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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 

 

 Multi-cycle and Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

 

 Out-of-Order Execution 

 

 Issues in OoO Execution: Load-Store Handling, … 
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Reminder: Readings for Next Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      HW3 summary paper 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Reminder: Readings for Next Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985). HW3 summary paper 
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Reminder: Relevant Seminar Tomorrow 

 Practical Data Value Speculation for Future High-End 
Processors 

 Arthur Perais, INRIA (France) 

 Thursday, Feb 5, 4:30-5:30pm, CIC Panther Hollow Room 
 

 Summary: 

 Value prediction (VP) was proposed to enhance the 
performance of superscalar processors by breaking RAW 
dependencies. However, it has generally been considered too 
complex to implement. During this presentation, we will 
review different sources of additional complexity and propose 
solutions to address them.  

 

 http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minars  
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Recap of Last Lecture 
 Data Dependence Handling 

 Data Forwarding/Bypassing 

 In-depth Implementation 

 Register dependence analysis 

 Stalling 

 Performance analysis with and without forwarding 

 LC-3b Pipelining 

 Questions to Ponder 

 HW vs. SW handling of data dependences 

 Static versus dynamic scheduling 

 What makes compiler based instruction scheduling difficult? 

 Profiling (representative input sets needed; dynamic adaptation difficult) 

 Introduction to static instruction scheduling (e.g., fix-up code) 
 

 Control Dependence Handling 

 Six ways of handling control dependences 

 Stalling until next fetch address is available: Bad idea 

 Predicting the next-sequential instruction as next fetch address 
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Tentative Plan for Friday and Monday 

 I will be out of town 

 Attending the HPCA Conference 

 

 We will finish Branch Prediction on either of these days 

 

 Lab 2 is due Friday 

 Step 1: Get the baseline functionality correct 

 Step 2: Do the extra credit portion (it will be rewarding) 

 

 Tentative Plan: 

 Friday: Recitation session  Come with questions on Lab 2, 

HW 2, lectures, concepts, etc 

 Monday: Finish branch prediction (Rachata) 
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Sample Papers from HPCA  

 Donghyuk Lee+, “Adaptive Latency DRAM: Optimizing 
DRAM Timing for the Common Case,” HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-
dram_hpca15.pdf  

 

 Gennady Pekhimenko+, “Exploiting Compressed Block Size 
as an Indicator of Future Reuse,” HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/compression-aware-
cache-management_hpca15.pdf  

 

 Yu Cai, Yixin Luo+, “Data Retention in MLC NAND Flash 
Memory: Characterization, Optimization and Recovery,” 
HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-
retention_hpca15.pdf  
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Control Dependence Handling 

9 



Review: Control Dependence 

 Question: What should the fetch PC be in the next cycle? 

 

 If the instruction that is fetched is a control-flow instruction: 

 How do we determine the next Fetch PC? 

 

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction? 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review: Guessing NextPC = PC + 4  

 Always predict the next sequential instruction is the next 
instruction to be executed 

 This is a form of next fetch address prediction (and branch 
prediction) 
 

 How can you make this more effective? 

 

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed 

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch 

 Profile guided code positioning  Pettis & Hansen, PLDI 1990. 

 Hardware: ??? (how can you do this in hardware…)  

 Cache traces of executed instructions  Trace cache 
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Review: Guessing NextPC = PC + 4 

 How else can you make this more effective? 

 

 Idea: Get rid of control flow instructions (or minimize their 
occurrence) 

 

 How? 

