
An Effective On-Chip Preloading Scheme

To Reduce Data Access Penalty

Jean-Loup Baer, Tien-Fu Chen

Department of Computer Science and

University of Washington

Seattle, WA 98195

En@eering

Abstract

Conventional cache prefetching approaches can be
either hardware-based, generally by using a one-block-
Iookahead technique, or compiler-directed, with inser-
tions of non-blocking prefetch instructions. We intro-
duce a new hardware scheme based on the prediction of
the execution of the instruction stream and associated
operand references. It consists of a reference predic-
tion table and a look-ahead program counter and its
associated logic. With this scheme, data with regu-
lar access patterns is preloaded, independently of the
stride size, and preloading of data with irregular access

patterns is prevented. We evaluate our design through
trace driven simulation by comparing it with a pure
data cache approach under three different memory ac-
cess models. Our experiments show that this scheme is
very effective for reducing the data access penalty for

scientific programs and that is has moderate success
for other applications.

1 Introduction

The time when peak processor performance will
reach several hundred MIPS is not far away. Such

instruction execution rates will have to be achieved
through technological advances and enhanced archi-

tectural features. Superscalar or multifunctional unit
CPU’s will increase the raw computational speed. Ef-
ficient handling of vector data will be necessary to
provide adequate performance for scientific programs.
Memory latency will be reduced by cache hierarchies.
Processors will have to be designed to support the syn-
chronization and coherency effects of multiprocessing.
Thu~, we can safely envision that the processor chip
will include several functional units, first-level instruc-

tion and data caches, and additional hardware support
functions. In this paper, we propose the design of an
on-chip hardware support function whose goal is to re-
duce the memory latency due to data cache misses. We
will show how it can reduce the contribution of the on-

chip data cache to the average number of clock cycles
per instruction (CPI)[3].

The component of the CPI due to cache misses de-
pends on two factors: miss ratio and memory latency.
Its importance as a contributor to the overall CPI has
been illustrated in recent papers [1, 5] where it is shown
that the CPI contribution of first-level data caches can
reach 2.5.

Current, and future, technology dictates that on-

chip caches be small and most likely direct-mapped.
Therefore, the small capacity and the lack of associa-

tivity will result in relatively high miss ratios. More-
over; pure demand fetching c-ann~t prevent compulsory

misses. Our goal is to avoid misses by preloading blocks
before they are needed. Naturally, we won’t always be
successful, since we might preload the wrong block, fail
to preload it in time, or displace a useful block. The
technique that we present will, however, help in reduc-
ing the data cache CPI component .

Our notion of preloading is different from the con-

L
ventional cache prefetching 11, 12] which associates a
successor block to the block eing currently referenced.
Instead, the preloading technique that we propose is
based on the prediction of the instruction stream ex-

ecution and its associated operand references. Since
we rely on instruction stream prediction the target
architecture must include a branch prediction table.
The additional hardware support that we propose takes
the form of a look-ahead program counter yA-pc)
and a reference prediction table and associate control

(RPT). With the help of the LA-PC and the RPT,
we generate concurrent cache loading instructions suf-

ficiently ahead of the regular load instructions, so that
the latter will result in cache hits. Although this design

has some similarity with decoupled architectures [13],
it is simpler since it requires significantly less control

hardware and no compiler support.
The rest of the paper is organized as follows: Section

2 briefly reviews previous studies of cache prefetching.
Section 3 in~roduces the basic idea and the supporting
design. Section 4 explains the evaluation methodology.
Section 5 reports on experiments. Section 6 contrasts
our hardware-only design to a compiler solution. Con-

cluding remarks are given in Section 7.

2 Background and Previous work

2.1 Hardware-based prefetching

Standard caches use a demand fetching policy. As
noted by Smith [12], cache prefetching, i.e., the loading
of a block before it is going to be referenced, could be

used. The pure local hardware management of caches
imposes a one block look-ahead (OBL) policy i.e., upon
referencing block i, the only potential prefetch is to
block i + 1. Upon referencing block i, the options are:
prefetch block i + 1 unconditionally, only on a miss
to block i, or if the prefetch has been successful in

176

@ 1991 ACM 0-89791-459-7/91/0176 $01.50

the past. Since memory latencies are high, relative
to processor speed, prefetching introduces additional
risks ofa processor stalling, because thememory bus is

busy servicinga yet unneeded prefetched block rather
than a current miss. This leads Przybylski [11] to ar-

L
gue against complex pre)fetch strategies because ei-
ther there is not enoug memory bandwidth or because
misses are too temporally clustered.

Write buffers, stream buffers[5], and lockup-free
caches [6] are three mechanisms that allow the over-
lap of processor operation with cache requests. Write
buffers allow delaying the writes in favor of more ur-
gent cache loads. Stream buffers are FIFO queues that
are filled sequentially starting from the missing block
address. They work best for I-caches. Lockup-free op-
eration permits the initiation of cache loads (assuming

no hazards) for uncached blocks that will be referenced
in subsequent instructions while the fetching of some
block is in progress.

If some form of branch prediction mechanism is
present, then prefetching based on instruction stream
execution can be implemented (see [4] for an exten-
sive study of prefetch instruction buffers, instruction
target buffers, and I-caches). A sophisticated data

prefetching scheme has been proposed at Illinois [8]
in the context of a multiprocessor running a scientific
workload. In this case, data prefetching becomes more
appealing when memory latency increases and when
more pipelining becomes available in the interconnec-

tion network. Implicit prefetching is present in decou-
pled architectures [13]. Two instruction streams oper-
ate concurrently, communicate via queues, and drive
two execution units: one for data access and one for
functional operations. The data access stream can be
“ahead” of the functional stream and hence prefetch
operands needed in the near future.

