
Branch Classification: a New Mechanism for Improving Branch Predictor

Performance

Po-Yung Chang Eric Hao Tse-Yu Yeh* Yale Patt

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

Intel Corporation*

Santa Clara, CA 95051

Abstract

There is wide agreement that one of the most important

impediments to the performance of current and future

pipelined superscalar processors is the presence of con-

ditional branches in the instruction stream. Specula-

tive execution seems to be one solution of choice to the

branch problem, but speculative work is discarded if a

branch is mispredicted. Therefore, we need a very accu-

rate branch predictor; 9570 accuracy is not good enough.

This paper proposes branch classification to help im-

prove the accuracy of branch predictors. Branch clas-

sification allows an individual branch instruction to be

associated with the branch predictor best suited to pre-

dict its direction. Using this approach, a hybrid branch

predictor can be constructed such that each component

branch predictor predicts those branches for which it

is best suited. This paper suggests one classification

scheme, analyzes several branch predictors, and pro-

poses a hybrid branch predictor that achieves higher

prediction accuracy than any branch predictor previ-

ously reported in the literature.

Keywords: branch classification, branch predictor,

speculative execution, processor performance, super-

scalar.

1 Introduction

Branches can significantly reduce the performance of

pipelined processors if they interrupt the steady supply

of instructions to the instruction pipeline [4]. A branch

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
MICRO 27- 11/94 San Jose CA USA
0 1994 ACM 0-89791 -707-3/94/001 1..$3.50

predictor minimizes the number of pipeline st ails by pre-

dicting the direction of the branch and fetching the in-

structions from that path. Because all speculative work

beyond a branch must be thrown away if that branch

is mispredicted, a very accurate branch prediction algo-

rithm is important to a high-performance microproces-

sor,

If we ignore stalls such as cache misses and

bus confiicts, the branch penalty is defined as

C * ((l-p) * r * ipc), where C’ denotes the number of

cycles wasted due to a branch misprediction, p denotes

the prediction accuracy, T denotes the ratio of the num-

ber of branches over the number of total instructions,

and ipc denotes the average number of instructions that

are executed per cycle. For C=5 and r * ipc = 0.9, a

branch penalty of less than 10~0 requires a prediction

accuracy p of greater than 97.770.

We introduce branch classification as a technique that

can improve the accuracy of branch predictors. Using

one method of branch classification, we analyze several

branch predictors and propose hybrid predictors that

achieve higher accuracy than any branch predictors that

have previously been reported.

This paper is organized as follows: Section 2 presents

the concept of branch classification. Section 3 describes

a branch classification model, analyzes previously pro-

posed prediction schemes, proposes several new hybrid

branch prediction schemes, and presents simulation re-

sults. Section 4 provides some concluding remarks.

2 Branch Classification

Branch classification partitions a program’s branches

into sets or branch classes. The partitioning of

branches can be done statically and/or dynamically.

A good classification scheme partitions branches pos-

sessing similar dynamic behavior into the same branch

class; thus, once we understand the dynamic behavior

of a class of branches, we can optimize for this class.

22

For example, the compiler can try to eliminate hard-t~

predict branches or the hardware can special case the

handling of these branches (e.g. execute both paths of

the branch).

Branch classification can be used to maximize the pre-

diction accuracy obtained from a given hardware bud-

get. Prediction accuracy is increased by associating each

branch class with the most suitable predictor for that

class. For example, we could use a simple predictor

for predictable branches and dedicate more resources to

handle branches that are more difficult to predict.

3 Experiments

To collect the dynamic branch behavior, the com-

piler replaces the code that calculates the branch condi-

tions with function calls. Each of these functions calls

the branch predictor simulator to generate the branch

prediction and to update the state of the simulated

prediction hardware. Using this method, we can com-

pare the performance of various branch predictors on

a per-branch basis. The behavior of the program is

not changed because these functions return the actual

branch conditions; the program always executes down

the correct path. This approach, however, is not accu-

rate enough to fine-tune a real design. A more accurate

approach uses instrumented executable files to measure

per-branch prediction accuracy.

3.1 Benchmarks

The results presented in this paper are for the six in-

teger programs from the SPECint92 suite: espresso,

lisp, eqntott, compress, SC, and gee. Table 1

shows the training and testing data sets for each of these

benchmarks. Because eqntott and lisp are not pro-

vided with different data sets, they use inputs which are

not from the SPECint92 suite for training.

