
C h e c k p o i n t R e p a i r f o r O u t - o f - o r d e r E x e c u t i o n M a c h i n e s .

Wen-reel W. Hwu and Yale N. Patt

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

Out-of-order execution and branch prediction are
two mechanisms that can be used profitably in the design
of Supercomputers to increase performance. Unfor-
tunately this means there must be some kind of repair
mechanism, since situations do occur that require the
computing engine to repair to a known previous state.
One way to handle this is by checkpoint repair. In this
paper we derive several properties of checkpoint repair
mechanisms. In addition, we provide algorithms for per-
forming checkpoint repair that incur very little overhead
in time and modest cost in hardware. We also note that
our algorithms require no additional complexity or time
for use with write back cache memory systems than they
do with write through cache memory systems, contrary to
statements made by previous researchers.

1. In t roduc t ion .

Our research in the implementation of high performance com-
puting engines has resulted in the specification of a microarchitecture
that exploits concurrency by several mechanisms, among them out-
of-order execution and branch prediction [1,2,3,4]. Unfortunately,
both mechanisms can result in situations where the computing engine
must repair to known previous states. In the case of out-of-order
execution, this is caused by instruction A faulting after instruction B
has executed, where instruction B comes after instruction A in the
dynamic instruction stream. In the case of branch prediction, this is
caused by a branch prediction miss; that is, instruction A is fetched
and executed as a result of a branch prediction, and it is subse-
quently discovered that the branch prediction was incorrect.

In order to repair the machine to a known previous state, it is
necessary to save the machine state at appropriate points of execu-
tion. We call this checkpointing. If a checkpoint is established at
every instruction boundary in the dynamic instruction stream, then
the machine can repair to any instruction boundary in response to an
exception or incorrectly predicted conditional branch. Unfortunately,
the cost of doing so is grossly prohibitive. There is a fundamental
dilemma regarding checkpointing. On the one hand, since check-,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

pointing is an overhead function, its cost in time and additional
hardware should be kept as small as possible. This means no more
checkpoints than absolutely necessary. On the other hand, repair to
the last checkpoint involves discarding useful work. The further
apart the checkpoints, the more useful work gets thrown out.

In this paper, we derive properties of general checkpoint repair
mechanisms in which the checkpoints are not necessarily established
at every instruction boundary. We specify algorithms for performing
checkpoint repair that can be implemented with modest cost in
hardware and with minimal cost in overhead time. Finally, it is
important to note that our algorithms are effective with memory sys-
tems that contain write-back caches as well as those that contain
write-through caches. The write-back activity in our algorithms can
be performed without any waiting or extra buffering space, correcting
the suggestion made in [5] that "either a cache line must be saved in
the history buffer, or write-back must wait until the data has made
its way into the cache."

This paper is organized in six sections. Section 2 introduces
some basic notions: the execution model, the characteristics and
causes of E-repair and B-repair, and the notion of precise interrupts.
Section 3 derives several properties of checkpoint E-repair and
specifies algorithms for its implementation. Section 4 derives several
properties of checkpoint B-repair and species algorithms for its imple-
mentation. Section 5 describes three mechanisms for handling both
E-repair and B-repair simultaneously. In section 6, we discuss future
research directions and offer some concluding remarks.

2. Basle Notions.

2.1. The Execut ion Model.

It is first necessary to distinguish between the architectural
instruction stream and its implementation. Our work is based on a
sequential model of program execution in which an architectural pro-
gram counter sequences through instructions one by one, finishing
one before starting the next. The dynamic instruction stream of a
program is the sequence of instructions executed according to the
architecture specification. As illustrated in figure 1, instruction A is
to the left of instruction B (in the dynamic instruction stream) if A is
executed before B according to the sequential architecture model.

On the other hand, the implementation of this architecture is
based on an out-of-order [2,6,7,8] execution model with the following
characteristics:

(1) Instructions are issued [9] sequentially according to the archi-
tectural specification. In the presence of branch instructions,
the sequential issue continues from the point determined by the
branch predictor. As a result, some of the instructions in the
issuing instruction stream may be from the incorrectly
predicted branch path. Thus the issuing instruction stream is

18
© 1987 ACM 0084-7495/87/0600-0018500.75

the dynamic instruction stream interspersed with some noise
from the incorrectly predicted branch paths.

(2) Instructions do not, in general, finish execution sequentially
according to the architectural specification. As a result,
instructions do not in general modify the architectural registers
and main memory sequentially.

(3) Execution times for instructions are not, in general, predictable
at instruction issue time due to the use of cache memory and
other optimization techniques.

An instruction is active if it has been issued and has not yet
finished execution. At each cycle, only the active instructions can
potentially modify the architectural registers and the main memory.

2,2, Repairs.
We are concerned with two major causes of repairs, exception

repairs (E-repairs) and branch prediction miss repairs (B-repairs).
Examples of exceptions are the arithmetic overflow trap, the traps
caused by software implemented architectural features, and the page
fault. An F~-repair for our out-of-order engine must cleanly suspend
the process to a point preceding the violating instruction, handle the
exception, and resume execution from that point.

