
18-447

Computer Architecture

Lecture 9: Branch Prediction I

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/4/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

2

Reminder: Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993. HW3 summary paper

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 3

Reminder: Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985). HW3 summary paper

4

Reminder: Relevant Seminar Tomorrow

 Practical Data Value Speculation for Future High-End
Processors

 Arthur Perais, INRIA (France)

 Thursday, Feb 5, 4:30-5:30pm, CIC Panther Hollow Room

 Summary:

 Value prediction (VP) was proposed to enhance the
performance of superscalar processors by breaking RAW
dependencies. However, it has generally been considered too
complex to implement. During this presentation, we will
review different sources of additional complexity and propose
solutions to address them.

 http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minars

5

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars

Recap of Last Lecture
 Data Dependence Handling

 Data Forwarding/Bypassing

 In-depth Implementation

 Register dependence analysis

 Stalling

 Performance analysis with and without forwarding

 LC-3b Pipelining

 Questions to Ponder

 HW vs. SW handling of data dependences

 Static versus dynamic scheduling

 What makes compiler based instruction scheduling difficult?

 Profiling (representative input sets needed; dynamic adaptation difficult)

 Introduction to static instruction scheduling (e.g., fix-up code)

 Control Dependence Handling

 Six ways of handling control dependences

 Stalling until next fetch address is available: Bad idea

 Predicting the next-sequential instruction as next fetch address

6

Tentative Plan for Friday and Monday

 I will be out of town

 Attending the HPCA Conference

 We will finish Branch Prediction on either of these days

 Lab 2 is due Friday

 Step 1: Get the baseline functionality correct

 Step 2: Do the extra credit portion (it will be rewarding)

 Tentative Plan:

 Friday: Recitation session Come with questions on Lab 2,

HW 2, lectures, concepts, etc

 Monday: Finish branch prediction (Rachata)

7

Sample Papers from HPCA

 Donghyuk Lee+, “Adaptive Latency DRAM: Optimizing
DRAM Timing for the Common Case,” HPCA 2015.

 http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-
dram_hpca15.pdf

 Gennady Pekhimenko+, “Exploiting Compressed Block Size
as an Indicator of Future Reuse,” HPCA 2015.

 http://users.ece.cmu.edu/~omutlu/pub/compression-aware-
cache-management_hpca15.pdf

 Yu Cai, Yixin Luo+, “Data Retention in MLC NAND Flash
Memory: Characterization, Optimization and Recovery,”
HPCA 2015.

 http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-
retention_hpca15.pdf

8

http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf

Control Dependence Handling

9

Review: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

10

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

11

Review: Guessing NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction (and branch
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Profile guided code positioning Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions Trace cache

12

Review: Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions

combine predicates (predicate combining)

2. Convert control dependences into data dependences

predicated execution

13

Review: Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code fewer mipredictions/stalls

-- Possibly unnecessary work

 -- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

 14

Predicated Execution

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move
instruction…

 CMOV condition, R1 R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b 4;

CMOV !condition, b 3;
15

Conditional Execution in ARM

 Same as predicated execution

 Every instruction is conditionally executed

16

Predicated Execution

 Eliminates branches enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?

 17

Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching
and Predication for Adaptive Predicated Execution,” MICRO
2005.

18

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

19

Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

 Problem: How do you find instructions to fill the delay
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on
instructions in delay slots difficult to fill the delay slot

20

Delayed Branching (II)

21

A

B

C

BC X

D

E

F

if ex

A

A B

B C

C BC

BC

G X:

--

A

B

C

BC X

D

E

F

G X:

if ex

A

A C

C BC

BC B

B G

-- G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

 Why could this help?

22

A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A

Delayed Branching (IV)
 Advantages:

 + Keeps the pipeline full with useful instructions in a simple way assuming

 1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

 2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

 1. Number of delay slots increases with pipeline depth, superscalar
execution width

 2. Number of delay slots should be variable with variable latency
operations. Why?

 -- Ties ISA semantics to hardware implementation

 -- SPARC, MIPS, HP-PA: 1 delay slot

 -- What if pipeline implementation changes with the next design?

 23

An Aside: Filling the Delay Slot

24

a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

For correctness:
add a new instruction
to the not-taken path?

For correctness:
add a new instruction
to the taken path?

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

25

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts. Each cycle,
fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with
execution of other threads’ instructions

+ No logic needed for handling control and

 data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

 threads to cover the whole pipeline

26

Fine-grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

27

Fine-grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can have only 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

 28

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages 800 ns to

complete an
instruction

 assuming no memory
access

 No control and data
dependency checking

29

Multithreaded Pipeline Example

30 Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

31

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

 (only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)

32

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

33

Branch Prediction

34

0x0004 0x0005 0x0006 0x0007 0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x0003 0x0004 0x0005 0x0006 0x0007

D-$

PC

DEC WB

37

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3 B1

D

E

F

A B1 A B1 A D B1 A D E B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B3

What to fetch next? Fetch from the correct target

 Processors are pipelined to increase concurrency

 How do we keep the pipeline full in the presence of branches?

 Guess the next instruction when a branch is fetched

 Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction: Always PC+4

38

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
 insth (so called “wrong-path”
 instructions) must be flushed Insth is a branch

Pipeline Flush on a Misprediction

39

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

Performance Analysis

 correct guess no penalty ~86% of the time

 incorrect guess 2 bubbles

 Assume

 no data dependency related stalls

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [1 + (0.20*0.7) * 2] =

 = [1 + 0.14 * 2] = 1.28

40

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early

41

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14 [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

42

43

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches taken)

44

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

Remember target address computed last time branch was
executed

 First (1.) can be accomplished using a BTB

If BTB provides a target address for the program counter, then it
must be a branch

Or, we can store “branch metadata” bits in instruction
cache/memory partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?

45

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

46

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

47

Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40% (for conditional branches)

 Remember: Compiler can layout code such that the likely path
is the “not-taken” path more effective prediction

 Always taken

 No direction prediction

 Better accuracy: ~60-70% (for conditional branches)

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken

 48

Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch
using a profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

 TTTTTTTTTTNNNNNNNNNN 50% accuracy
TNTNTNTNTNTNTNTNTNTN 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

49

Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction

 Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

 Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate

 50

Static Branch Prediction (IV)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

51

Pragmas

 Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

52

Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What is the common disadvantage of all three techniques?

 Cannot adapt to dynamic changes in branch behavior

 This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads…)

 What is a Dynamic Compiler?

 Remember Transmeta? Code Morphing Software?

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)

53

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

 + It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

 Disadvantages

-- More complex (requires additional hardware)

54

Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

 TTTTTTTTTTNNNNNNNNNN 90% accuracy

 Always mispredicts the last iteration and the first iteration
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

 TNTNTNTNTNTNTNTNTNTN 0% accuracy

55

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)

Implementing the Last-Time Predictor

56

BTB: one target
address per entry

BTB idx

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

BHT:
One
Bit
per
entry

taken?

State Machine for Last-Time Prediction

57

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

58

Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

 TNTNTNTNTNTNTNTNTNTN 50% accuracy

 (assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

59

2BC predictor CPI = [1 + (0.20*0.10) * 2] = 1.04 (90% accuracy)

State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values

60

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

61

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

62

Rethinking the The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots

63

Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 64

Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

65