Benchmark Training Data Testing Data

008.espresso Cps bca

022.li deriv.cll nine queens

023.eqntott I bool. eq.2 int-pri-3.eqn 1
026.compress \ gcc source in

072.sc I loada2 I loadal

085.gcc I jump.i stint. i 1

Table 1: Training and Testing Data Sets of Benchmarks

1Common Lisp version of a symbolic derivative benchmark

writ ten by Vaughan Pratt.

227 boolean equations with 37 different variables

3.2 Branch Classification

In our experiment, branches are classified based on

their dynamic taken-rate collected by profiling as shown

in Table 2. Because this partitioning of branches is

done statically, we will refer to these branch classes as

static classes. In the following section, we will refer

to SC1, SC2, SC5, and SC6 branches as mostly-one-

direct ion branches and SC3 and SC4 branches as mixed-

direction branches. With this classification, we deter-

mine whether branches that have similar taken rates

have similar dynamic behavior and whether hybrid pre-

diction schemes based on this classification will be able

to outperform previously known predictors.

Classes I Descriptions I

-
L !

SC5 I 90% < ~r~br) <= 95%

SC6 ! 95% < Pr(br) <= 100%

Table 2: Static Classes

3.3 Previous Branch Prediction Work

Stahic branch prediction algorithms use information

gathered before program execution, such as branch op-

codes or profiles, to predict branch direction. The

simplest kind of branch prediction is to predict that

all conditional branches are always taken (as in Stan-

ford MIPS-X [1]), or always not-taken (as in Motorola

MC88000 [8]). Predicting all branches to be taken

achieves about 65~0 accuracy whereas predicting not-

taken achieves about 35% [3, 5, 9].

Dynamic branch prediction algorithms use hardware

to record branch execution history at run-time, and

predict future branch directions by studying their pre-

vious behavior. Many dynamic prediction methods

have ‘been studied [2, 7, 9, 10, 11]. One important

class, branch target buffers, uses fast hardware logic

to detect branches at an early stage of the instruction

pipeline, and predict the branch direction and target

address [9]. High branch prediction accuracies, about

85%-90%, have been reported for simple history bit and

counter-based schemes [9]. By keeping more history in-

formation, an even higher level of branch prediction ac-

curacy, about 90 Y0-95Y0, can be attained [6, 10, 11, 12].

To further improve prediction accuracy, McFarling [6]

proposed a new technique that combines two branch

predictors. His technique uses 2-bit up-down counters

to keep track of which predictor is currently more accu-

rate for each branch; the hybrid predictor then uses the

more accurate predictor for making its prediction.

In this paper, we introduce a new method for com-

bining branch predictors. Branches are partitioned into

different branch classes based on not only run-time in-

formation but also compile-time information. Our hy-

brid branch predictor then associates each branch class

with the most suitable predictor for that class. Fur-

thermore, our technique can combine the advantages of

several branch predictors.

3.4 Simulation Results

In this section, we will first show the advantages of

branch classification. We will then present the design

and performance of several hybrid branch predictors.

In our experiment, three different single-scheme

branch predictors are simulated: profile guided(PG), 2-

bit up-down counter (2bC), and the Two-Level Branch

Predictor. Three different implementations of the Two-

Level Branch Predictor are studied. They are the Per-

address Two-Level Branch Predictor using a set of pat-

tern history tables (PAs), the Global Two-Level Branch

Predictor using a set of pattern history tables (GAs),

and a modified GAg scheme (gshare [6]) that exclusive-

ORs the global history with the branch address to select

the appropriate pattern history table entry.

3.4.1 Advantages of Branch Classification

In our study, static branches with similar dynamic

taken-rates are grouped together. Because branches in

different classes have different dynamic behavior, the

optimal branch prediction scheme may be different for

each of these classes. In this section, we report and

analyze the performance of branch prediction schemes

on each static class to show the performance benefits of

branch classification.