A branch prediction miss is an incorrectly predicted conditional
branch which resultedJn unwanted instructions issued and perhaps
executed out-of-order by the mieroarchiteeture. A B-repair must
undo all the existing effects and discard all the pending effects on the
architectural registers and main memory by the instructions fetched
and issued from the incorrectly predicted branch path. and then con-
tinue fetching and issuing instructions along the correct branch path.

More instruction types can cause E-repairs than can cause B-
repairs. Practically every instruction type can cause E-repairs. Only
those instructions containing conditional branches can cause B-
repairs. If there is, on the average, one conditional branch every b
instructions, then the ratio of potential E-repairs to potential B-
repairs is b to 1. The major implication is that saving machine state
for every potential E-repair is not as feasible as saving machine state
for every potential B-repair.

However, E-repairs actually happen much less frequently than
do B-repairs. A high performance computer normally executes at
least five thousand instructions between E-repairs. B-repairs, how-
ever, occur much more frequently. Assume that a microengine
implementing branch prediction correctly predicts branches 85% of
the time (85% hit ratio) and assume, on the average, one conditional
branch every four instructions. Then a B-repair occurs on the average
every 28 instructions. Thus the ratio of the actual occurrences of E-
repairs to B-repairs is approximately 28 to 5000, from which we infer
that B-repairs should be implemented much faster than E-repairs.

precise trap or branch prediction miss repair point

dynamic Instruction v~earn

precise fault repair point

Figure 1. Dynamic instruction stream and precise repair points.

A repair is precise if it excludes the effects on registers and
main memory by all instructions to the right of the precise repair
point defined below, and allows the effects on registers and main
memory by all instructions to the left of that precise repair point.

The precise repair point for a trap [10] is the instruction boundary
just to the right of the violating instruction (figure 1). The precise
repair point for a fault [10] is the instruction boundary just to the
left of the violating instruction. The precise repair point for an
incorrectly predicted conditional branch is the instruction boundary
just to the right of the instruction containing that branch if we are
not using delayed branch semantics [11]. The precise repair point for
a conditional branch using delayed branch semantics is the right
instruction boundary of the I~ t delay slot.

2.3. Logical Spaces, Checkpoints , and Checkpoint Repair.
A logical space is a full set of architectural registers and main

memory visible at the ISA architecture level of the machine (i.e.,
visible to the machine language programmer). A checkpoint is an
instruction boundary for which a logical space has been identified.
Checkpoint repair is the action of repairing the machine state to a
checkpoint.

Note that all active instructions to the left of a checkpoint in
the issuing instruction stream have the results of their execution
reflected in the logical space specified for that checkpoint. Further,
no active instructions to the right of a checkpoint in the issuing
instruction stream are allowed to modify that logical space. As far as
that logical space is concerned, the execution ends at the correspond-
ing checkpoint.

Normal execution requires only one logical space from which
the instructions fetch input data and to which the instructions store
output data. We call this the current logical space. A checkpoint
repair mechanism uses additional logical space(s). The contents of
these additional logical spaces are maintained so that they can
replace that of the current logical space when a repair occurs.

dynamic instruction stream
fetch direction •

lllil lllllililllllllJlll
! I

checkpoint A checkpoint B

b.\\ \ \ \ \x: L ;. .X.\\\\\\"q

~ N N , ~ x ' ~ f a u l t " E'-r~pa.ir range of " A ' N . ~ ' ~ N I

~ ~ ~ ~ E repair range of A

Figure 2. The exception repair ranges of a checkpoint.

The trap repair range of a checkpoint is the set of instructions
which, if any of them trap, will repair to that checkpoint. The fault
repair range of a checkpoint is the set of instructions which, if any of
them fault, will repair to that checkpoint. Figure 2 illustrates the
trap repair and trap repair ranges for checkpoint A. Note that the
trap (fault) repair range of different checkpoints do not overlap. The
E-repair range of a checkpoint is the union of the checkpoint's trap
repair range and fault repair range. Note that the E-repair range of
adjacent checkpoints do overlap at the instructions immediately to
the left of these checkpoints.

To perform an F-repair, the machine state is first repaired to a
checkpoint to the left of, if not overlapping, the precise repair point
of the detected exception. If the checkpoint used does not overlap
the precise repair point of the exception, the machine executes one
instruction at a time until the precise repair point is reached and
then it invokes the exception handling routine. This guarantees pre-
cise interrupts [5,6[. For performance reasons, all the checkpoints for

19

B-repair are selected to overlap the precise repair points. Thus B-
repairs are inherently precise, making it unnecessary to single step as
is required with E-repairs.

3. C h e c k p o i n t E - r e p a i r M e c h a n i s m .

We develop, in this section, a checkpoint scheme which handles
E-repairs. Several impor tan t properties of this checkpoint E-repair
mechanism are derived. The properties are the correctness of the
scheme, the minimal number of logical spaces required to avoid
draining the act ive instructions before establ ishing checkpoints, the
maximal number of act ive instructions allowed, and the boundary
beyond which all instructions have finished at any part icular point in
t ime. The theorems in this paper are s ta ted wi thout proof due to
space constraints. These proofs are avai lable upon request. Imple-
menta t ion techniques to support the E-repair mechanism are also
offered.

3.1. Data Strueturen, Algorithm, and Propertlen.
At each point in time, there is a set of checkpoints which are

cri t ical to successful E-repair.