2.2 Compiler-directed prefetching

Patterson and Hennessy [3] rightly argue that com-
piler technology should not be separated from architec-
tural design. Compiler-directed prefetching is a case
in point. For example, Porterfield [10] proposes a
non-blocking cache load instruction. This instruct ion

should be positioned enough in advance of the actual
use of its operand, e.g., in iteration i of a loop so that
it can be used in iteration i + 1. Gornish et al. [2]
improve on this method by finding the earliest time at

which such prefetching can be performed.

3 Data Cache Preloading

Prefetching based on sequentiality (OBL, I-stream
buffer) can be successful for the optimization of I-
caches, but much less so for D-caches. Therefore, we
turn our attention solely to the case of D-caches. The
basis of our hardware-based scheme is to predict the
instruction execution stream and the data access pat-
terns far enough in advance, so that the required data
can be preioaded and be in the cache when the “real”
memory access instruction is executed.

3.1 Motivation

The design of the hardware support function that
we propose is based on the regularity of memory access

patterns when they exist and in preventing preloading
when the access patterns are unpredictable.

Consider a program segment with m-nested loops
indexed by 11, 12, -.., Im. Let LPI, be the set of
statements with data references in the loop at level
i. We denote the subscript expression in an LPI, as
constant, linear, or irregular. Given a data reference
r, we can then divide the memory access patterns into
four categories:

Pattern 1:
escrlptlon 1.examples

scalar simple variable ref- mdex, count
erence

zero r E LPIi with A[ll, 12] in LP;3

stride subscript expression tab[I1].off m

unchanged w.r. t Ii LPI,

constant r~ LPI, with A 11] in LPI,
stride subscript expression A I1,Iz],AIIz,I1]

linear w.r.t Ii in LPI=
AIBII]] in LPI

irregular none of the above AII,I] in LPI

Linked List

The difference between scalar and zero stride is that
the latter is a reference to a subscripted array element
with the subscript being an invariant at that loop level

but modifiable at an outer level. Obviously, caches
work well for scalar and zero stride references. Caches
with large block sizes and most of the prefetch strate-
gies discussed previously can improve the performance
for the constant stride category if the stride is small
but will be of no help if the stride is large. Our goal
is to generate preIoads in advance for uncached blocks
in the scalar, zero stride, and constant stride access
categories independently of the size of the stride. At

the same time, we will avoid unnecessary preloading
for the irregular accesses. Our scheme would be most
appropriate for high-performance processors with rel-
atively small first-level caches with a small block size
running programs where the data access patterns are
regular but not necessarily of stride 1.

Data access patterns of load/store instructions will
be kept in a Reference Prediction Table (RPT) which
will be accessed ahead of time by a Look-Ahead Pro-
gram Counter (LA-PC). The LA-PC will be incre-
mented as a regular PC and modified appropriately
with the help of a Branch Prediction Table (BPT).

In an ideal situation, the LA-PC would run b cycles
ahead of the PC, where 6 is the latency to access the
next level in the memory hierarchy.

For example, consider the usual matrix multiplica-
tion loop (for more detail, see Section 3.3):

int A[lOO,lOO],B[lOO,l OO],C[1OO,1OO]
for i = 1 to 100

for j = 1 to 100
for k = 1 to 100

A[i,jl += B[i,k] x C[k,j]

and the pseudo-assembly RISC-like code version of

the computational part of the inner loop, assuming
that the subscripts are kept in registers:

177

LA-PC PA match ?

reference mu
—

prf$c:lon
I

prev

1

branch
target addres 5 prediction

1-
ORL

A------ ----- ----------- ------------- ------------ -------- -------

write bu

:1,
~$e&i:e

data execution branch target

cache t’
* unit---------

Pc
I (

t

Figurel: Block diagram of data preloading

addr instruction comment

500 lW

[1

r4, O r2

[1

;load Bi,k stride 4 B

504 lW r5, O r3 ;loadCk,j stride 400 B

508 mul r6, r5, r4 ;B[i,k] x C[k,j]

512 lW r7, O(rl) ; load A[i,j] stride O
516 addu r7, r7, r6 ; +=

520 SW r7, O(rl) ; store A[i,j] stride O

524 addu r2, r2, 4 ; ref B[i,k]

528 addu r3, r3, 400 ; ref C[k,j]
532 addu rll, rll, 1 ; increase k

536 bne rll, r13, 500 ; loop

At steady state, the RPT will contain entries for the
three load lw and the sw instructions. Since each it-
eration of the inner loop accesses the same location of

A[i,j] (zero stride), no preload will be requested for it.
Depending on the block size, references to B[i7k] (con-
stant stride) will either be preloaded at every Iteration
(block size = 4), or every other iteration (block size=
8), and so on. Load references to C[k,j] (constant stride
with a stride larger than the block size) will generate
a preload instruction every iteration. If the LA-PC is
sufficiently ahead of PC (cf. Section 3.4), the data will
be present at the next iteration.

3.2 Basic Block Diagram

An overall block diagram of the target processor is
shown in Figure 1. The bottom part of the figure ab-
stracts a standard RISC processor with on-chip data
and instruction caches. The additional top part con-
tains:

The Branch Prediction Table (BPT) necessary to
predict the value of LA-PC (naturally, it will be
used also for PC). BPT designs have been thor-
oughly investigated [7, 9] and we will not repeat
these studies here. In our experiments we use the
Branch Target Buffer with two-bit state transition
design described in [7].

The Look-Ahead Program Counter (LA-PC)? a
secondary PC used to predict the execution
stream. The LA-PC is incremented or modified
via the BPT.

● The Reference Prediction Table (RPT) used for

preloading blocks in the data cache. An adder is

also needed for stride computations.