● Analysis of the Mostly One-direction Branches

(SC1,SC2,SG5,SC6)

Figures 1, 2, and 3 show the average prediction ac-

curacy on integer benchmarks using the PAs, the

GAs, and the gshare schemes respectively. Each

curve shows the prediction accuracy for one im-

plementation cost. On each curve, as the branch

history length decreases by one, the number of pat-

tern history tables doubles. As shown in these fig-

ures, branch prediction schemes with short history

registers are effective in predicting the mostly-not-

taken branches (SC1). With the PAs scheme, a

long history is required to capture the odd occur-

rence of the dynamic behavior of the mostly-one-

direction branches; e.g. a repeating branch history

pattern with a leading 1 followed by ninety-nine 0s

(1% taken-rate) will require 100 branch histories in

order to capture the occurrence of “l”. However,

since these branches are mostly- not-t aken, predic-

tion accuracy remains high even if this taken oc-

currence of the branch is mispredicted. The pre-

diction accuracy of the GAs scheme also decreases

with longer branch history because it takes longer

to fill the pattern history. A short history results in

a faster predictor warm-up time. Furthermore, for

a given implement at ion cost, a shorter history reg-

ister means more PHTs in the prediction scheme.

With more PHTs, fewer branches are mapped to

the same PHT; thus, the amount of interference

between the pattern history of different branches

is reduced. As in the GAs scheme, the predic-

tion accuracy of the gshare scheme also decreases

with longer branch history because more history

patterns means more PHT entries are accessed.

Thus, more PHT conflicts between branches of

the mostly-one-direction branches and the mixed-

direction branches occur. The performance on the

SC2 branches is similar to that of the SC1 branches.

The performance on the mostly taken branches

(SC5,SC6) is similar to that mentioned above

(SC1). For example, if branches are mostly taken,

the branch history register will consist mostly of

1 ‘s. These branches will tend to access the same

part of each PHT, possibly causing mispredictions

due to different branches accessing the same PHT

entry. We can reduce these conflicts by having a

short branch history register and more PHTs.

● Analysis of the Mixed-direction Branches

(SC3,SC4)

Figures 4, 5, and 6 show the prediction accuracy

of branches whose dynamic taken-rates are be-

tween 107o and 50$Z0 (SC3). Unlike the mostly-one-

direction branches, the mixed-direction branches

are effectively predicted by prediction schemes with

long branch history registers. Because these branch

have dynamic taken-rates between 10% and 50%,

we will see more execution patterns due to these

branch characteristics. By having a longer branch

history, we can distinguish more execution states.

In addition, with a longer branch history, histories

of correlated branches are more likely to remain in

the branch history register. Thus, the branch pre-

diction schemes with long branch histories are ef-

fective in predicting the mixed-direction branches.

The performance of GAs, PAs, and gshare on

mostly taken branches (SC4) is similar to that men-

tioned above (SC3).

. }Veight of Branch Classes

Let us define the dynamic weight of a branch class

as

No. o f dun. brns belonaina to that brn class

total number of dynamic branches “

24

-. ..-. ---- ,----
Static Class 1: 0 c= Pr(br) c= .05

+— + Ph 35KB

0 .-..-0 PhlOKB
❑ - - -n PAS 4KB

.I!!!!! !!!! !!!! !!! I
135

Figure 1: Prediction

Not-taken Branches

7 9 11 13 1s 17
Branch History Length

Accuracy of PAs on the Mostly

Static Class 1: 0 c= Pr(br) c= .05

+— + GAS32KB

V
0 .-..-0 GABSKB

❑ - – –0 GAs2KB

.s.
m

-“+

\ b

“m
\

J!!!!!!!! I I I ?! I!!,
135

Figure 2: Prediction

Not-taken Branches

79 11 13 15 17

Branch History Length

Accuracy of GAs on the Mostly

Static Class 1: 0 c= Pr(br) c= .05

> 0.995

[v

+— + W 32KB
& 0 .-..-0 gsbu SKB

SI
cl- – –n wk=2KB

< 0.985 I O=e?.o
1...’”