D e f l n t l o n 1. ActivcE(t) is the set of consecutive checkpoints such
tha t at least one instruction each in the E-repair ranges of the left-
most and r ightmost checkpoints are act ive at t. Each of these check-
points is labeled aelive~,,(t) with i increasing from r ight to left in the
issuing instruction stream.

With given hardware resources, any repair mechanism can sap-
port only a l imited number of logical spaces and thus l imited number
of checkpoints in activCE(t) for any t ime t.

D e f i n i t i o n 2. SchemCE(C) is a repair scheme where a m a x i m u m of e
checkpoints are allowed in activcE(t) at any t ime t. This means tha t
we need to provide e + 1 logical spaces, one backupE space for each of
the e activeE(t) checkpoints and one current space.

We define the da ta s t ructures manipula ted by our E-repair
checkpoint a lgori thm below.

Backups is an array of e + 1 logical spaces provided to keep
track of the machine execution states. The indices run from 0 to e.
Backups, o is actual ly the current space to simplify the formulation of
our algori thms. An invariance mainta ined by scheme E is tha t
backups,, at any t ime t, holds the execution s ta te as if all the
instruct ions to the left of activcE, ,(t) had been issued and none of the
instruct ions to the r ight of activcE,,(t) had been issued. There are
three actions defined for backups.

push The entire array behaves as a shift register in which the
content of the ith element receives its new content from
the (i-1)th e lement for i from e to 1.

write,.d~ The execution result of an operation is given as input
to update backups,, , for i from indez to e- l . The exe-
cution result is wri t ten to ei ther a register or a memory
location within those backup spaces.

recall Backups.o (i.e., current) receives i ts new content from
backupE,e.

Example 1. Figure 3 shows activeEA(t) and activeg,e(t) under
schemes(2) at t when there are exact ly two checkpoints in activeg(t).
There are three logical spaces shown in this example. The current,
as described before, is the dominan t space which all the act ive
instruct ions fetch da ta from and store da ta to. The backupg,~ is the
logical space allocated to activeg,l(t). Only those instructions to the
left of aetivcE,l(t) have their effects reflected in backupEa. Similar
s t a t ement can be made for activcE,2(t) and backups,2.

Countg is an array of e counters keeping track of the number
of active instruct ions in the E-repair range of the active checkpoints.
The indices run from 1 to e. An invariance mainta ined by
schcmeg(e) is t ha t counts,,, at any t ime t, holds the number of

act ive instructions in the E-repair range of actives,,(t). There are
five operat ions defined for this object.

push The entire array behaves as a shif t register in which the
content of the ith e lement receives its new content from
the (i -1) t h element for i from e to 2. Counts, 1 is
cleared to 0.

dccr,nd~z A number is given as input and COUrllE,mdez is decre-
mented by tha t number.

incr A number is given as input and counts, t is incremented
by tha t number.

test The content of counts, ¢ is examined to determine
whether i t is zero.

clear All entries are cleared to be zero.

EzccptE, , is an array of e boolean flags keeping t rack of
whether exceptions have been caused by the instruct ions in the E-
repair range of the active checkpoints. The indices run from 1 to e.
An invarianee main ta ined by schemes(e) is t ha t ezceptE.,, at any
t ime t, indicates whether a t least one exception has been caused by
the instruct ions in the E-repair range of activcE,,(t). There are five
actions defined on this object.

push The entire array behaves as a shif t register in which the
content of the ith e lement receives its new content from
the (i - l) t h e lement for i from e to 2. EzceptE. 1 is
cleared to false.

SCtlnde z Excepts,lade x is set to true.

test The content of ezccptE,, is examined to determine
whether i t is true.

clear All entries are cleared to be false.

ldents is a (l o g 2 (e) + l) - b i t counter which holds the
identification number given to actives, 1. There are three actions
defined for this object.

deer The content of idcnt E is decremented by one.

map The content of ident g is subtracted from the check-
point identification carried by an operation to find the
index into the backups, counts, and except g arrays.

read The content of ideas E is read by the operat ions in the
issued instruct ions and is carried by them to identify
the checkpoint in whose E-repair range they reside.

active instructions

dynamic instructionslb

active E ~t) acti e E It)

' rll!LIJ,LIJ, L(L
/ ,tllllllllllllllllllll

l::{i:, i i:i,iiii!i!i!iiiil;iiii::~,:::~::~:i~:i~:i~:i~:ili,iiiiilili,:}ii~}~il

F i g u r e 3. C h e c k p o i n t s a n d b a c k u p spaces u n d e r schemes(2).

A l g o r i t h m 1. Checkpoint E-repair mechanism schemes(e).
Ini t ial condition: A clear action is performed to both count s and
except E. A cheek action as defined below is performed before the
execution starts ,

20

Actions for checkpoint E-repair mechanism:

lssueE This action is performed when a new instruction is
issued. Assume that the issued instruction contains k
operations then incr(k) is performed to countg. The
content of ident E is carried as a checkpoint
identification by all the operations contained in the
issued instruction.