● The Outstanding Request List (ORL) that holds

the addresses of in progress or outstanding re-
quests.

Each RPT entry (cf. Section 3.3) corresponds to
a load/store instruction and contains, hopefully, the
address of the operand to be loaded. When the LA-
PC hits a load/store instruction that has already been
stored in the RPT, a check is made to see whether (1)

the state of the entry (cf. Section 3.3) is for no pre-
diction, or (2) the data is already in the cache, or (3)
the preloading of the block is in pr?gress (by checking
ORL). If none of these three conditions is true, a re-
quest to load the operand is performed and its address
is stored in ORL. If the LA-PC hits a branch instruc-
tion that is already in the Branch Prediction Table, a
predicted value is given to the LA-PC. It will be cor-
rected later if the rediction was wrong. When the PC

fencounters a load store instruction, it modifies (or en-
ters) the corresponding entry in the RPT. The same
process occurs for a branch instruction in the BPT.

On a store, a write-allocate, copy-back mechanism
is employed. On a replacement, the replaced dirty line
is put in the write buffer and handled in the usual way.
However, flow dependencies require that each preload
or data miss be checked with the contents of the write
buffer,

Note that, unlike the instruction prefetch buffer
structure in [8] or decoupled architectures, the sys-
tem does not need to decode the predicted instruction
stream. Instead, the prediction mechanism is based on
the history information of the execution stream.

3.3 Reference Prediction Table – RPT

The Reference Prediction Table (RPT) is used to
keep track of previous reference addresses and asso-
ciated strides for load and store instructions. In the
following we will give examples using load instructions
(cf. Section 3.5 for the handling of stores). In our cur-
rent design, RPT is organized as a cache. Each RPT
entry has the following format (see Figure 2).

178

● A.2. Potential preload.

●

●

●

●

LAiPC
1

r -----

D

preloading

I r add P ~ddre~~
t 1
1

w1I tag prev-addr stride state
L

Pc
sub

effective address

(a) reference prediction table

incorrect I /

J %,,..,(update .tr, e)

GE=e)@~’)
(b) state transition by PC

Figure 2: Reference Prediction

tag: corresponds to the address of the Load/Store
instruction

prev-addr: the last (operand) address that was ref-
erenced when the PC reached that instruction.

stride: the difference between the last two ad-
dresses that were generated when a state transi-
tion (see below) occurred from init to transient.

state: a two-bit encoding (4 states) of the past
history; it indicates how further preloading should

be generated. The four states are:

– initial: set at first entry in the RPT or after
the entry experienced an incorrect prediction

from steady state.

– transient: corresponds to the case when the
system is not sure whether the previous pre-
diction was good or not. The new stride will
be obtained by subtracting the previous ad-
dress from the currently referenced address.

– steady: indicates that the prediction should
be stable for a while.

. no prediction: disables the preloading for this
entry for the time being.

When the LA-PC encounters a load instruction, there
are two mutually exclusive possibilities:

● Al. No action.
There is no corresponding entry in the RPT, or
there is an entry in state no prediction.

There is a corr~sponding entry. A block address
(prevm-klr + stride) is generated. If the block
is uncached and the address is not found in the
Outstanding Request List (ORL), a preload is ini-

tiated. This implies sending a request to the next
level of the memory hierarchy, or buffering it if
the communication channel is busy. The address
of the request is entered in the ORL.

When the PC encounters a load/store instruction
with effective operand address addr, the RPT is up-

dated as follows: (To make it clear, we denote correct
by the condition: addr = (prevmddr + stride) and in-

correct by the condition: addr # (prev-addr+ stride).)

● B.1. There is no corresponding entry. The in-
struction is entered in RPT, the prev-addr field is

set to addr, the stride to O, and the state to initial.

● B.2. There is a corresponding entry. Then:

(a) Transition -

When incorrect and state == initial:
Set prev-addr to addr, stride to (addr –
prev-addr), and state to transient.

(b) Moving to/being in steady state -

(c)

(d)

(e)

When ‘correct and
(state == initial, transient, or steady):

Set prev-addr to addr, leave stride un-
changed, and set stat e to steady.

Steady state is over; back to initialization –
When incorrect and state = steady:

Set prev~ddr to addr, leave stride un-
changed, and set state to initial.

Detection of irregular pattern –

When incorrect and state = transient:
Set prev-addr to addr, stride to (addr –
prev-addr), and state to no prediction.

No prediction state is over; back to transient,.. .

(f)

When correct and state = no preatczzon:
Set prev_addr to addr, leave stride un-
changed, and set state to transient.

Irregular pattern –
When incorrect and state = no prediction:

Set prev-addr to addr, stride to (addr –
prevaddr), and leave state unchanged.

Figure 3 illustrates how the Reference Prediction
Table is filled and used when the inner loop of the
matrix multiplication code is executed. We restrict our
example to the handling of the 3 load instructions. Let
us assume that the loop code starts at address 500, i.e.,

the load instructions are at addresses 500,504, and 512,
and that the base addresses of matrices A, B and C are

respectively at locations 10,000, 50,000, and 90,000.
Before the start of the first iteration, the RPT can

be considered empty since there won’t be any entry
corresponding to addresses 500, 504, and 512. Let us
assume also that no element of A, B, or C has been
cached.

When the LA-PC gets the value 500, a check is made
in the RPT to see if there is a corresponding entry.