! ;~””Q-0.97s

0.%5

t
0.955 ~

135

Figure 3: Prediction

Not-taken Branches

7 9 11 13 15 17

Branch History Length

Accuracy of gshare on the Mostly

h 01.93

~ 0.90

s-= 01.87
.L1
3
& 01.84

01.81

01.78

0.75

stamc Class x .lu < rr(tw) c= .XI

+ — + PAS 3SKS

0 .-..-0 PAS1OKB

❑ -––a PAS4KB

+

4!!! !!!! !!!! !!!!!4
13 57911131517

Figure 4: Prediction

direction Branches

Branch History Length

Accuracy of PAs on the Mixed-

Static Class 3: .10 c Pr(br) c= .50

+ — + GA, 32K33

0.–..–0 GAs8KB

❑ ---0 GAs2KB

4!!! !!!! !!!! 1!!!!1

1357 9 11 13 15 17
Branch History Length

Figure 5: Prediction Accuracy of GAs on the Mixed-

direction Branches

Static Class 3: 0.10 c Pr(br) c= 0.50

~ 0.93

! 0,90

[r

+— + Sk 32KB

0 --..-0 dulcsim

4
❑ ---n Wlulczm

~
.a 0,87
.s

~ 084

0,.81

0,7s

d
0,75 I I I I I I I I I I I I I I I I

135

Figure 6: Prediction

directic,n Branches

79 11 13 15 17

Branch History Length

Accuracy of gshare on the Mixed-

25

Figure 7 shows the dynamic weight of each static

class. Approximately 50’%0 of all dynamic branches

are mostly-one-direction branches; the other 50~o

are mixed-direction branches. Thus, the perfor-

mance of a predictor is dependent on its pre-

diction accuracy on both the mostly-one-direction

branches and on the mixed-direction branches.

Avgcanqapwh x

Figure 7: Percentage of dynamic branches in each static

class

We have shown that the optimal predictor configu-

ration for the mostly-one-direction branches is different

from that of the mixed-direction branches. Thus, these

single-scheme predictors cannot be configured optimally

for both types of branches. Figures 8, 9, and 10 show

the average prediction accuracy using the GAs, PAs, or

gshare scheme with the branch history length ranging

from 1 to 18. Each curve in the graphs indicates the per-

formance of a branch predictor at a fixed hardware cost.

The hardware cost of a predictor is estimated using the

following equations [12]:

GAs(k,p) = k +(px2~x2) (bits)

Pk(k, p) = (b X k) + (P X Zk X 2) (bits)

gshare(k, t) = k + (2’ x 2) (bits)

where k is the history register length, p is the num-

ber of pattern history tables (PHTs), b is the num-

ber of entries in the branch history table, and t is

the number of PHT entries in gshare. For example,

the highest curve in Figure 9 shows the performance

of a 32 K-byte size GAs. The left-most point of this

curve shows the prediction accuracy of GAs(1, 216).

The right-most point shows the prediction accuracy

of GAS(17, 1). Our results match those presented in

[12]. Let PA(x) denote the prediction accuracy of the

branch prediction scheme x. With a fixed branch

history length, the prediction accuracy increases as

the number of PHTs increases, e.g. PA(GAS(5, 28))

< PA(GAs(5, 210)) < PA(GAs(5, 212)). With a fixed

number of pattern history tables, the prediction ac-

curacy increases as the length of history register in-

creases; e.g. PA(GAS(11,4)) < PA(GAS(13, 4)) <... <

PA(GAs(15, 4)). The performance of the PAs scheme is

less sensitive to the branch history length than that of

the GAs scheme, e.g. PA(PAs(15, 4)) - PA(PAs(13, 4)) <

PA(GAS(15, 4)) - PA(GAS(13, 4)).

Em=35K”
13579 11 13 15 17

Branch History Length (k)

Figure 8: Per-address history schemes with different

branch history length

~ 0.96
“
s
g 0.95
e
g 0.94

; 0.93
&

0.92

0.91
I

$

0.90 ❑ - - -0 GAS2KB

0.89 I I I I I I I I I I I I I I I I
13579 11 13 15 17

Branch History Length (k)

Figure 9: Global history schemes with different branch

history length

:E)=3”’
13579 11 13 15 17

Branch History Length (k)

Figure 10: gshare with different branch history length

Figures 1, 2, 4, and 5 show that the optimal con-

figuration of GAs and PAs is sub-optimal for both the

mostly-one-direction branches and the mixed-direction

branches. Without branch classification, the gshare

configuration is also sub-optimal for the mostly-one-

direction branches, as shown in figures 3 and 6.

26

Per-set
Pamwn

3.4.2 Combining the Advantages of Different

Predictors

In this section, we introduce hybrid branch predic-

tors which combine the advantages of different branch

predictors. Wewillfirst introduce hybrid branch predic-

tors which statically select a branch predictor for each

branch. Wethenshow ahybrid branch predictor design

which selects a branch predictor both statically and dy-

namically. Finally, we summarize these hybrid predic-

tion schemes.