Deliver E This action is performed when operations finish execu-
tion and their execution results are delivered to the
repair mechanism. For each operation delivering result,
the content of ident E is subtracted from the checkpoint
identification carried by that operation to get an index
i into the arrays. The index is used to (1) write the
content of backupE,~, for k from i to e-l, i.e., to per-
form a write, action on backupE, (2) decrement
countE,,+~, i.e. perform a decr,+l action on count E, and
(3) if an exception was caused by the operation,
ezceptE,,+t is set true, i.e., perform a set,+l action on
except E.

Check E Cheek~ is performed immediately after the machine
issues the instruction defining the right end of the E-
repair range of a checkpoint. If CountE, ¢ is not 0 at
the moment, then the instruction issue must stall due
to insufficient backup spaces. Otherwise push actions
are performed on backupE, count~, and ezcept E. Ident
is decremented by one.

RepairE This is the action performed if ezceptE,¢ is true. A
recall action is performed on backupE and a clear
action is performed on both countE and exceptE. A
check action is performed at the end of repair. After
the repair, the machine starts performing check action
after issuing every instruction until either an exception
is detected (the exception handler is invoked in this
case) or all the instructions in the E-repair range of the
checkpoint used for repair have finished execution (the
machine returns to the normal checkpoint activities and
resume in full speed).

T h e o r e m 1. The E-repair mechanisms with the issue E, deliverE~
checkE, and repair E actions defined above can always precisely han-
dle exceptions caused by any active instructions.

[~ active instructions

issuing
CP A CP B J. CP C CP D

I I I I
active 01) active It1)

2 1

issulng
CPA CPB CPC =LcPD

i

i l ! l I I III l l l l III I I I I , •
active 2 02) active ,~ 02)

Figure 4. Example execution snapshots under schemeE(2).

Example 2. Figure 4. illustrates possible execution snapshots under
schemeE(2). At tl, the active instructions belong to the E-repair
range of checkpoint A and checkpoint B. Therefore, activeE,2(Q) is

checkpoint A and aetiveE.l(tl } is checkpoint B. After all the instruc-
tions in the E-repair range of checkpoint A finish execution, A is
retired from active E, a checkE action is performed to add checkpoint
C to activeE, and the instruction issue unit continues to issue new
instructions. The execution advances to cycle t 2 when all active
instructions belong to the repair range of checkpoint B and check-
point C. Therefore, aetiveE,2{t2} is checkpoint B and activeEA(t2) is
checkpoint C.

It is very important that the active instructions do not have to
all finish before the machine can perform cheCkE. Theorem 2
identifies the absolute minimal number of logical spaces required to
meet the constraint.

Theorem 2. A minimum of two backup logical spaces is required
for any checkpoint E-repair mechanism to avoid draining all the
active instructions before performing cheek E. Thus the machine
design has to provide at least three logical spaces, one current and
two backup E spaces.

Theorem 3. At any time t, the maximal number of active instruc-
tions is the sum of the number of instructions in the fault repair
ranges of all checkpoints in activeE(t).

Theorem 4. Every instruction to the left of activeE,¢(t) has finished
execution by t.

The maximal number of checkpoints allowed in active E and the
number of instructions between the adjacent checkpoints are the two
most important design parameters of schemes specializing in E-
repairs. The stalls can be reduced by increasing the value of either
of the two parameters at different prices. By increasing the maximal
number of checkpoints allowed in activeE, one can reduce the
number and duration of stalls by providing more logical spaces. By
increasing the distance between adjacent checkpoints, one can reduce
the number and duration of stalls by discarding more useful work
when performing E-repair. Since E-repair is a rare event, it is a good
tradeoff to reduce the number and duration of stalls at the cost of
discarding more useful work (up to a reasonable point} when per-
forming E-repair. In the extreme cases, two backup spaces (the
minimum required not to drain the pipeline before performing
checkE) are used and the distance between the neighboring check-
points are set to be so large lin the order of several tens of instruc-
tions} that stalls happen extremely rarely.

3.2. Implementation of Logical Spaces for E-repair Mechan-
Isms.

There are two types of techniques for implementing multiple
logical spaces in an out-of-order execution environment. One, called
copy technique, provides a full-sized physical storage for each logical
space. The other, called difference technique, provides only one full-
sized physical space; each logical space is implemented by keeping
the difference of the content of the logical space from that of the
full-sized physical space. These two implementation techniques have
different space and time properties which makes them favorable for
implementing either registers or cache/main memory [12] in the logi-
cal space, but not both.

3.2.1. Logical Register Implementation with the Copy Tech-
nique.

This technique maintains fast access time and avoids extra
bandwidth requirement by physically implementing a copy of
storages for each logical space, which makes it more applicable to
registers than to main memory. Each bit of the registers is imple-
mented by ¢+ 1 physical cells, one for each logical space.

Each bit of a register entry consists of e+ 1 cells, one for
current and one for each of the e backupE elements.

A lgor i thm 2. Actions on the cells of each register bit:

access At instruction issue time, the source registers are
fetched and the destination registers are marked
reserved, both on the current cells.

21

write,~de,

push

recall

An execution result is written to the backup,, for i from
index to e-l, cells of the bits in the destination register.
Note that current cell is backupg,o for this purpose.
Also note that according to Theorem 4, there can be no
active instruction to the left of activeE,, and therefore
no instruction can deliver its result to backupg,¢.
All the c backup E cells form a hardware stack with
backupE,1 being the top entry. The content of the
current cell is pushed onto the stack.