I79

tag prev.addr stride state

500 50,000 0 2ntt

504 90,000 0 zntt

1 ,

I512i 10,000 0 I md i
After iteration 1

(a)

I I 1
512 1 10,000 0 steady

After iteration 2
(b)

tag prev.addr stride state

500 50,008 4 steady

504 90,800 400 steadu

, , ,
512 I 10,000 0 steady J

After iteration 3

(c)

Figure3: Example: Filling RPT entries

Since there is none: no action is taken (cf. A. 1 above).
The same “no action” occurs when the LA-PC takes
the values 504 and 512.

When the PC executes for the first time the load
instruction at address 500, there is no corresponding

entry, Therefore, the instruction is entered in RPT
with its tag (500), the prev.addr field set to the address
of the operand, i.e., 50,000, the stride set to O, and the
state to initial (cf. B. 1 above). Similar actions are

taken for the other two load instructions (cf. Figure
3a). In all three cases, there will be cache misses.

Assume now that the LA-PC is 4 instructions ahead
of PC and that a branch taken has been predicted at
the end of the loop. While the PC controls the end
of the normal execution of the first iteration, the LA-
PC will be reset at 500. Since there is a corresponding
entry in RPT, we are in a preload situation (cf. A.2).
The block address to be preloaded is (50, 000+ O) =
50, 000. The block is cached and therefore no action is

taken. The same holds true when the LA-PC hits the

other two load instructions.

When the PC executes the load instruction at ad-
dress 500 at the beginning of the second iteration,
we are in the situation described as “transition” (cf.
B.2.a). Therefore, the prev_addr field is set to 50,004,
the stride to 4, and the state to transient. Depending
on the block size, we could have a cache miss (block
size = 4 bytes) or a cache hit (block size > 4 bytes).
A similar action is taken for the load at address 504
(cf. Figure 3. b). However, for the load at instruction
512, we are in the situation “moving to steady state”.

The prev_addr and stride fields are unchanged and the
state becomes steady. Of course, we had a cache hit.

When LA-PC hits instruction 500 for the third time,
we are again in situation A.2. The block address
50,004 + 4 = 50,008 is generated. If there is a cache

miss (block size <8 bytes) a preload request is gener-

ated. A preload request will be generated for address
90,800 (instruction 504) and the preload for address
10,000 at address 512 will be squashed since the block

is still in the cache.

During the third iteration, when PC hits instruc-

tions 500 and 504 the changes shown in Figure 3.c will
occur in the RPT table. No change will occur for the
load at address 512. The same process will be repeated
for all further iterations.

In summary, scalar and zero stride references will
pass from the initial to the steady state in one transi-

tion (instruction 512). The constant stride references
will pass through the transient state to “obtain” the
stride and then stay in steady state (instructions 500
and 504). References with two wrong predictions in
a row (not shown in the example) will be prevented
from being preloaded by passing to the no prediction

state; they could re-enter the transient state, provided
that the reference addresses become predictable. For

instance, accesses to elements of a triangular matrix
may follow such a pattern. Note that the stride field

is not updated in the transition from steady to initial
when there is an incorrect prediction. In the case of
nested loops, after finishing executing the inner loop,
the stride w1ll most likely be correct for the next itera-

tion of the outer loop. When the execution revisits the
inner loop, the preloading scheme will suffer a penalty
of one or two iterations depending on the addressing
function.

3.4 Look Ahead Distance (LA-distance)

Ideally, we would like to keep a Look Ahead distance
between the current PC and the LA-PC equal to the
latency 6 of the next level in the memory hierarchy.
Clearly this can only be approximated, since the LA-

distance is variable. Initially, and after each wrong
branch prediction, the LA-distance will be set to one,
i.e., the LA-PC points to the instruction following the
current PC. When a real cache miss occurs or when
a preload is not completed by the time the data is
actually needed, the current execution is stalled, i.e.,
the value of PC does not change, while the LA-PC can
still move ahead and generate new requests (recall the
role of the ORL).

As the LA-distance increases, the data preload can

be issued earlier than its actual need so that the av-
erage memory access time is reduced. However, the

further PC and LA-PC are apart, the more likely the
prediction of the execution stream will be incorrect be-
cause the LA-distance is likely to cross over more than
one basic block. Moreover, we don’t want some of the
prefetched data to be cached too early and displace
other needed data. Therefore, we introduce a system
parameter called Look Ahead Limit (LA-limit d) to
specify the maximum distance between PC and LA-
PC. Thus, the LA-PC is stalled (until the normal exe-
cution is resumed) in the following situations: (cf. Sec-

?

tion 5 (1) The LA-distance reaches the specific limit
d, or 2) the ORL is full.

3.5 Cache misses

On a cache read miss, the cache controller checks
the ORL. If the block has already been requested, a

180

“normal” (but less lengthy) stall occurs. We refer to
the cycles that the CPU waits for the preloaded block
to be in the cache as hit-wait cycles. Otherwise, a

regular load is issued with priority over the buffered
preload requests.

A write miss in the data cache will cause the system

to fetch the data block and then update the desired
word. If the block size is larger than a single word, we

can initiate preloading as for a read miss. When the
block size is one word, no preload needs to be issued but

a check of the ORL is needed for consistency purposes.
In case of a match, the entry in the ORL must be
tagged with a discard status so that the data will be
ignored when it arrives.

When the LA-PC has to be reset because of an
incorrect branch prediction, the buffered preload re-
quests are flushed. Finally, when a preload raises an
exception (e. g., page fault, out-of-range violation) we
ignore the preload. The drawbacks of a wrong page
fault prediction would far outweigh the small benefits

of a correct preload.

