18-447
Computer Architecture
Lecture 8: Pipelining 1I:
Data and Control Dependence Handling

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 2/2/2015

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution

= Issues in 000 Execution: Load-Store Handling, ...

Readings for Next Few Lectures (I)

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro
1999.

Readings for Next Few Lectures (1I)

Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

Recap of Last Lecture

Wrap Up Microprogramming
o Horizontal vs. Vertical Microcode
o Nanocode vs. Millicode

Pipelining
o Basic Idea and Characteristics of An Ideal Pipeline
Pipelined Datapath and Control
Issues in Pipeline Design
Resource Contention
Dependences and Their Types
Control vs. data (flow, anti, output)
Five Fundamental Ways of Handling Data Dependences
o Dependence Detection

Interlocking
Scoreboarding vs. Combinational

U O O O

(]

Review: Issues in Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls

Review: Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependences dictate ordering requirements between
instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

Review: Interlocking

Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

Software based interlocking
VS.

Hardware based interlocking

MIPS acronym?

Review: Once You Detect the Dependence 1n Hardware

What do you do afterwards?

Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

Option 1: Stall the dependent instruction right away

Option 2: Stall the dependent instruction only when
necessary - data forwarding/bypassing

Option 3: ...

Data Forwarding/Bypassing

Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

Goal: We do not want to stall the pipeline unnecessarily

Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

Benefit: Consumer can move in the pipeline until the point
the value can be supplied - less stalling

10

A Special Case of Data Dependence

Control dependence
o Data dependence on the Instruction Pointer / Program Counter

11

Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
12

Data Dependence Handling:
More Depth & Implementation

Remember: Data Dependence Types

Flow dependence
s <~ r,opr, Read-after-Write
s = r; op r, (RAW)

Anti dependence

rs < r,opr, Write-after-Read
/
ry < I, Op Ic (WAR)

Output-dependence

s <~ r,opr, Write-after-Write
(— (WAW)

rs < rg op ry

14

Remember: How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

15

Aside: Relevant Seminar Announcement

Practical Data Value Speculation for Future High-End
Processors

o Arthur Perais, INRIA (France)
a Thursday, Feb 5, 4:30-5:30pm, CIC Panther Hollow Room

Summary:

o Value prediction (VP) was proposed to enhance the
performance of superscalar processors by breaking RAW
dependencies. However, it has generally been considered too
complex to implement. During this presentation, we will
review different sources of additional complexity and propose
solutions to address them.

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minars

16

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars

RAW Dependence Handling

Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

addi rar- -

addi r-fa- ‘E* At

v o "

addi r-ra- *

addi r-ra -

addi r-ra -

Register Data Dependence Analysis

R/I-Type | LW SW Br J Ir

IF

EX

MEM

WB write RF | write RF

For a given pipeline, when is there a potential conflict
between two data dependent instructions?

o dependence type: RAW, WAR, WAW?
o instruction types involved?
o distance between the two instructions?

Safe and Unsate Movement of Pipeline

|stage X l l

Ji_< 1 Reg Read Jin—_ Reg Write Jine—_ Reg Write

l l l

|stoge v l l

iir <—_ Reg Write i<, Reg Read N Reg Write
RAW Dependence WAR Dependence WAW Dependence

dist(i,j) < dist(X,Y) = Unsafe to keep j moving
dist(i,j) > dist(X,Y) = Safe T

RAW Dependence Analysis Example

R/I-Type LW SW Br J Jr

IF

ID

EX
MEM
WB write RF | write RF

Instructions I, and I (where I, comes before I;) have RAW
dependence iff

o Iz (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
o dist(I,, Ig) < dist(ID, WB) = 3

What about WAW and WAR dependence?
What about memory data dependence?