The content of the current cell is replaced by that of
the backupg.e cell. A check E action is immediately per-
formed after repair.

. ~ =

=

~ a

Jr

Figure 5. Register bit implementation under schemeE(2).

Example 3, In figure 5, where an implementation of a register bit
in schemeE(2) is illustrated, these cells are called current, backupE,1 ,
and backupg,2, corresponding to the logical spaces by the same name.
Everything in figure 5 except for the current cell and its correspond-
ing word/bit lines is overhead due to the checkpoint repair mechan-
ism. There is a pair of word/bit lines to deliver results, produced by
instructions to the left of active1, to the backupE,l cell. There is no
need for such lines for the backupE,2 cell because all instructions to
the left of activeE,2(t) have finished execution by t (Theorem 4).

There are two signal lines, in figure 5, which are common to all logi-
cal bits in the register file, push enable and recall enable. The push
enable controls the shifting of the hardware stack and the recall
enable controls the copy from the backupE,2 cell to the current cell.

The advantage of the copy technique is that it does not
increase the access bandwidth requirement of the register file imple-
mented because the push and the recall do not actually move data
out of and back into the register file. The disadvantage is that it
expands the space requirement by nearly a factor of c+ 1 when sup-
porting scherneme~ged{C). This makes it attractive for implementing

• register files where access bandwidth requirement is already high and
the size is small to begin with.

3.2.2. Logical C a c h e / M a i n Memor y Implementa t ion wi th
Backward Difference Technique.

A full-sized physical storage whose content reflects the current
(out-of-order) execution state is provided. Lists of modifications are
maintained so that when these are done to the content of the physi-
cal storage, the result is the content of one of the implemented logi-
cal spaces, Each such list is called a difference, indicating that the
list records the difference of the execution state from one instruction
boundary to another. There are two directions a difference can
operate, forwards and backwards. We introduce backward difference
in this section because it is more suitable for E-repair mechanisms.
Forward difference, being more suitable for B-repair mechanisms, will
be described in section 4.

Basic Assumpt ion , There is a limit to the number of
memory writes in the E-repair range of every checkpoint. This res-
triction is required for efficient design of difference buffers to be
described below, in machines exploiting Tomasulo types of depen-
dency handling algorithm, the limited tag bits to be assigned to each
instruction has already set an upper limit of number of instructions,
and thus the number of memory writes, that can be simultaneously
active. We further restrict the number of memory writes inside the
E-repair range of each checkpoint for the purpose of efficient back-
ward difference design.

Definition 3. There is a maximal number of memory writes, W,
inside the E-repair range of each checkpoint. The product c*W
gives the maximal number of writes that can be active in the
machine at any time provided that schemeE(c) is used.

The positions of these modifications in the backward difference
preserve their order of modifying the memory, not necessarily the
order they appear in the instruction stream due to the out-order exe-
cution.

check, retire, repair signals =l

read/write request from data path ~i shift/release control

Figure 6. Cache design with backward difference.

Figure 6 illustrates the cache design when a backward
difference is employed. The backward difference is accumulated dur-
ing normal execution and is used when repair• When performing a
memory write to cache, the original content of the cache word writ-
ten is pushed on the backward difference. During repair, the back-
ward difference is applied by popping its entries to recover the origi-
nal cache word contents. This corresponds to undoing all the
memory modifications associated with the valid entries of the back-
ward difference list. A special ease of the backward difference

22

technique was presented as History Buffer Method in [5] which was
designed to work in an in-order execution environment.

Due to space constraints, we describe the logical space imple-
mentation for write back caches but not write through caches. The
backward difference is implemented with a bidirectional shift register
each entry of which consists of a physical longword address, a byte
mask, a Iongword data, and a checkpoint identification.

Algor i thm 3(a). Simple repair algorithm for write back cache with
backward difference.

read Performed as if there were no repair mechanism.

write Cache miss, if any, is handled first. The original con-
tent of the addressed longword in the cache line
together with the physical address, the mask, and the
tag, is pushed onto the backward difference. If there is
an overflow in the backward difference, the overflowed
entry is simply discarded.

replace When a cache line is replaced, the original content is
written back if dirty.

recall Assume the identification of the checkpoint the execu-
tion the execution is backed up to is k. The backward
difference buffer is popped until either the backward
difference is empty or an entry with checkpoint
identification less than or equal to k - e + l is found.
Only those entries with checkpoint identification
greater than or equal to k are used to recover the cache
memory and the main memory content. For each entry
used, one of the following two cases can happen.

ease 1 The line being repaired is not in the cache. This means
that the modified line has been written back to the
main memory. We use the saved data to recover the
addressed longword in main memory.

case 2 The line being repaired is in the cache. The modified
portion of the cache line is recovered with the back-
ward difference entry with dirty bit set. After this
operation, the main memory content may or may not
be incorrect. Thus the algorithm is conservative in
that the next replacement of the cache line will be
guaranteed to cause a write back which makes the
main memory correct regardless whether it was correct
or not. There will be an inefficiency if the memory
content was indeed correct and the write back will not
be necessary. This inefficiency will be eliminated in the
more sophisticated algorithm we are going to show
next.