3.4.2.1 Static Branch Predictor Selection

● GAs with Multiple Branch History Length

We have shown that the GAs scheme is not de-

signed to optimize prediction accuracy on both

the mixed-direction and the mostly-one-direction

branches. To increase prediction accuracy on both

types of branches, we propose a new branch pre-

diction scheme, which uses multiple history length,

called GAs.mhl; it uses a short global history

for the mostly-one-direction branches and a long

branch history for the mixed-direction branches.

Figure 11 shows the structure of GAs with mul-

tiple history length. Because we are using fewer

bits for the mostly-one-direction branches, there

may not be enough history bits to identify each

branch. To better identify each branch, the gshare

scheme [6] uses both the global history and the

branch address. As in the gshare scheme, GAs.mhl

exclusive-ORa the global history with the branch

address to select the appropriate PHT entry. This

is done to hash the frequent global history patterns

to different PHT entries. Because the data set used

to gather profile information is different from the

one used in the actual testing run, some branches

may only be executed during the testing run and,

tQus, have no profiled information. In this case,

these branches are predicted with the scheme that

is using a long branch history.

Figure 12 compares the performance of GAs.mhl

with GAs and gshare. This figure shows the best

prediction accuracy of these predictors at each

hardware cost. For all predictor sizes, GAs.mhl

outperforms both GAs and gshare. Figure 13 shows

the prediction accuracy of lK-byte GAs.mhl, GAs,

and gshare on each static class. GAs.mhl and

gshare outperform GAs because they more effec-

tively utilize the PHTs. The most significant per-

formance difference between GAs.mhl and gshare

is on SC1 and SC6 branches. By using a short his-

tory to predict the mostly-one-direction branches,

GAs.mhl is able to achieve prediction accuracies

that are .015 and .0098 higher than those of gshare

on SC1 and SC6 branches respectively. For the

Global
Bransh
History
Rej3ister
(G13HR)

c~
s
) I

‘-t

-.—.

k
&

—. XOR k
I

e0iP(8) History
Tables

(SPHTS)

Branch

ClMl, I----iv

‘II

.

,,, .

.

Pc ,_J_.
[~

i’Hfi......
w El

Figure 11: Structure of GAs with Multiple Branch His-

tory Length

x - - - X GAs.mhl

0 ❑ gshare.

+— + GAs

:L
w 2S6 lK 4K 16K 64K

Predictor Size (bytes)

Figure 12: Performance of GAs with Multiple Branch

History Length

100%? _ rlcw

“-

scl w. W W .X3 =6 “’”

Figure 13: Performance of lK Predictors on each static

class

mixed-direction branches, the slight improvement

in prediction accuracy is due to the fact that the

mostly-one-direction branches are now hashed into

fewer PIIT entries and result in fewer conflicts

between the pattern history of the mostly-one-

direction branches and that of the mixed-direction

branches.

27

● Combination of static and dynamic predic-

t ors

The static predictors can accurately predict the

mostly-one-direction branches. Using static pre-

dictors for those branches, the hardware predic-

tor can be optimized for accurately predicting the

mixed-direction branches. In our experiment, the

PG+gshare scheme uses the profile guided predic-

tor to statically predict SC1 and SC6 branches and

the gshare scheme to dynamically predict the other

branches. If a branch is not executed during the

training run, then the dynamic predictor is desig-

nated for predicting this branch during the testing

run.

Figure 14 shows that PG+.gshare outperforms

G~s.mhl and single-scheme pr~dictors. Figures 15

and 16 show the prediction accuracy of PG+gshare

and GAs.mhl on SC1 and SC3 branches respec-

tively. For SC1 and SC6 branches, the profile-

guided predictor can accurately predict these

branches because these branches are mostly taken

or mostly not-taken. In addition, PHT conflicts be-

tween the mixed-direction branches and the mostly-

one-direction branches can significantly reduce the

accuracy of a gshare scheme, especially at lower im-

plement ation costs. Thus, PG+gshare outperforms

GAs.mhl on the SC1 and SC6 branches.

For the mixed-direction branches, PG+gshare

achieves a slightly higher prediction accuracy

than GAs.mhl. Because the gshare scheme in

PG+gshare hybrid predictor only predicts the

mixed-direction branches, the PHT contention be-

tween mostly-one-direction branches and mixed-

direction branches no longer exists. Also, by deal-

ing only with mixed-direction branches, histories of

correlated branches are more likely to remain in the

PG+gshare’s branch history register.