20

Pipeline Stall: Resolving Data Dependence

Inst,
Inst.
Inst,
Inst,
Inst,

T 5] 15 L3 L s -
IF D |[ALU |[[MEM]|[WB
i [IF ID |[|ALU |[MEM||WB I\
. [IF_Jp—]—0—][Ib]lA 3
E—pe—1pe—iF _[[iD <
IF =2

Stall = make the dependent instruction

wait until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages

How to Implement Stalling

PCSrc

|

ID/IEX
g
H W8 EX/MEM
r Control M | wB I_“’lEM WE
IF/ID EX M wB
— —_— N | | _
Add [\E
Add
4 o Add oquit
2 Shift Branch
rc %
s ReadO 5 2
PC|—&=—»| Address § register 1 Readl s %
3 Readl data 1 | £
Instruction N = regls{e[égisters Readh =
. eal
memory writel] data2 [) Address Read | L1
register Datadl M
Write memory u
| data (;(
Write
data
InstructionDl
6 32
[15-0] \ Sign0J MemRead
N Tlextend
Instructiond
[20—-16]
Instruction
[15-11]

o disable PC and IR latching; ensure stalled instruction stays in its stage

o Insert “invalid” instructions/nops into the stage following the stalled one
(called “bubbles™)

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

22

Stall Conditions

Instructions I, and I (where I, comes before I;) have RAW
dependence iff

o Iz (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
o dist(I,, Ig) < dist(ID, WB) = 3

Must stall the ID stage when I in ID stage wants to read a
register to be written by I, in EX, MEM or WB stage

23

Stall Condition Evaluation Logic

= Helper functions
a rs(l) returns the rs field of |
o use_rs(I) returns true if I requires RF[rs] and rs!=r0

= Stall when
a (rs(IR,,)==) && use_rs(IR,y) && or
a (rs(IR,,)==) && use_rs(IR,,) && or
a (rs(IR,,)==) && use_rs(IR,,) && or
a (rt(IR,p)==) && use_rt(Ir,,) && or
0 (rt(IR)==) && use_rt(IR,,) && or
0 (rt(IR,)==) && use_rt(IR,,) &&

= Itis crucial that the EX, MEM and WB stages continue to
advance normally during stall cycles

Impact ot Stall on Performance

Each stall cycle corresponds to one lost cycle in which no
instruction can be completed

For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

S depends on

o frequency of RAW dependences

o exact distance between the dependent instructions
o distance between dependences

suppose iy, i, and i; all depend on iy, once i;” s dependence is
resolved, i, and i; must be okay too

25

Sample Assembly (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$s1,550,-1 _—— 3 stalls

5t0,5s1,0 __— 3 stalls
St0, Szero, exit2

St1,8s1,2 _— 3 stalls

$t2,5a0,5t1 —3 stalls
St3, 0(St2)

St4,4(S5t2) _— 3 stalls
St0, St4,St3_— 3 stalls

St0, Szero, exit2

Ss1, Ss1, -1
for2tst

26

Reducing Stalls with Data Forwarding

Also called Data Bypassing

We have already seen the basic idea before

Forward the value to the dependent instruction as soon as
it is available

Remember dataflow?

o Data value supplied to dependent instruction as soon as it is
available

o Instruction executes when all its operands are available

Data forwarding brings a pipeline closer to data flow
execution principles

27

Data Forwarding (or Data Bypassing)

It is intuitive to think of RF as state

13

0 " literally means get values from and
respectively and put result in

But, RF is just a part of a communication abstraction

13

0 ” means
1. get the results of the last instructions to define the values of

and , respectively,
2. until another instruction redefines , younger instructions
that refer to should use this instruction’ s result

What matters is to maintain the correct “data flow”
between operations, thus

add \ IF ID EX \IE\/IEIVI WB\

addi r-rzr- I= ‘LD/ X MEM|| WB

28

Resolving RAW Dependence with Forwarding

Instructions I, and I (where I, comes before I;) have RAW
dependence iff

o Ig (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
o dist(I,, Ig) < dist(ID, WB) = 3

In other words, if I in ID stage reads a register written by
I, in EX, MEM or WB stage, then the operand required by I
IS not yet in RF