Algor i thm 3(b). More sophisticated algorithm for write back cache
with backward difference. The purged dirty bit of the cache block is
also saved in the backward difference entries. Associated with each
cache line is a hazard bit which is cleared when a repair sequence is
initiated. The major improvement achieved by this algorithm over
the simple one is that whenever there is no incorrect memory con-
tent, the dirty bit will not be set and thus a future write back can be
potentially saved.

case 1 The Iongword being recovered is not in the cache. We
process this case in the same way as in the simple algo-
rithm. We use the saved data to recover the addressed
longword in the main memory.

case 2 The line being repaired is in the cache. We use the
saved dirty bit and the hazard bit to avoid setting the
dirty bit. Whenever the hazard bit is one, the memory
content is incorrect. The next state functions of dirty
bit and hazard bit in terms of the saved dirty bit in the
backward difference entry are presented in table 1.

T h e o r e m 5. Algorithms 3(a) and 3(b) performs repair to a check-
point correctly in that (1) the content of cache memory reflects the

execution result up to the checkpoint the execution is backuped up
to, (2) if the main memory is inconsistent with the cache memory,
the dirty bits of the appropriate cache lines are set true.

T h e o r e m 6. Algorithm 3(b) sets the dirty bit of the a cache line
during repair sequences if and only if the memory version is incon-
sistent with the cache line after the repair.

T h e o r e m 7. A backward difference buffer of (2e-1)W entries is
necessary and sufficient to handle all possible repairs without causing
any extra stalls.

The major saving of the more sophisticated algorithm is that if
there was no write back activity for a cache line during and the con-
tent of that cache line was consistent with the main memory version
before the sequence of memory writes to be undone, the dirty bit will
be cleared after repair. The performance gain of the more sophisti-
cated algorithm can not be derived by analytical methods and must
be measure with simulation. However, it is clear that it is the
optimal algorithm in terms of avoiding unnecessarily setting dirty
bits and thus avoiding unnecessary write back activity after repair.

H•S,D O0

0 1

01 11 10

1 1

1 1 1 1 1

next state function of dirty

H•S,D O0

0 1

01 11

1 1 1 1 1

10

1

next state function of hazard

H hazard bit of the cache line being recovered

D dirty bit of the cache line being recovered

S saved dirty bit in the backward difference entry being applied

Table 1. Next state function of hazard bit and dirty hit

4. Checkpoin t B-repair M e c h a n i s m .

The checkpoint B-repair mechanism is the same as the check-
point E-repair mechanism except for the following two major
differences. First, we reduce the performance penalty for B-repairs
by selecting the checkpoints just to the right of the instructions con-
taining the conditional branches. When a B-repair occurs, the
machine back the execution up to the checkpoint just to the right of
the incorrectly predicted conditional branch and continue fetching
and issuing instruction from the correct branch path. This avoids
discarding any useful work when performing B-repairs.

Second, instead of using count to keep track of the number of
operations active in the checkpoint repair ranges at any point in
time, there is a pend bit indicating whether the corresponding branch
prediction has been verified. We omit the detailed description of
checkpoint B-repair due to space constraints.

23

Example 4. Figure 7. illustrates possible execution snapshots under
schemeB(2). At tx, the the two conditional branches waiting for
verification are just to the left of checkpoint A and checkpoint B.
Therefore, aetiveB,2(tl) is checkpoint A and activeB,~(t~) is check-
point B. The execution advances to cycle 12 when the prediction
corresponding to A has been verified and the awaiting conditional

I ~ active instructions

issuing
CP A CP B .L cp c cp D

I I I I
active 2 (11) active 1(11)

issuing
CP A CPB CPC .LcPE

i i I i
active 2 (12) active 1 (12)

A forward difference is applied by performing its modifications in the
order of their appearance in the dynamic instruction stream, from
left to right. This corresponds to the sequential execution of these
modifications. Figure 8 shows the cache design when a forward
difference is employed. A special case for the forward difference tech-
nique was presented as Reorder Buffer Method in 15] which was
designed for an execution environment where the execution time of
all instructions are predictable at instruction issue time. The algo-
rithm handling forward difference is described in [151 and is not
presented here due to space constraints.

control from data-path =- [release, shift, and roll back control I

read address from data path go

Figure 7. Example execution snapshots under schemes(2).

branches are just to the left of checkpoint B and checkpoint C.
Therefore, activeB,e(t2) is checkpoint B and activeBa(t~) is check-
point C.

Note that there are active instructions from the E-repair ranges
of all the three activeE(t2) checkpoints in figure 7. This is legal
because schemes(2) does not handle E-repairs. In the ease of E-
repair schemes, however, a active~,c(t) can not be purged until there
is no active instruction in its E-repair range. Thus we have a more
relaxed reuse rule for B-repair backup spaces than for E-repair
backup spaces.

T h e o r e m 8. If the out-of-order execution machine performs any
branch prediction and proceed instruction issuing along the predicted
path, there must be at least one backupB space provided.

There is no upper limit on the number of active instructions
under sehemeB(c). This is due to the more relaxed retire rule for the
activeB checkpoint than that for the activeE checkpoints. There is
no freedom in selecting the checkpoints because they have to be at
the right boundary of instructions containing conditional branches
The only design parameter to be determined is the maximal number
of checkpoints allowed in activeB.