1. Get rid of unnecessary control flow instructions        

combine predicates (predicate combining) 

2. Convert control dependences into data dependences  

predicated execution 
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Review: Predicate Combining (not Predicated Execution) 

 Complex predicates are converted into multiple branches 

 if ((a == b) && (c < d) && (a > 5000))  { … } 

 3 conditional branches 

 Problem: This increases the number of control 
dependencies 

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each 

 Predicates stored and operated on using condition registers 

 A single branch checks the value of the combined predicate 

+ Fewer branches in code  fewer mipredictions/stalls 

-- Possibly unnecessary work 

 -- If the first predicate is false, no need to compute other predicates  

 Condition registers exist in IBM RS6000 and the POWER architecture 
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Predicated Execution 

 Idea: Convert control dependence to data dependence 
 

 Simple example: Suppose we had a Conditional Move 
instruction… 

 CMOV condition, R1  R2 

 R1 = (condition == true) ? R2 : R1 

 Employed in most modern ISAs (x86, Alpha) 

 

 Code example with branches vs. CMOVs 

if (a == 5) {b = 4;} else {b = 3;} 

 

CMPEQ condition, a, 5; 

CMOV condition, b  4; 

CMOV !condition, b  3; 
15 



Conditional Execution in ARM 

 Same as predicated execution 

 

 Every instruction is conditionally executed 
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Predicated Execution 

 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code) 
 

 Advantages 

 Always-not-taken prediction works better (no branches) 

 Compiler has more freedom to optimize code (no branches) 

 control flow does not hinder inst. reordering optimizations 

 code optimizations hindered only by data dependencies 
 

 Disadvantages 

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches) 

 Requires additional ISA support 
 

 Can we eliminate all branches this way? 
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Predicated Execution 

 We will get back to this… 

 

 Some readings (optional): 

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983. 

 Kim et al., “Wish Branches: Combining Conditional Branching 
and Predication for Adaptive Predicated Execution,” MICRO 
2005. 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Delayed Branching (I) 

 Change the semantics of a branch instruction 

 Branch after N instructions 

 Branch after N cycles 

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction. 

 

 Problem: How do you find instructions to fill the delay 
slots? 

 Branch must be independent of delay slot instructions 

 

 Unconditional branch: Easier to find instructions to fill the delay slot 

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot 
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Delayed Branching (II) 
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A 

B 

C 

BC X 

D 

E 

F 

if ex 

A 

A B 

B C 

C BC 

BC 

G X: 

-- 

A 

B 

C 

BC X 

D 

E 

F 

G X: 

if ex 

A 

A C 

C BC 

BC B 

B G 

-- G 

Normal code: Timeline: Delayed branch code: Timeline: 

6 cycles 5 cycles 



Fancy Delayed Branching (III) 

 Delayed branch with squashing 

 In SPARC 

 Semantics: If the branch falls through (i.e., it is not taken), 
the delay slot instruction is not executed 

 Why could this help? 
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C 

BC X 
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E 

X: 

Normal code: Delayed branch code: 
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B 
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BC X 

D 

E 

X: 

NOP 

Delayed branch w/ squashing: 
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BC X 

D 

E 

X: 

A 



Delayed Branching (IV) 
 Advantages: 

 + Keeps the pipeline full with useful instructions in a simple way assuming  

       1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves 

       2. All delay slots can be filled with useful instructions 

 

 Disadvantages: 

-- Not easy to fill the delay slots (even with a 2-stage pipeline) 

   1. Number of delay slots increases with pipeline depth, superscalar 
execution width 

   2. Number of delay slots should be variable with variable latency 
operations. Why? 

 -- Ties ISA semantics to hardware implementation 

     -- SPARC, MIPS, HP-PA: 1 delay slot 

     -- What if pipeline implementation changes with the next design? 
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An Aside: Filling the Delay Slot 
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a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6



…



add $s1, $s2, $s3



if $s1 = 0 then





add $s1, $s2, $s3



if $s1 = 0 then



 





add $s1, $s2, $s3



if $s1 = 0 then



  sub $t4, $t5, $t6









add $s1, $s2, $s3



if $s1 = 0 then



   sub $t4, $t5, $t6

add $s1, $s2, $s3



if $s2 = 0 then



    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6





if $s2 = 0 then



 add $s1, $s2, $s3

within same 
basic block 

For correctness:  
add a new instruction 
to the not-taken path? 