3.4.2.2 Static plus Dynamic Predictor Selection

Up to this point, we have statically selected the op-

timal predictor for each branch. Another method of

combining branch predictors is to select the optimal pre-

dictor dynamically [7]. In this section, we first compare

the performance of both types of hybrid branch predic-

tor. We then propose a new hybrid predictor design

that uses both dynamic and static predictor selection

to further improve prediction accuracy.

● Hybrid Predictor with Dynamic Predictor

Selection

One method of dynamically selecting the optimal

predictor is to use 2-bit saturating up-down coun-

ters (i.e. 2bC) to keep track of which predictor is

doing better [6]. Specifically, let BD denote the

=. 0.96

i< 0.95

~.-

2 0.94

!!$!

0.93

0.92

0.91
/

A --- A PG+gsham

X - - – X GAs.mbl

9
0.90

I I I I I I I I I I !

6$ 2S6 lK 4K 16K 64K

predictor Size (bytes)

Figure 14: Performance of Hybrid Predictors with

Static Branch Classification

Static Class 1: 0 <= pr(br) <= .05

x

1’
I

t’
1’

I

A --- A PG+gshare

x- - - x GAs.mtd

Predictor Size (bytes)

Figure 15: Performance of PG+gshare and GAs.mhl on

mostly not-taken branches

Static Class 3: .05< pr(br) c= .50

~ 0.93

~ 0.92

E

.*
A - .-A PG+gshare

$
=A_ x - - - x GAs.mtd

0.91 .*..4$

g O.go

~ 0.89

,/

,/
0.88 ,

0.841 ! x I I I t I I I I I I

64 2S6 lK 4K 16K 64K

Predictor Size @ytes)

Figure 16: Performance of PG+gshare and GAs.mhl on

mixed-direction branches

actual branch direction, P1 denote predicted direc-

tion from predictor 1, and P2 denote the predicted

direction from predictor 2. The counters can be in-

cremented or decremented based on the rule shown

in Table 3.

In our study, we associate a counter with each entry

in the fully associative branch address cache(BAC).

28

E
BD PI P2

000
001

010

011

100

101

110

111

I
no change

decrement counter

increment counter

no change

no change

increment counter

decrement counter

no change

Table 3: Updating rule for predictor selection counters

When a branch is fetched, the corresponding

counter found in the BAC is then used to determine

which predictor to use, as shown in Figure 17.

Predcimn

Figure 17: Structure of Hybrid Predictor with Dynamic

Predictor Selection

We simulated two different combinations of pre-

dictors: the 2-bit up-down counter predictor

with gshare (2bC/gshare) and PAs with gshare

(PAs/gshare), Figure 18 compares the performance

of these hybrid predictors with the static predictor

selection scheme PG+gshare. The hardware costs

for 2bC/gshare and PAs/gshare are estimated us-

ing the following equations:

2bC/gshare(k, p, a) = (a x 2)+ ((2 x 2)

+ k+(px2~ x2)

PAs/gshare(k, p,a) = (a x 2) + (b x k)+ (p x 2k x 2)

+ k+(px2k x2)

where a is the number of entries in the branch ad-

dress cache, k is the history register length, p is the

number of PHTs, and b is the number of entries in

the branch history table. That is, the cost of the hy-

brid predictor is determined by summing the cost of

the single-scheme predictors and the counters used

to select the optimal predictor. For PAs/gshare, we

only considered combining PAs and gshare config-

urations with the same implementation cost.

For predictors smaller than 16K bytes, the

PG+gshare scheme outperforms the PAs/gshare

scheme. With PG+gshare and PAs/gshare of a

similar size, the gshare in the PG+gshare scheme is

approximately twice the size of either PAs or gshare

E
0.965 —

.X+$.% “
A --- A PG+gshare

0.955. —
4 . A :&*”

M - - - * PAs/gshwe

A A 2bC/gshare

.g 0.945 — K

.= >.+

g 0.935 – .4”A’
~+z

0.925- -
f“ ;

A

0.915. —

0.905. — A

0.895> ! I I I I I I I I I I L

64 2S6 IK 4K 16K 64K

Predictor Size (bytes)