4.1. Implementation of Logical Spaces for B-repair Mechan-
Isms.

4.1.1. Logical Register Implementa t ion wi th the Copy Tech-
nique.

The data structure and tile algorithm for the register file imple-
mentation is the same for B-repair mechanisms as those for E-repair
mechanisms.

4.1.2. Forward Differences.

A forward difference of main memory (register) content between
instruction boundary A and instruction boundary B (A is to the left
of B) is defined as the list of all the modifications to the main
memory (register} space contained in the instructions between A and
B. The positions of these modifications in the forward difference
preserve their order of appearance in the dynamic instruction stream.

Figure 8. Cache design with forward difference.

5. Schemes for Handling Both E- repa l r s and B-repairs.

We describe, in this section, schemes that handle both E-repairs
and B-repairs. Schemes that can handle only E-repairs or B-repairs
have been defined in the last section when actions on checkpoints
and logical spaces were given. We now concentrate on how to

incorporate E-repair and B-repair schemes into a integrated scheme
which handles both types of repairs.

5.1. Directly Combined Schemes.

In these schemes, we actually provide two independent sub-
mechanisms, one for E-repair and one for B-repair.

Definition 4. Schemed, rect(eE,cB) is a repair scheme characterized
as follows.

(1) Two independent submechanisms are used, one for E-
repair and one for B-repair.

(2) A maximum of c E checkpoints are allowed in
activeE(t) at any time t.

(3) A maximum of c B checkpoints are allowed in
aetiveB(t) at any time t.

We need to provide c E + e B + I logical spaces to support
scheme#,,ect(eE,cB): one current, one for each of the eE checkpoints,
and one for each of the e B checkpoints.

The properties of sehemed,,ect(cE,eB) are easily derived from
those for schemeE(CE) and sehemen(eB). The first property is that
schemea,,ect(eE,eB} with the issueE, deliverg, checkE, repairg
(defined in section 3.1), and issueB, verifvB, check n, repair n can pre-
cisely handle all potential E-repairs and B-repairs.

24

The second property is that at least three backup spaces (two
backupE spaces and one backups) must be provided to avoid draining
the active window before the machine can perform check E and to
continue issuing and executing instructions along the predicted path.
This property follows directly from Theorem 2 and Theorem 8.

The third property is the stall condition. Scheme~.ect(cE,es)
has to stall if at least one of the following two conditions occurs.

(1) When a cheek E has to be performed, countE,cE is not 0.

(2) When a check B has to be performed, pendB,~B is not

false.

The fourth property is that when the instruction issuing stalls
in schemed,~tct(c m,eB), the maximal number of active instructions is
the sum of the number of instructions in the fault repair ranges of all
instructions in aetiveE(t). Since there is no such upper limit imposed
by the B-repair submechanism, this property follows directly
Theorem 3.

The direct combination of E-repairs and B-repairs has the
advantage of being clean. All the properties follow directly from the
properties of its subschemes. It, however, has some inefficiency in
the logical space usage due to the lack of interaction of the two sub-
mechanisms.

5.2. Tightly Merged Schemes.

In these schemes, the two submechanisms are more closely cou-
pled together to handle both E-repairs and B-repairs. The scheme is
the same as that for E-repairs except for two differences. First, the
rule for selecting E-repair checkpoints is that the right side boun-
daries of the instructions containing conditional branches serves as
F~-repair checkpoints (as well as B-repair checkpoints). Second,
misst,g~ ~ is added to record whether the branch predictions associated
with the checkpoints are correct or not. If both ezcept,~ht.c and
mis,%#t,c are true, the branch prediction miss is processed and the
exception is ignored. It is clear that since the exception is caused by
some instruction along the wrong branch path. the exception should
not occur due to the architecture specification. Since the algorithm
for F~repair can be easily converted to the algorithm for the tightly
merged scheme, we do not elaborate any more on the resulting algo-
rithm.

Theorem 9. A minimum of two backup logical spaces is required
for any checkpoint merged mechanism to avoid draining the active
window when establishing checkpoints and to continue
issuing/executing instructions along the predicted path of a condi-
tional branch.

5.3. Loosely Merged Schemes.

Definition 5. Schemetoose(c E ,cB) is a repair scheme with c E
backup spaces provided for E-repair purposes and e B backup spaces
provided for B-repair purposes and uses the algorithm presented
below to pick one out of several B-repair checkpoints as E-repair
checkpoints.

Algorithm 4. Actions defined for a loosely merged E-repair and B-
repair mechanism. We concentrate on the check and repair actions
which are the major difference between this algorithm and the others.

Check This action is performed immediately after an instruc-
tion containing an conditional branch is issued. If
pendcB is true, instruction issue has to stall due to

insufficient B-repair backup spaces. Otherwise, we
examine the sum the number of issued instructions in
the E-repair range of activeloose,Cn+l(t } and the number
of issued instructions in the F~repair range of
activeloos~.enIt }. Consider the following two eases.

case 1 The sum is less than a predetermined number. This
means that we have not collected enough instructions
to establish the next E-repair checkpoint. The sum is
stored in an accumulating register. Current is pushed
onto the B-repair hardware stack.

case 2 The sum is greater than or equal to a predetermined
number. This means that we have collected enough
instructions to establish the next E-repair checkpoint.
If counttoos,,eE+e B is not 0, instruction issue must stall

due to insufficient E-repair backup spaces. Otherwise,
the following events happen. BackupE,cB is pushed

onto the E-repair hardware stack. Current is pushed
onto the B-repair hardware stack. The accumulating
register is loaded with the number of issued instructions
in the E-repair range of activeloose,cB+l.