For correctness:  
add a new instruction 
to the taken path? 

Safe? 

reordering data  
independent 
(RAW, WAW, 
WAR) 
instructions 
does not change 
program semantics 
 

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Fine-Grained Multithreading 

 Idea: Hardware has multiple thread contexts. Each cycle, 
fetch engine fetches from a different thread. 

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread 

 Branch/instruction resolution latency overlapped with 
execution of other threads’ instructions 

 

+ No logic needed for handling control and 

   data dependences within a thread  

-- Single thread performance suffers  

-- Extra logic for keeping thread contexts 

-- Does not overlap latency if not enough  

    threads to cover the whole pipeline 
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Fine-grained Multithreading (II) 

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently 

 

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads 

 Improves pipeline utilization by taking advantage of multiple 
threads 

 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 
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Fine-grained Multithreading: History 

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964. 

 Processor executes a different I/O thread every cycle 

 An operation from the same thread is executed every 10 cycles 

 

 Denelcor HEP (Heterogeneous Element Processor) 
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 120 threads/processor  

 available queue vs. unavailable (waiting) queue for threads  

 each thread can have only 1 instruction in the processor pipeline; each thread 
independent  

 to each thread, processor looks like a non-pipelined machine 

 system throughput vs. single thread performance tradeoff  
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Fine-grained Multithreading in HEP 

 Cycle time: 100ns 
 

 8 stages  800 ns to 

complete an 
instruction 

 assuming no memory 
access 
 

 No control and data 
dependency checking 
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Multithreaded Pipeline Example 
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Sun Niagara Multithreaded Pipeline 
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005. 



Fine-grained Multithreading 

 Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread) 

+ No need for branch prediction logic 

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization 

 

 Disadvantages 

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread)  

- Resource contention between threads in caches and memory 

- Some dependency checking logic between threads remains (load/store) 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Branch Prediction 
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0x0004 0x0005 0x0006 0x0007 0x0008 

I-$ RF 

LD R1, MEM[R0] 

ADD R2, R2, #1 

0x0001 

BRZERO   0x0001 

0x0002 

0x0003 

DEC 

ADD R3, R2, #1 
0x0004 

LD R2, MEM[R2] 

MUL R1, R2, R3 
0x0005 

0x0006 

LD R0, MEM[R2] 
0x0007 

12 cycles 

8 cycles 

D-$ 

PC ?? 

Branch prediction 

WB 

Branch Prediction: Guess the Next Instruction to Fetch 



LD R0, MEM[R2] 

LD R2, MEM[R2] 

BRZERO   0x0001 

Misprediction Penalty 

I-$ RF 

LD R1, MEM[R0] 

ADD R2, R2, #1 

ADD R3, R2, #1 

0x0001 

0x0002 

0x0003 

0x0004 

MUL R1, R2, R3 
0x0005 

0x0006 

0x0007 

0x0003 0x0004 0x0005 0x0006 0x0007 

D-$ 

PC 

DEC WB 
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Branch Prediction 

Fetch  Decode  Rename  Schedule RegisterRead Execute 

Target Misprediction Detected! Flush the pipeline 

Pipeline 

A 

B3 B1 

D 

E 

F 

A B1 A B1 A D B1 A D E B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B3 

What to fetch next? Fetch from the correct target 

 Processors are pipelined to increase concurrency 

 How do we keep the pipeline full in the presence of branches? 