— retrieve operand from datapath instead of the RF

— retrieve operand from the youngest definition if multiple
definitions are outstanding

29

Data Forwarding Paths (v1)

__ dist(i,j)=3

— ML
- r { Forwar >ALU
= i . . .
1 b | dist(i,j)=1
5 L
. |
internal ForwardB
forward? /MQ
N

Forwarding[

3

Datall

dist(i,j)=2

S

memory

! X/IMEM.RegisterRi

VIEM/WB.RegisterRd

unit

dist(i,j)=3

MO
ull
X

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

30

Data Forwarding Paths (v2)

dist(i j)=3

ID/EX

1]

Rs

Rt

Rt

Rd

Im
u

EX/IMEM

X

‘ ForwardA >ALU

dist(i,j)=1

M
u
X

L

ForwardB

[

»

xcZ ’

b. With forwarding

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Forwarding[
unit

MEM/WB

Datall

dist(i,j)=2

memory

EX/MEM.RegisterRd

MEM/WB.RegisterRd

M
u
X

Assumes RF forwards internally

Data Forwarding LLogic (for v2)

if (rs-,1=0) && (r5-,==) && then
forward operand from MEM stage /[dist=1
else if (rs-,1=0) && (rs-,==) && then

forward operand from WB stage // dist=2
else
use operand from register file /[dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’ t use_rs() appear in the forwarding logic?

What does the above not take into account?

32

Data Forwarding (Dependence Analysts)

R/I-Type LW SW Br J Jr
IF
ID
EX produce
MEM produce (use)
WB

Even with data-forwarding, RAW dependence on an
immediately preceding LW instruction requires a stall

Sample Assembly, No Forwarding (P&H)

m for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1){ }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$s1,550,-1 _—— 3 stalls

5t0,5s1,0 __— 3 stalls
St0, Szero, exit2

St1,8s1,2 _— 3 stalls

$t2,5a0,5t1 —3 stalls
St3, 0(St2)

St4,4(S5t2) _— 3 stalls
St0, St4,St3_— 3 stalls

St0, Szero, exit2

Ss1, Ss1, -1
for2tst

34

Sample Assembly, Revisited (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
W
W

Ss1, SsO, -1

St0, Ss1, 0

St0, Szero, exit2
St1, Ss1, 2

St2, Sao0, Stl
St3, 0(St2)

St4, 4(St2)

St0, St4, St3
St0, Szero, exit2

Ss1, Ss1, -1
for2tst

35

Pipelining the LLC-3b

Pipelining the L.C-3b

Let’s remember the single-bus datapath

We'll divide it into 5 stages
o Fetch

Decode/RF Access

Address Generation/Execute
Memory

Store Result

Conservative handling of data and control dependences
o Stall on branch
o Stall on flow dependence

37

LD.IR—

GateMARMUX

GatePC

LDPC—— PC |

2

Pt

ZEXT &
LSHF1
4
&7:01 2
ADDR2MUX

< ADDRIMUX

LD REG—>

3
SR2 —4+>|

REG
FILE

0

<—<—DR
SR2 SR1

3
ouT OUT [<7—SRI

[10:0]

GateMDR

<—DATA SIZE
LOGIC
<—MAR[0]

W 1L.D MDR

AR MIO.EN

6 6

LOGIC
<—DATASTZE

<—MAR[0]

INMUX 4‘I

/—c> SR2MUX
CONTROL
T f I Y
R
Y v
2 B A
LD.CC—>|N|Z|P .
NPVl I "o
ALUK
3 .
GateALU GateSHF
6
El.D . MAR
»
R.W
WE
o
Logic|_ v o 0 9 - - — — — ——1n HEN
J; <SATA MIQEN | npyT | OUTPUT g
Y . -
SIZE | |
WEI WEO v, [KBDR| ["DDR | -
Jy ADDR.CTL
St [KBSR | | DSR |
MEMORY _
_]
L 5 ! "N]
MEM EN [<
R