4 Methodology

4.1 Trace-driven simulation

We evaluated our design through trace driven simu-
lation. Several scientific programs and general applica-
tions (see Table 1) were traced on a DEC Station 5000
(R3000 ‘MIPS CPU using the pixie facility. Data refer-

Lences and intervals etween two references are recorded
in each trace. Two of the applications (Matrix and

Spice) are from the SPECl Benchmarks; Matrix is a
vectorizable floating-point benchmark and Spice is less

likely to benefit from vectorization. Four programs
(QCD, MDG, MG3D, and TRFD) are from the PER-
FECT CLUB benchmarks[14]. Those programs are ex-
amples of scientific computation workloads. Pverify is
a VLSI CAD tool, written in C, determining whether
two boolean circuits are functionally identical. The
other programs are Unix utilities. The compilers we

used were the RISC C compiler and the MIPS F77
compiler, both with default options.

The traces captured at the beginning of the exe-
cution of the SPEC and PERFECT benchmarks were
discarded because they are traces of initial routines
that generate the test data for the benchmarks. No
statistical data was recorded while the system simu-

lated the first 500,000 data accesses. These references
were used however to fill up the cache, the BPT, and
the RPT in order to simulate a warm start.

Table 2 shows the dynamic characteristics of the
workload. The columns below data references show
the proportions of data references (weighted by their
frequency) that belong to the categories mentioned
previously. They are one indication of the reference
predictability of the program under study. The col-
umn branch prediction miss ratio shows the outcome of
branch predictions with a 256-entry BPT, which func-
tions like a 2-bit Branch Target Buffer[7]. This is a
second indication of the reference predictability. The
last column rejerence prediction miss ratio denotes the

1SPEC is a trademark of the Standard Perfo rmance Evalua-
tion Corporation.

total # in M

Name Description (prob- instr refer. wrt
lem size)

Matrix Matrix multlphca- 48.2 22.2 /.4

tion (300x300)

Spice Analog circuit sire- 42.3 15.6 2.9
ulation and analysis

Q~~ Quantum c hromo- 39.7 17.4 4.1

dynamics
(12X12X12X12)

MDG Liquid wa- 38.6 19.2 4.2

ter simulation (343
molecules)

MG3D Seismic migration 47.5 18.1 2.5
(125x120)

TRFD Quantum mechan- 40.0 20.8 4.3
ics

Pverlf y Logic verdicatlon

Compress Data compression

Nroff Text formatter

Asmbler MIPS assembler

Table 1: Description

38.2 12.9 2.5

66.7 16.1 5.1

7.6 1.9 0.5

9.2 2.7 0.8

of benchmarks

fraction of total incorrect predictions when preloading

requests were generated using a direct-mapped RPT
of 256 entries. Incorrect reference predictions could

be caused by incorrect branch predictions, RPT entry
conflicts, and incorrect states in the RPT table. As
can be seen, the scientific programs have better pre-
dictability.

We view our scheme mostly as an enhancement to an
on-chip D-cache. Nonetheless, we will evaluate the per-
formance of the scheme with various RPT, BPT, and
cache sizes and three memory models. All of the data
caches, RPT, and BPT in the experiment are direct-

mapped and the block size is 16 bytes.

The system is simulated subject to restrictive mod-
els for the communication between the various levels of

the memory hierarchy (cf. next section). We consider

Name

~
Spice

Qc~

MDG
MG3D
TRFD

~

Compre5

Nroff

Asmbler

0.657 0.169 0.173 0.108 0.132

0.805 0.098 0.097 0.149 0.176
0.637 0.138 0.225 0.314 0.299

Table 2: Test program characteristics

181

the following three types of architectures:

1.

2.

3.

Pure Data Cache of size N KByte.
This is for providing a baseline comparison.

Data cache ofiVKByte; 256-entry RPTand 256-
entry BPT

This design is an “add-cost” design albeit a real-
istic one.

Data cache of N/2 KBvte: 32 N-entrv RPT and
32 N-entry BPT (but n: more than 2~6)
This “no-cost” model assumes that the RPT and
BPT will take as much real estate on the chip as
half the D-cache. That accounts approximately

for the RPT and BPT entries and the additional
logic.

We let N vary from 4 to 64.

4.2 Memory models

Since there are several sources of data requests from
the cache/RPT combination (e.g., cache miss, preload-
ing requests) to the next level in the memory hierarchy,
we need to decide how to handle contention and con-
currency. Contention occurs when either (1) a cache
miss is blocked by a previous preload request, or 2)

ia preload is blocked by a previous preload or a e-
mand cache miss. We will assume, conservatively, that
a fetch in progress cannot be aborted. However, a

real cache miss will be given priority over outstand-
ing preload requests.

fetch A
+ + fetch B

(a) req A xfer A
I

No -
7

~ +&&e i+ req B
over appeal

xfer B
I /

[b) ~ + ~‘~+:j-- i + xfer A
overlapped ~eq A

~--------------+
xfer B

req B
I

(c)
xfer A

I
xfer El

I

pipelined t I

Figure 4: Timing of data access for memory models

We consider three models of access to the next level
of the memory hierarchy (cf. Figure 4):

1.

2.

Non overlapped.
As soon as a request is sent to the next level, no
other request can be initiated until the (sole) re-
quest in progress is completed. This model is typ-
ical of an on-chip cache backed up by a second
level cache.

Overlapped
The access time for the memory request can be
decomposed into three parts: request issuing cy-
cle, memory latency, and transfer cycles. Dur-
ing the period of memory latency other data re-
quests can be in their request issuing or transfer-
ring phases. However, no more than one request

3.

issuing or transfer can take place at the same time.
This model represents split busses and a bank of
interleaved memory modules or secondary caches.

Pipelined
A request can be issued at every cycle. This model
is representative of processor-cache pairs being
linked to memory modules through a pipelined
packet-switched interconnection network. We as-
sume a ~etch bypass mechanism, i.e., the desired
word is available as soon as the first data response
arrives.

