number of fast cores. The generality and fine-grained
adaptivity of BIS allow it to significantly outperform ACS, as we
showed in Section 5.

Meeting Points [8], Thread Criticality Predictors (TCP) [7] and
Age-Based Scheduling [22] try to reduce the overhead of barriers
by detecting and accelerating the threads which are likely to reach
the barrier last. Age-Based Scheduling uses history from the previ-
ous instance of the loop to choose the best candidates for acceler-
ation. Thus, their scheme is restricted to iterative kernels that have
similar behavior across multiple invocations. TCP uses a combi-
nation of L1 and L2 cache miss counters to predict which threads
are likely to arrive early at a barrier and slows them down to save
power, but it can also be used to guide acceleration of the thread
that is lagging. Meeting Points uses hints from the software to de-
termine which thread is lagging (thus likely to be a bottleneck). We
can leverage these schemes to enhance our bottleneck identification
mechanism, because they may be able to identify threads that need
acceleration before they start making other threads wait, allowing
their acceleration to start earlier and be more effective.

6.3 Critical Path Prediction

Hollingsworth [14] was the first to propose an online algorithm to
compute the critical path of a message-passing parallel program.
Fields et al. [10, 11] proposed a data- and resource-dependency-
based token-passing algorithm that predicts instruction criticality
and slack in single-threaded applications. In contrast, our approach
predicts criticality at the code segment (i.e., bottleneck) granularity
in multithreaded applications by only focusing on thread waiting.
Dependencies between instructions in a single-threaded application
and between bottlenecks in a multithreaded application are con-
ceptually different. While instructions obey well-defined data-flow
dependencies, bottlenecks have more complicated and dynamic de-
pendencies. For example, critical sections with the same lock can



execute in any order as long as they do not execute concurrently,
e.g., block A may wait for block B in one dynamic instance while
block B may wait for block A in another instance of execution,
depending on the timing of each thread’s execution. With many
threads, dependencies between bottlenecks become more compli-
cated and their execution order becomes less repeatable. Therefore,
we found that methods to predict instruction criticality in single-
threaded applications similar to Fields et al. [11] are not straight-
forwardly applicable to predict bottlenecks in multithreaded appli-
cations, although future work may find a way of doing it. Li et
al. [23] proposed an efficient off-line DAG-based algorithm to find
instruction-level criticality in multithreaded applications. Our prob-
lem is different in that it requires online prediction of critical bot-
tlenecks to enable their acceleration.

6.4 Coarse-Grain Thread Scheduling

Several proposals schedule threads to large cores of an ACMP at
coarse granularity, i.e. the operating system level. For example,
Saez et al. [32] proposed running on large cores the threads that
can make better use of them, according to a utility factor that con-
siders both memory-intensity and thread-level parallelism. Koufaty
et al. [19] proposed assigning a large core to the thread that is ex-
pected to have a larger speedup running on the large core, i.e. those
that have fewer off-core memory requests and fewer core front-
end stalls. In contrast, BIS does fine-grain code segment scheduling
in hardware, running only serial and parallel bottlenecks on large
cores, i.e. the portions of any thread that are adaptively identified
as performance limiters.

7. Conclusion

We propose Bottleneck Identification and Scheduling (BIS), the
first generalized mechanism to identify the most critical bottle-
necks that cause thread waiting on multithreaded applications and
to accelerate those bottlenecks using one or more large cores of
an ACMP. We show that BIS improves performance of a set of
bottleneck-intensive applications on average by 15% over ACS,
which is the state-of-the-art technique for critical section accelera-
tion, and FDP, a software technique to dynamically assign pipeline
stages to cores, on a 1-large-core, 28-small-core ACMP. The ben-
efit of BIS increases with the number of cores and BIS improves
scalability of 4 out of 12 workloads compared to ACS/FDP. We are
also the first to propose bottleneck acceleration using multiple large
cores and find that performance improves with multiple large cores
since there are independent bottlenecks that need to be simultane-
ously accelerated. We conclude that BIS provides a comprehensive
approach to fine-grain bottleneck acceleration on future ACMPs
that can help existing and future applications take advantage of a
larger number of cores while reducing programmer effort.
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