Figure 18: Prediction Accuracy of Hybrid Branch Pre-

dictors

~ ‘“O

“:
0.8

3 ‘“6
% 0.4

~
0.2

[

+ ---+ Scl

s---w SC2

0---0 SC3

A ..,-,. A SC4

A —.—A SC5

0 0 SC6

n — 0 overall

Predictor Size (bytes)

Figure 19: Fraction of gshare usage in the 2bC/gshare

scheme

in the PAs/gshare scheme. With an implementa-

tion cost below 16K bytes, the larger gshare was

able to outperform the combination of two smaller

predictors. C)n the other hand, for predictors larger

than 16K bytes, PAs/gshare is able to outperform

PG+gshare. Because the benefits of a larger pre-

dictor diminishes as the size of the predictor in-

creases, a combined predictor outperforms a larger

single-scheme predictor.

For the SPEC integer benchmarks, PG+gshare

clutperforms the 2bC/gshare scheme. In this study,

the 2bC/gshare predictor scheme uses a lK-entry

BAC and lK 2-bit counters. Figure 19 shows how

c)ften the gshare was used to make predictions in

the 2bC/gshare scheme. The size of 2bC/gshare is

increased by only increasing the gshare portion; the

2!bC portion remains fixed at 256 bytes. With in-

creasing 2bC/gshare size, the prediction accuracy

of gshare increases and, thus, more branches are

predicted using the gshare scheme. Figure 19 shows

that the majority of predictions on the mostly not-

taken branches are made by gshare. Since gshare,

at a 10W implementation COst, is not & acCurate

as the profile-guided

performs 2bC/gshare

29

predictor, PG+gshare out-

on the mostly-one-direction

mostly one-direction branches mixed-direction branches

GAs.mhl GAswith a short Branch History GAswith along Branch History

PG+gshare PG gshare

2bC/gshare 2bC or gshare (selected dynamically)

PAs/gshare PAs or gshare (selected dynamically)

PG+PAs/gshare PG] PAs or gshare (selected dynamically)

Table 4: Summary of Hybrid Branch Prediction Schemes

mostly one-direction branches mixed-direction branches

PG+PAs PG PAs

PG+GAs PG GAs

2bC/GAs 2bC or GAs (selected dynamically)

PAs/GAs PAs or GAs (selected dynamically)

PG+PAs/GAs PG \ PAs or GAs (selected dynamically)

Table 5: Omitted Hybrid Branch Prediction Schemes

branches. Figure 19 also shows that the 40%

of predictions on SC4 branches are made by the

2bC scheme. While 2bC can predict mostly-

one-direction branches well, it is outperformed by

gshare on the mixed-direction branches. Thus,

PG+gshare also outperforms 2bC/gshare on the

the mixed-direction branches.

A New Hybrid Predictor with Both Dy-

namic and Static Predictor Selection

In this section, we propose a new hybrid branch

predictor that exploits the advantage of using both

run-time and compile-time information to assist

branch prediction. The PG+PAs/gshare scheme

uses the profile-guided predictor for the mostly-

one-direction branches and the PAs/gshare scheme

for the mixed-direction branches. Figure 20 shows

the performance of PG+PAs/gshare. For predic-

tors smaller than 4K bytes, the PG+gshare scheme

provides the optimal performance. On the other

hand, for predictors larger than 4K bytes, the

PG+PAs/gshare scheme outperforms all other pre-

dictors. For example, with a fixed implementa-

tion cost of 32K bytes, PG+PAs/gshare is able

to achieve prediction accuracy of 96.4% on the

SPEC integer benchmarks, as compared to 95.7%

for gshare and 95.2% for GAs. For the SPEC92

benchmark gee, which contains many branches,

PG+PAs/gshare achieves prediction accuracy of

96.91Y0, as compared to 96.47% for the best pre-

viously known predictor (PAs/gshare) [7].

3.4.2.3 Summary of Hybrid Branch Predictors

We examined many different hybrid branch prediction

schemes. In this report, we present the most success-

+:s
, ,f-,”$.“~ + - - – + PG+PAs\gshare

...m A --- A PG+gsham
,A/#;~:., D”

x -- - M PAs/gshare

./’

/

*,#(.,...k” ‘
❑ ❑ gshan?

&,” +— + GAs

A’

:li??!E-
256 lK 4K 16K 64K

Prrdictor Size. (bytes)

Figure 20: Performance of hybrid branch predictor with

both dynamic and static selection

ful ones (see Table 4). Table 5 lists several prediction

schemes that were omitted.