The parameters of each model used in our simula-
tion for a 16-byte line are summarized in Table 3.

Model Component cycle cycles

time /line

Table 3: Fetch latency of each model

4.3 Other parameters

The traces were simulated assuming a RISC CPU
model that executes one instruction per cycle. Each
cache write hit takes one extra cycle to update the
data in the cache. A 4-entry ORL is used for buffering
preload requests. There is a 4-entry write back buffer
used for write-backs. Unless otherwise specified, the
LA-limit d is equal to 1.58, where & is the latency of
the next level in the memory hierarchy.

5 Performance Evaluation

Since our main interest is in the influence of preload-
ing on data cache access, we assume: (1) no I-cache
miss (reasonable since preloading is active only during

loops; the loop code should be resident in the I-cache),
(2) all operations take one cycle i.e., perfect RISC

!lpipelining), (3) no wait on a cache it, (4) the proces-
sor stalls on a cache miss until the data is in the cache

(i.e., no nonblocking loads), (5) there is no miss on the
next level of the memory hierarchy.

We simulate the memory system on a cycle-per-cycle
basis so that we can have an accurate count of the
delays incurred by cache misses and by hit-wait cycles.

Assumptions 2 and 4 are related. Preloading could
become more advantageous if some instructions (e.g.,
floating-point instructions were multi-cycles and were
executed after a preloa c1 was initiated but before
the preloaded data was needed. This would have a
tendency to reduce hit-wait cycles. Similarly, these
multi-cycle instructions would be advantageous for a
nonblocking-load scheme, and therefore would reduce
the penalty due to cache misses. Measuring exactly
these effects would require a cycle-per-cycle simulation

182

CPI

(data

access)

CPI

(data

access)

— Matrix —

0.50

1

&
‘.=

*---
*--__*___+

0.37

4 8 16 32 64

CPI

(data

access)

0.50

0.40

0.31

0.21
I

— Compress —
Nonoverlapped

* -~ Pure caches%. &C+ P, ad”
4C+P, n0

Id cOst
B) cost

\

‘u
W??j

“?3%,
\

‘9Q%
‘.

070

012 ~
4 s 16 32 64

Cache Size (K) Cache Size (K)

— Spice — — MG3D —

j +%% ,,,,: ‘&%

0.12 I I I I 0.00
I 1 I I I i I I

4 8 16 32 64 4 8 16 32 64

Cache Size (K) Cache Size (K)

Figure 5: CP1da$a acc~,, vs. Cache size on Non overlapped model

of all instructions and is beyond the scope of this pa-

per. In a first approximation, we feel that assumptions
2 and 4 balance each other.

5.1 Metrics

We present the results of our experiments by using
the contribution to the CPI as the main metric. The
contribution to the CPI due to data access penalty is:

cpIda~a .Cce,a =

total data access time

number of instructions executed

In the figures we show the percentage of data access

penalty reduced by the preloading scheme, i,e.:

% of penalty reduced =
CPIcache – CPIPTelOad ~ ~00

CPIcaCh~

where CPIcaChe corresponds to the pure cache experi-

ment and CPIPVelOad to the “add-cost” model.
We compare the preloading scheme with the equiv-

alent pure data cache design while varying the cache
size. To be concise we often contrast only two extreme
cases of the benchmarks.

5.2 Preloading performance for the

Nonoverlupped model

Figure 5 presents the performance of the “no-cost”
and “add-cost” organizations with varying cache sizes
for the Non overlapped memory model. The “add-cost”
organization always performs better than the pure
cache scheme since it has the same amount of cache

and, in addition, the preloading component. The “add-

cost” organization will always perform better than the
“no-cost” since it has more cache with at least the same

amount of preloading hard ware (the “no-cost” at cache
size N Kbyte has the same performance as the “add
cost” at cache size lV/2 Kbyte).

The results show that the “add-cost” preloading
scheme can reduce the data access penalty from 10% up
to 95% compared to a pure data cache. The additional
cost paid for preloading is justified by the significant
performance improvement. The ~elative advantage. of
an “add-cost” feature increases shghtly with cache size

for programs with good predictability. As cache size
increases, the higher proportion of compulsory misses
is compensated by a reduction in the proportion of con-
flict and capacity misses. The program Spice does not

have the above characteristic. From the fact that Spice
has a larger CPI contribution and shows an obvious
drop in the CPI from 32K to 64K, we conjecture that
it has a significant proportion of conflict and capacity

misses.
In the case of the “no-cost” organization, the re-

sults are mixed. Programs such as Matrix that have
very long inter-reference intervals for each individual
data element, very large data sets (i.e., non-cache resi-

dent), and good predictability, benefit almost as much
as in the “add-cost” case. In programs like Spice and
MG3D where the data sets are such that there is a need
for a cache of minimal size before the hit ratios are
high enough, the advantage of the preloading feature

is offset by the penalty of halving the cache size until
the data locality can be captured. Once this size is
reached, the “no-cost” organization is almost near the

183

— Spice — — MG3D —
Overlapped

,,: +,3% ,,,: G

access)

0.22 I I I I I I 0.01 I I I I I I
4 8 16 32 64 4 8 16 32 64

Cache Size (K) Cache Size (K)

Figure 6: CP1data .Cc.,, vs. Cache size for the Overlapped model

CP1

(data

access)

1,51

1.13

0.75

0.38

0.00

— Matrix300 —
I

7SS 7%
I I I I
4 8 16 32 64

CPI

(data

access)

1.54

1.25

0.96

0.67

0.38

— Compress —
Piplined

-o- Pure cache
& C + P, add cmtc

\

\

4 C + P, no cost
\

‘%a
\,

‘G?
\

‘\ :

‘K%
I

I I I I { I
4 8 16 32 64

Cache Size (K)
Cache Size (K)

Figure 7: CPIdata .ece~. vs. Cache size for the Pipelined model

“add-cost” since most of the predictable cache misses

have been removed.