 Guess the next instruction when a branch is fetched 

 Requires guessing the direction and target of a branch 

 

Branch condition, TARGET 

Verify the Prediction 



Branch Prediction: Always PC+4 
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IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth 

IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

Insth branch condition and target 
evaluated in ALU 

IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

ALU 

ID 

IFtarget 

MEM 

When a branch resolves 
- branch target (Instk) is fetched 
- all instructions fetched since 
  insth (so called “wrong-path” 
  instructions) must be flushed Insth is a branch 



Pipeline Flush on a Misprediction 
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IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

IFtarget 

MEM 

ID 

IF 

WB 

killed 

killed 

ALU 

ID 

IF 

ALU 

ID 

IF 

WB 

Insth is a branch 



Performance Analysis 

 correct guess  no penalty      ~86% of the time 

 incorrect guess  2 bubbles 

 Assume 

 no data dependency related stalls 

 20% control flow instructions 

 70% of control flow instructions are taken 

 CPI = [ 1 + (0.20*0.7) * 2 ] =  

     = [ 1 + 0.14 * 2 ] = 1.28  
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penalty for 
a wrong guess 

probability of  
a wrong guess 

Can we reduce either of the two penalty terms? 



Reducing Branch Misprediction Penalty 

 Resolve branch condition and target address early  
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PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [ 1 + (0.2*0.7) * 1 ] = 1.14 [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

Is this a good idea? 



Branch Prediction (Enhanced) 

 Idea: Predict the next fetch address (to be used in the next 
cycle) 

 

 Requires three things to be predicted at fetch stage: 

 Whether the fetched instruction is a branch 

 (Conditional) branch direction 

 Branch target address (if taken) 

 

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances 

 Idea: Store the target address from previous instance and access 
it with the PC 

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache 
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target address 

Fetch Stage with BTB and Direction Prediction 

Direction predictor (taken?) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current branch 

Always taken CPI = [ 1 + (0.20*0.3) * 2 ]  = 1.12   (70% of branches taken)
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target address 

More Sophisticated Branch Direction Prediction 

Direction predictor (taken?) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history 

XOR 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current branch 



Three Things to Be Predicted 

 Requires three things to be predicted at fetch stage: 

1. Whether the fetched instruction is a branch 

2. (Conditional) branch direction 

3. Branch target address (if taken) 

 

 Third (3.) can be accomplished using a BTB 

Remember target address computed last time branch was 
executed 

 First (1.) can be accomplished using a BTB 

If BTB provides a target address for the program counter, then it 
must be a branch 

Or, we can store “branch metadata” bits in instruction 
cache/memory  partially decoded instruction stored in I-cache 

 Second (2.): How do we predict the direction? 
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Simple Branch Direction Prediction Schemes 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 
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More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 
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Static Branch Prediction (I) 

 Always not-taken 

 Simple to implement: no need for BTB, no direction prediction 

 Low accuracy: ~30-40% (for conditional branches) 

 Remember: Compiler can layout code such that the likely path 
is the “not-taken” path  more effective prediction 

 

 Always taken 

 No direction prediction 

 Better accuracy: ~60-70% (for conditional branches) 

 Backward branches (i.e. loop branches) are usually taken 

 Backward branch: target address lower than branch PC 

 

 Backward taken, forward not taken (BTFN) 

 Predict backward (loop) branches as taken, others not-taken 
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Static Branch Prediction (II) 

 Profile-based 

 Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative! 

-- Requires hint bits in the branch instruction format 

-- Accuracy depends on dynamic branch behavior: 

  TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy 

-- Accuracy depends on the representativeness of profile input 
set 
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Static Branch Prediction (III) 

 Program-based (or, program analysis based) 

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction 

 Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs) 

 Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop) 

 Pointer and FP comparisons: Predict not equal 

 

+ Does not require profiling 

-- Heuristics might be not representative or good 

-- Requires compiler analysis and ISA support (ditto for other static methods) 

 

 Ball and Larus, ”Branch prediction for free,” PLDI 1993. 