An Example LLC-3b Pipeline

FETCH DECODE AGEX MEM SR
I
! A Y
/ Address
Register = Generation - -
File Logic
Y D—Cache -
- 'II’CI— i Destination Reg.
Value .
Select Logic
Y - A
A
Control Store ALU L _
ROM -
I-CACHE ™ SHF [™
Y ™| Branch
Logic
Dependency
! Check Logic
_I Fetch Control Logic
A%
- -

T

From other stages

From other stages

39

FETCH STAGE

TRAP.PC

TARGET .PC

N Y

INPUTS____

LOGIC

LD.PC

77
1
/i{ﬁ /kﬁ fﬁ /ﬁ "%
Y
+2 T
LD DE
i
16
’ //16
PC
‘16
Y
//"
I-CACHE 16

l

ICACHER ~ INPUTS—

LOGIC

N

7

|

LDDE

DE.NPC

DE.IR

DE.V

YV.DEBRSTALL

AGEX.CS

AGEX.IR

AGEX.5R1

AGEX.SR2Z

AGEX.CC

AGEX.DRID
AGEX.V

41

LD AGEX

DECODE STAGE

R Ty N N i
J.,,“,,,,H.,mUM.H,HHM.H”m,H”M,H../,,,,,,“”,m,H,”;m&mmyk%v%ﬁﬁﬁ RN R
i i . i A [+ m
[on]
. -
. 2 : H
B = m
H A
= = = ™ a -
g = - B H # =
™ B
= &
wl & = =
=1 — —
- — =
= VIVODHE HE 5
le m - e VLVE DO S
I = CHHOTHS A —— = L
o = m = O g H
h Nk Gl v o o 5 m
P ORHOHS S = 55 2
A i [g & g -
o e
=) < =& w
3 = o=
big) ..,_..,_.,1._ ﬂ
b
s - U e T HS A
o o) < = 0" e MANTTWEW A
= = o
E5 L. - N mm — DAATXADVA
S @ £ ~ s - m m ..TM3| CIHTHS
: :
m & » m il|x3rf| CITHCT INHIN
AEHE 5 A AN XEDY
slz |2 2
2 M 5] =
S8 12/ g
74 SN T B 2885
% |2 e m m o
il z & i
Y a |a g &
ot ..nﬂ,. ,..A//.,ﬁ..é, o ﬂﬂ 4 e
NN NN\ 2
j
W e - &
= m a
7 g
i a =
o

AGEX STAGE

5 -
AGEX. NPC | “16 h -
e - 6
e)]
LSHIT LSHF1 [7¢™ 0 15 MEM. ADDRESS
ADDRIMUX ‘5’6

ADDRESSMUX

Annmmx% 2 3

N
DAMMMNN

AGEX. CS ’ -
116 & | MEM. C8
’I{ﬁ 14 7| _ AGEXCS[19:9] ™ .;p’{',
o (& = . 7
Ml % 5 E i
s [+] :H: :-'__z" e
N B g AGEX.NPC T ';% MEM. NPC
= = = P
nl o= = co MEM. CC
AGEX. IR .8 ACEX.CC —l,.fj—h- S
A //,r;:,r”
s
'_':::-' # I - Fa -
AGEX.SR1| T SHF araal] ///?j / MEMALU RESULT
f/f 16 ///".-
- A 777
AGEX. SR2 16 o - r,;:.-.-
RE40 |_SEXT |t 6 |0 ALU e 7
6 = g = ALURESULTMUX 4 MEM. IR
AGEX. CC E = z AGEXIR —7{z—*| M DRI
SRIMUX 7 ‘
o = AGEXDRID _, ol 777
AGEX.DRID | g g g : } ’é
. A, ﬁ E » l_"'::":'.":'."-'.‘ MEM.V
g g Q ALUK
AGEX.Y = T LD MEM
$ J' \l.* INPUTS—* LOGIC
= LOGIC