The programs Compress, and Pverify not shown in

Figure 5, do not benefit much from preloading. This
is not surprising considering their characteristics (see

Table 2). Compress relies on a data-dependent table
and Pverify contains linked lists data structures and a

large number of pointer-based indirect accesses.

5.3 Preloading performance for the Over-

lapped and Pipelined models

Figure 6 and Figure 7 show respectively the effects
of preloading for the Overlapped and Pipelined mod-
els. Since these models are less band width rest rict ive
than the Nonoverlapped, the preloading could take ad-
vantage of the additional degree of freedom to preload
data blocks. On the other hand, the latency is longer
and any incorrect preload will result in a larger penalty.

In Figure 6, we see that both “add-cost” and “no-
cost” preloading of the program Spice are slightly more
advantageous than in the Nonoverlapped case. In the
case of MG3D, the effectiveness of the preloading is
comparable to that of Nonoverlapped.

The Pipelined experiments shown in Figure 7 indi-
cate that the relative improvements in program Ma-
trix are similar to those in the Nonoverlapped model.
However, the absolute reduction in CPI is more than 1
cycle which is quite significant (the absolute reduction
is larger since the memory latency is larger). The re-
sults show that the preloading can bring into the cache

almost all data blocks which could miss and thus elim-

inate the miss penalty, provided that the communica-
tion channel allows it to do so.

The effectiveness (percentage of penalty reduction)

of the preloading scheme in the Pipelined model for
the program Compress is slightly less than that of the
Nonover/apped model. This is due to the fact that
the longer latency will cause more penalty whenever

the preload is incorrect. Furthermore, the larger LA-
distance may cause more incorrect branch predictions.

5.4 Preloading performance vs. Look-

ahead Limit

Setting the LA-limit d is constrained by two oppo-
site effects. On one hand, when the data misses are
clustered and the memory model is restrictive like in
the Nonover[apped and Overlapped models, a larger d
allows earlier issue of preload requests and thus can
better take advantage of the limited memory band-
width to reduce the hit-wait cycles. On the other hand,
d should not span over too many basic blocks so that
the value of LA-PC is not based on many contingent
predict ions.

Our experiments show that a value of d such as

6 ~ d s 26 seems correct for the Nonoverlapped and
Overlapped models. As illustrated in Figure 8, when

d < 6 (20 cycles in the figure , each access to the
/preloaded block in progress wil be a hit-wait access.

The contributed hit-wait cycles are decreasing as d ap.

preaches 6. In the program MG3D and other pro-

184

— MG3D — — Pverify —

0-- —8--0--,- .+ -+-+ .* —*—+ +—+—-b—-+-+— +- +-*-+--4
0.23- 0.66- +- Pure cache

““: ~, ~:~~ ~,

+- C + P, add Cost

access)

0.07 0.55
4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

LA-limit
(On cache size of 16K, latency 6=20)

LA-limit

Figure 8: CP&~a vs. LA-limit for the Overlapped model

grams with low CPIaata a=c.,s, a local minimum for
CPIda~a .Cce,a happens around d = b = 20, since

the cache misses do not saturate the communication

channel. It is not necessary to issue the preload re-
quests earlier. An increase in d will result in a slight

~PI&~a3 increase because incorrect predictions

bring more negative effects. However, for programs
such as Pverify with low predictability and high (clus-
tered) miss ratios, the CPIdata .Cee.g is not optimal at
d = 6, but for a larger value of d.

In general, the more contentious the memory model
is, the more sensitive the preloading will be to the set-

ting of the LA-limit d. We conjecture that it would be
less interesting to set d >6 for the Pipehned model.
From the above discussion, it appears that a good set-
ting of the LA-limit is also a characteristic of the work-

load. In future work, we will examine the setting of a
dynamic LA-limit based on the length of the current
basic block.

6 Comparisons with other schemes

6.1 Hardware preloading vs. soft ware

prefetching

A potential criticism of our approach is that a com-
piler could, at no extra hardware cost, capture the reg-
ular access patterns as well as our hardware scheme,
could issue prefetch requests as early as needed and,
better yet, would not need to consider the irregular
patterns at all. However, a compiler approach may

have the following disadvantages:

1. Extra prefet ch or cache load instructions may in-
crease the number of instructions to be executed
by 20%, since there are between 25% and 35% of
instructions referencing memory.

2. The number of prefetch instructions can be de-
creased by clustering them (e. g., using vector

load/store instructions[2]). This has two draw-
backs when small on-chip caches are the targets.
First, there is a higher probability of displacing
useful data, and, second: the communicant ion chan-

nel is dedicated to a single transfer for a longer
period of time.

3. A compiler can move instructions ahead (e.g., load

for the (i + d)st iteration while executing the @

iteration) thus removing the drawbacks listed in

item 1 but with the dangers of cache pollution if
prefetching occurs too early or of contribution to

hit-wait cycles if it occurs too late.

4. A compiler must perform conservative array sub-
script analysis for the prefetching instructions.
Therefore it will not uncover some of the run-time

constant stride or data-dependent patterns that
will be detected by the hardware scheme.

It is clear that compiler interaction can help the
hardware scheme. Loop unrolling and prevention of

preloading of obvious irregular access patterns are pri-
mary examples.

6.2 Hardware preloading vs Lockup-free

Cache/Decoupled Architecture

Conce tually, lockup-free caches, decoupled archi-

t’tectures 13], and our scheme bear the same idea: al-
low the processor to continue executing while a mem-
ory request is being serviced. What make our scheme
different is that the preload is a non-binding request
(it is a “hint” and can be issued earlier than when the
data block is really loaded) whereas the load in the
lockup-free cache and other architectures is binding (a
load is generated only when the address of the required
data is known).