 20% misprediction rate 
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Static Branch Prediction (IV) 

 Programmer-based 

 Idea: Programmer provides the statically-predicted direction 

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken 

 

 

+ Does not require profiling or program analysis 

+ Programmer may know some branches and their program better than 
other analysis techniques 

-- Requires programming language, compiler, ISA support 

-- Burdens the programmer?  
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Pragmas 

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy 

 

 if (likely(x)) { ... } 

 if (unlikely(error)) { … } 

 

 Many other hints and optimizations can be enabled with 
pragmas 

 E.g., whether a loop can be parallelized 

 #pragma omp parallel 

 Description 

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code. 
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Static Branch Prediction 

 All previous techniques can be combined 

 Profile based 

 Program based 

 Programmer based 

 

 How would you do that? 

 

 What is the common disadvantage of all three techniques? 

 Cannot adapt to dynamic changes in branch behavior  

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…) 

 What is a Dynamic Compiler?  

 Remember Transmeta? Code Morphing Software? 

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime) 
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Dynamic Branch Prediction 

 Idea: Predict branches based on dynamic information 
(collected at run-time) 

 

 Advantages 

+ Prediction based on history of the execution of branches 

   + It can adapt to dynamic changes in branch behavior 

+ No need for static profiling: input set representativeness 
problem goes away 

 

 Disadvantages 

-- More complex (requires additional hardware) 
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Last Time Predictor 

 Last time predictor 

 Single bit per branch (stored in BTB) 

 Indicates which direction branch went last time it executed 

    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

 

 Always mispredicts the last iteration and the first iteration 
of a loop branch 

 Accuracy for a loop with N iterations = (N-2)/N 

 

+ Loop branches for loops with large N (number of iterations) 

-- Loop branches for loops will small N (number of iterations) 

  TNTNTNTNTNTNTNTNTNTN    0% accuracy 
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Last-time predictor CPI = [ 1 + (0.20*0.15) * 2 ]  = 1.06   (Assuming 85% accuracy)
  

 



Implementing the Last-Time Predictor 
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BTB: one target 
address per entry  

BTB idx 

N-bit 
tag 
table 

1         0 

PC+4 

nextPC 

= 

The 1-bit BHT (Branch History Table) entry is updated with 
the correct outcome after each execution of a branch 

tag 

BHT: 
One 
Bit 
per  
entry 

taken? 



State Machine for Last-Time Prediction 

 

57 

predict 
taken 

predict 
not 

taken 

actually 
not taken 

actually 
taken 

actually 
taken 

actually 
not taken 



Improving the Last Time Predictor 

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly  

 even though the branch may be mostly taken or mostly not 
taken 

 

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome 

 Use two bits to track the history of predictions for a branch 
instead of a single bit  

 Can have 2 states for T or NT instead of 1 state for each 

 

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981. 
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Two-Bit Counter Based Prediction 

 Each branch associated with a two-bit counter 

 One more bit provides hysteresis 

 A strong prediction does not change with one single 
different outcome 

 

 Accuracy for a loop with N iterations = (N-1)/N 

 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

           (assuming counter initialized to weakly taken) 

 

+ Better prediction accuracy 

 

-- More hardware cost (but counter can be part of a BTB entry) 
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2BC predictor CPI = [ 1 + (0.20*0.10) * 2 ]  = 1.04   (90% accuracy)  

 



State Machine for 2-bit Saturating Counter 
 Counter using saturating arithmetic 

 Arithmetic with maximum and minimum values 
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Hysteresis Using a 2-bit Counter 
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Is This Good Enough? 

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction) 

 

 Is this good enough? 

 

 How big is the branch problem? 
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Rethinking the The Branch Problem 

 Control flow instructions (branches) are frequent 

 15-25% of all instructions 

 

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 

 N cycles: (minimum) branch resolution latency 

 

 If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide) 

 A branch misprediction leads to N x W wasted instruction slots  
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Importance of The Branch Problem 
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch) 

 Assume: 1 out of 5 instructions is a branch  

 Assume: Each 5 instruction-block ends with a branch 
 

 How long does it take to fetch 500 instructions?  

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 
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Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 
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