4 Conclusion

We have introduced branch prediction classification

as a means for analyzing predictor performance as well

as a means for combining the advantages of different

predictors. The proposed branch classification model

groups branches based on their dynamic taken rates

gathered during profiling. With this branch classifica-

tion model, we showed that using a short history for the

mostly-one-direction branches and a long history for the

mixed-direction branches improves the performance of

the global history Two-Level Branch Predictors.

We then proposed a hybrid branch predictor that

combines the advantages

namic predictors. Using

of static predictors and dy-

a profile-guided predictor for

30

the mostly-one-direction branches, more hardware can

be dedicated to the dynamic predictor. Furthermore,

the dynamic predictor can be optimized to more accu-

rately predict the mixed-direction branches. With an

implementation cost of 32K bytes, PG+gshare achieved

a 96.0% prediction accuracy, as compared to 95.2% for

GAs, reducing the miss rate by 16.7%.

With branch classification, selection of the suitable

predictor for each branch can be done dynamically

and/or statically. Thus, information from both com-

pile time and execution time can be used to assist the

hybrid branch predictor in achieving higher accuracy.

With a fixed implementation cost of 32K bytes, our pro-

posed combination of a profile-guided predictor, PAs,

and gshare achieved a prediction accuracy of 96.9170

on gee, a branch intensive benchmark, as compared to

96.47~o for the best previously known predictor, reduc-

ing the miss rate by 12.5Y0.

In summary, we have shown that the idea of branch

classification will allow construction of predictors that

are more effective than currently known predictors.

5 Acknowledgments

This paper is one result of our ongoing research in high

performance computer implementation at the Univer-

sity of Michigan. The support of our industrial partners:

Intel, AT& T/GIS, Motorola, Hewlett-Packard, and Sci-

entific and Engineering Software is greatly appreciated.

In addition, we wish to gratefully acknowledge the other

members of our HPS research group for the stimulat-

ing environment they provide, and in particular, Carlos

Fuentes for his comments and suggestions on this work.

We would also like to thank the reviewers for their help-

ful suggestions.

References

[1] P. Chow and M. Horowitz, “Architecture tradeoffs

in the design of MIPS-X,” Proceedings of the Idih

Annual International Symposium on Computer Ar-

chitecture, June 1987.

[2] J.A. DeRosa and H. M. Levy, “An Evaluation of

Branch Architectures,” Proceedings of the Idth Inter-

national Symposium on Computer Architecture, May

1989.

[3] J. Emer and D. Clark, “A Characterization of Pro-

cessor Performance in the VAX- 11/780,” Proceedings

of the llth Annual Symposium on Computer Archi-

tecture, June 1984.

[4] P.M. Kogge, The Architecture of Pipelined Comput-

ers, PP.237-243, McGraw-Hill, 1981.

[5] J.K.F. Lee and A.J. Smith, “Branch Prediction

Strategies and Branch Target Buffer Design,” IEEE

Computer, pp.6-22, January 1984.

[6] S. McFarling, “Combining Branch Predictors”,

WRL Technical Note TN-36, Digital Equipment Cor-

poration, June 1993.

[7] S. McFarling and J.L. Hennessey, “Reducing the cost

of branches,” Proceedings of the 13th International

Symposium on Computer Architecture, PP.396-404,

June 1986.

[8] C. Melear, “The design of the 88000 RISC family,”

IEEE MICRO, pp.26-38, April 1989.

[9] , J.E. Smith, “A Study of Branch Prediction Strate-

gies,” Proceedings of the 8th International Symposium

on Computer Architecture, pp.135-148, June 1981.

[10] T.-Y. Yeh and Y.N. Patt, “Alternative Implemen-

tations of Two-level Adaptive Branch Prediction,”

Proceedings of the 19th Annual International Sym-

posium on Computer Architecture, pp.124-135, May

1992.

[11] T.-Y. Yeh and Y.N. Patt, “Two-level Adap-

tive Branch Prediction,” Proceedings of the Zdth

ACM/IEEE International Symposium on Micro archi-

tecture, pp.51-61, November 1991.

[12] T.-Y. Yeh and Y.N. Patt, “A Comparison of Dy-

namic Branch Predictors that use Two Levels of

Branch History”, Proceedings of the 20th Annual In-

ternational Symposium on Computer Architecture,

pp.257-266, May 1993.

31