The LA-distance in our scheme is set so that the
data is (optimally) made available “just in time” while
the overlap of access time with computation time in the
other architectures is subject to the data dependence
distance. The latter is usually small when compared
with the memory latency. However, our scheme needs
to pay the price of the waste of memory bandwidth
due to incorrect predictions.

As a matter of fact, the preloading scheme is orthog-

onal to the lockup-free concept. We could have the
non-binding preload be issued earlier, use the binding
load to ensure the correctness without blocking the ex-
ecution of instructions after the load, and require the
machine to block only when an instruction needs to use
the data.

185

7 Conclusions

In this paper we have proposed and evaluated a de-

sign for a hardware-based preloading scheme. The goal

of this support unit is to reduce the CPI contribution
associated with data cache misses. The basic idea is
to predict the instruction stream with a look-ahead
program counter, LA-PC. When the LA-PC encoun-

ters a load/store instruction it predicts the address of
the block to be preloaded. Predicted addresses are
stored and updated in a cache-like Reference Predic-
tion Table and associated finite-state transition table.

Our scheme solves two aspects of a prefetching policy:
(1) when to prefetch - at most d (Look Ahead limit)

cycles ahead of current execution, (2) which block to
prefetch - the most one likely to be referenced - or not

to prefetch at all.

We have compared a pure cache baseline archi-

tecture, an “add-cost” unit consisting of the original
cache and the hardware support unit, and a “no-cost”

unit that has part of the cache being replaced by the
preloading unit. We have evaluated these organiza-

tions using three different memory models with in-
creasing possibilities of overlap. The ‘(add-cost” de-
sign works very well in all programs. The “no-cost”
design is quite beneficial for scientific applications that
exhibit regular data access patterns. Its benefit is mod-
erate on applications that have more irregular data ac-
cess patterns. Memory bandwidth may slightly limit

the advantages of the preloading scheme, but the prob-
lem can be alleviated by properly setting the maximum
number of cycles allowed between the LA-PC and the
regular PC. This scheme could certainly be helped by
compiler interaction through mechanisms such as loop
unrolling and better prediction.

The introduction of a preloading hardware func-
tion in a multiprocessor system poses several ques-
tions. Cache coherence is complicated by the preload
requests. The way to capture the regular patterns in
a uniprocessor system is not necessarily identical to
that of the multiprocessor case, since the loop itera-
tions will be spread over several processors. Memory

traffic could increase because of incorrect predictions
and more invalidations on preloaded data blocks. Our
future study on multiprocessor issues will include: (1)
the design of a hierarchical memory system in which a
non- binding preload is used to “hint” at the coherence

operations and a binding load is used to ensure correct-
ness, (2) the investigation of some scheduling and data
allocation techniques to retain the regular data access
pattern in each processor, (3) the examination of a
more accurate approach to generate preloads and the
assessment of the impact of preloading on the memory
traffic.

Acknowledgments

We would like to thank Susan Eggers for her helpful
comments on an earlier version of this paper and Mike
Smith at Stanford for his help with the pixie utility.
This work was supported by NSF Grants CCR-8904190
and CCR-8702915.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

A. Borg, R. E. Kessler, and D. W. Wall. Gener-
ation and analysis of very long address traces. In
Proc. of the 17ih Annual Int. Symp. on Compuier
Architecture, pages 270-281, May 1990.

E. Gornish, E. Granston, and A. Veidenbaum.

Compiler-directed data prefetching in multipro-
cessor with memory hierarchies. In Proc. 1990 Int.
Conj on Supercomputing, pages 354-368, 1990.

J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Mateo, CA, 1990.

M. D. Hill. Aspects of Cache Memorg and Instruc-

tion Bufler Performance. PhD thesis, University
of California, Berkeley, 1987.

N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-

associative cache and prefetch buffers. In Proc.
of the 17th Annual Int. Symp. on Computer Ar-

chitecture, pages 364–373, May 1990.

D. Kroft. Lockup-free instruction fetch/prefetch
cache organization. In Proc. of the 8th Annual

Int. Symp. on Computer Architecture, pages 81-
87, 1981.

J. K. F. Lee and A. J. Smith. Branch prediction
strategies and branch target buffer design. Com-
puter, pages 6–22, January 1984.

R. L. Lee, P-C. Yew, and D. H. Lawrie. Data
prefetching in shared memory multiprocessors. In
Proc. of the Int. Con~ on Parallel Processing,
pages 28–31, 1987.

C. H. Perleberg and A. J. Sl I ith. Branch tar-
get buffer design and optimiza I III. Technical Re-
port UCB/CSD 89/552, Univc .ity of California,
Berkeley, December 1989.

A. K. Porterfield. Software mei 11ods for improve-

ment of cache performance on supercomputer ap-
plication. Technical Report COMP TR 89-93,

Rice University, May 1989.

S. Przybylski. The performance impact of block
sizes and fetch strategies. In Proc. of the 17th An-
nual Int. Symp. on Computer Architecture, pages

160-169, May 1990.

A. J. Smith. Cache memories. ACM Computing
Surueys, 14(3):473–530, September 1982.

J. E. Smith. Decoupled access/execute computer
architecture. In Proc. of the 9th Annual Int. Symp.

on Computer Architecture, pages 112–119, 1982.

The Perfect Club, et al. The Perfect Club bench-
marks: Effective performance evaluation of super-
computers. Int. J. of Supercomput er Applications,
23(3):5-40, Fall 1989.

186