YV.AGEXLD.CC '=_|

VAGEXLDREG =
AGEX DRID VAGEX BRSTALL =
7
3

o |

MEM STAGE

MEM ADDRESS

MEMCS

MEMNEC

MEMCC

MEMALU.RESULT

MEMIR

MEMDRID
MEM.V

MEM.STALL

- ,Mfﬁ % L TRAPFC
2
. 7 _ Ny
% 16 =y g % 3 % //;
DATASIZE — “ w2 %

é DCACHER/W — IE:E}IC g g % %
Z . =
/// e iy
7 DCACHER WE1 WE0 //{(/,,//
% R ADDR | ?/?
//////; DCAChII-l{E ELJ;:I;: — V.DCACHE EN END—CACI—[E 16| LOGIC //, Z
5/?//5 DATA MEM.CS[10:7] —.F-? /
. i y
yﬁ”/f 416 7 //
/ p o - . ¥ 7
/ o toaie e e
'5/ -)
| 3 .
. 2 M.CC g%é MEM.ALU RESULT #//4
’%/ B 5 | MEMV Ao ? /
/ “IR[11:9] I 777 - /{y////,

% BROP___ | ZEE = MEMIR —7%7
// UNCONOP | BR %%%é 16 ///
\/\&{‘\J TRAP.OP LOGIC MEMDRID g///
] DN

3 2 V.MEM.LD.CE™—
MEM.DRID v:gﬁg:;ﬁiﬂ_ LOGIC INPUTS ™| LOGIC
= MEM PCMUX

SR.ADDRESS

SRDATA

SR.CS

SRNPC

SR.ALURESULT

SRIR
SR.DRID

SR.V

43

SR STAGE

SR.ADDRESS

SR.DATA

SR.CS

SR.INPC

SRALURESULT

SR.IR
SR.DRID

SR.V

e rp——
VARLDEREG
B EEmm—
V.5ELD.CC

N
DN

%

LOGIC

SRV
SRJIC5[3:2]

\

/

3
™ SR.CCDATA

]

o
a
0

16

TA

= SRREGDA

e

T

DA

7

\
N

N

\

_

.

SE.DRID

44

Control of the L.LC-3b Pipeline

Three types of control signals

Datapath Control Signals
o Control signals that control the operation of the datapath

Control Store Signals

o Control signals (microinstructions) stored in control store to be

used in pipelined datapath (can be propagated to stages later
than decode)

Stall Signals

o Ensure the pipeline operates correctly in the presence of
dependencies

45

Slage Sipmal dame Sipnal Values
FETCH MEM.PCMLUIN2: 4 PO+ sselect posl
TARCGET.RC sselect MEM TARGETPC (branch target)
TEAPPC sselect MEM TRAFPC
LD Tt MO0, LA
LIDDEN:$ MO0, LOAINT)
DECODE DEMLUXA: 119 westinstion IR[11:%]
kT wlestimation BT
SR NEEDED: NOND, YES(LY samsserted i instruction needs SR
SRINEEDEDS: MO0, YES(LY sasserted i instruction needs SR2
DE.BRAOFL: MO0y, BR{Dy ;BR Opeode
SE2IDMLUIX:4 20 ssearce TR[Z:0]
118 ssouree [R]11:9]
LD AGEX/:4 MO0, LOAINT)
VAGEX LD MO0, LOAINT)
VIMEM LD MO0, LOAINT)
VERLDUCC:H MO0, LOAINT)
WAGEX LD REG: MO0, LOAINT)
V.MEMLDEREG: 11 MO0, LOAINT)
V.ERLDREG: MO0, LOAINT)
AGEX ADDRIMLUN: NPT sselect valoe from AGEX.NPC
BaseR sselect valoe from AGEX. SR 1(BaseR)
ADDEIMLUNT: ZERQ sselect the value 2em
offsels sselect SEXTIIRISD]
Pl sselect SEXTIRIED]
PCoffwetll sselect SEXTIR] 10:07)
LSHF1s1: MO0, Thit Left shife(1)
ADDRESSMLUNIL: T sselect LIHFZEXTIIR[741110
ADDER sselect outpat of addness sdder
SRIMLIX: SR sselect From AGEX.SE2
4.0 JAR[E:0)
ALURST: ADDHOE, ANIDNDL)
MOR(ID), PASSBEI1L)
ALURESULTMLUNSL: SHIFTER sselect autpal of the shifter
ALU select 1put out the ALL
LD AEN MO0, LOAI 1)
MEM DCACHE BN MO, YES(1) ssserted i the Instruction scoesses memory
DUCACHE BWL: RINO), WRIL)
DATA BIFEN: BYTED, WD L)
BRE O WOy, BR{DY BR
LTNCON 0F L WO, Uncond BRI DY ARPRET, ISR, ISRER
TRAPORL: WOy, Trapi Ly TRAF
SR DR VALUEMUXT: ADDRESS sselect value from SEADDRESS
DATA ssilect value from SR.DATA
NPC ssilect value om SR.NPC
ALL ssilect valee from SRLALLU RESULT
LINREG: MO0, LOAINT)
LDUCCs L MO0, LOAIT)