This occurs if ezcepQ~+¢B is true. The content of

backuploose,eE+es is gated to current.

This occurs if misse 8 is true. The content of

backuptoose.~ B is gated to current.

Intuitively, the loosely coupled scheme use only a fraction of
the B-repair checkpoints for E-repair checkpoints. Since we expect
that the B-repair backup spaces can be reused more easily than the
E-repair backup spaces, the loosely coupled schemes are expected to
reduce the stalls due to insufficient E-repair backup spaces while
maintaining high speed repair for B-repairs.

E-repair

B-repair

6. F u t u r e Research and Conc lud ing R e m a r k s .

The central theme of our research is the implementation of
high performance computing engines. Two techniques we have found
to be effective, out-of-order execution and branch prediction, have
forced us to be able to repair our machine to a known previous state.
In this paper we have derived several important properties of general
checkpoint repair, specified schemes for checkpointing, and defined
implementations which we suggest are cost-effective. Simulation and
hardware design are being conducted to evaluate the time and
hardware overhead incurred. Our preliminary design of a high per-
formance single chip engine HPSm [2,14] includes logic to implement
Algorithms 2, 3 and 4. Algorithm 2 checkpoints the registers, algo-
rithm 3 checkpoint the memory for E-repair, and algorithm 4 con-
trois the overall checkpoint repair process.

We are also extending our work to repair mechanisms for three
types of processing systems: tightly coupled multiprocessors with
shared memory, loosely coupled multiprocessors which use message
passing, and uniproeessors with vector, string, and commercial
instructions.

Acknowledgements .

The authors wish to acknowledge the Digital Equipment Cor-
poration and NCR corporation for their generous support of our
research. We also wish to acknowledge our colleagues in the Aquarius
Research Group at Berkeley, AI Despain, presiding, for the stimulat-
ing interaction which characterizes our daily activity at Berkeley.
Part of this work was sponsored by Defense Advance Research Pro-
jects Agency (DoD), Arpa Order No. 4871, monitored by Space and
Naval Warfare Systems Command under Contract No. N00039-84-
C-0089.

References .

[1] Y.N. Patt, W. Hwu, and M. Shebanow, "HPS, A New Microar-
chitecture: Rationale and Introduction," Proceedings of The
18th Annual Workshop on Microprogramming, pp. 103-108,
Pacific Grove, California, December, 1985.

25

]21 W. Hwu and Y. N. Patt, "HPSm, a High Performance Res-
tricted Data Flow Architecture Having Minimal Functionality,"
The 18th International Symposium on Computer Architecture
Conference Proeeedinoe, pp. 297-306, Tokyo, Japan, June 1986.

[31 J . K . L . Lee and A. J. Smith, "Branch Prediction Strategies
and Branch Target Buffer Design," IEEE Computer, vol. 17, no.
1, Jan. 1984.

[4] R. M. Keller, "Look-ahead Processors," Computing Surveys,
vol. 7, no. 4, pp. 177-195, Dee. 1975.

[5[J . E . Smith and A. R. Pleszkun, "Implementation of Precise
Interrupts in Pipelined Processors, "The l£th International
Symposium on Computer Architecture Conference Proceedin#s,
Boston, MA, June 1985.

[6] D . W . Anderson, F. J. Sparacio, F. J. Tomasulo, "The IBM
System/360 Model 91: Machine Philosophy and Instruction
Handling", IBM Journal of Research and Development, vol. 11,
No.l, pp. 8-24, 1967.

[7] R . M . Toma~ulo, "An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units," IBM Journal of Research and Develop-
ment, vol.ll , no. 1, pp.25-33, Jan. 1967.

[8] J .E . Thornton, Design of a Computer - The Control Data 6600,
Scott, Foresman and Co., Glenview, IL, 1970.

[9] S. Weiss and J. E. Smith, "Instruction Issue Logic in Pipelined
Supercomputers," IEEE Trans. on Computers, pp. 1013-1022.
vol. c-33, No. 11, Nov. 1984.

[10] DEC, VAXArchiteeture Handbook, 1981.

[11] S. McFarling and J. Hennessy, "Reducing the Cost of
Branches," The 18th International Symposium on Computer
Architecture Conference Proceedings, pp. 396-403, Tokyo,
Japan, June 1986.

[12] A. J. Smith, "Cache Memories," Computing Surveys, vol.14, No.
8, pp. 478-580, September 198~.

[13] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M.
Wolfe, "Dependency Graphs and Compiler Optimizations,"
Proceedings of 8th POPL, pp. 207-218, Jan. 1981.

[14] W. W. Hwu and Y. N. Patt, "Design Choices for the HPSm
Microprocessor Chip," Proeeedinge of the 20th Annual HICSS,
pp. 329-336, Jan. 1987.

[15] W. W. Hwu and Y. N. Patt, "Checkpoint Repair for High Per-
formance Out-of-order Execution Machines," internal report.

26