Tahle 1: Data Path Contral Signals

tz The comtral sipral is penerated by lopic inthat stage
11: The cantrol signal s generated by bogic in another stage

46

Control Store in a Pipelined Machine

Number Signal Name Stages

0 SRI.NEEDED DECODE

1 SR2Z.NEEDED DECODE

2 DEMUX DECODE

3 ADDRIMUX AGEX

4 ADDRZMUXI AGEX

3 ADDRIMUXID AGEX

6 LSHF1 AGEX

7 ADDRESSMUX AGEX

8 SRIMUX AGEX

9 ALUKI AGEX

10 ALUKO AGEX

11 ALURESULTMUX AGEX

12 BR.OP DECODE, MEM
13 UNCON.OP MEM

14 TRAP.OP MEM

15 BR.STALL DECODE, AGEX, MEM
16 DCACHE.EN MEM

17 DCACHE.RW MEM

18 DATA SIZE MEM

19 DR VALUEMUX]1 SR

20 DR.VALUEMUXO SR

21 LD.REG AGEX, MEM, SR
22 LD.CC AGEX, MEM, SR

Table 2: Control Store ROM Signals

Stall Signals

= Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

= Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

= Why could an operation in a stage not complete?

Signal Name (renerated in
ICACHE.R/1: FETCH NO, READY
DEP.STALL/I: DEC NO, STALL
VIDE.BR.STALL/IL: DEC NO, STALL
V.AGEX.BRE.STALL/L: AGEX NO, STALL
MEM.STALL/I: MEM NO, STALL
V.MEM.BR.STALL/L: MEM NO, STALL

Table 3: STALL Signals

Pipelined L.C-3b

= http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-Ic3b-pipelining.pdf

49

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the 1.C-3b

Questions to Ponder

What is the role of the hardware vs. the software in data
dependence handling?

o Software based interlocking

o Hardware based interlocking

o Who inserts/manages the pipeline bubbles?
Q

Who finds the independent instructions to fill “empty” pipeline
slots?

o What are the advantages/disadvantages of each?

51

Questions to Ponder

What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

o Software based instruction scheduling - static scheduling
o Hardware based instruction scheduling - dynamic scheduling

52

More on Software vs. Hardware

Software based scheduling of instructions - static scheduling

o Compiler orders the instructions, hardware executes them in
that order

o Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

o How does the compiler know the latency of each instruction?

What information does the compiler not know that makes
static scheduling difficult?

o Answer: Anything that is determined at run time
Variable-length operation latency, memory addr, branch direction

How can the compiler alleviate this (i.e., estimate the
unknown)?

o Answer: Profiling
53

Control Dependence Handling

Review: Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we even know whether or not the fetched

instruction is a control-flow instruction?
55

Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

56

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

57

Stall Fetch Until Next PC 1s Available: Good Idea?

Inst, [IF][__ID][ALU][MEM][WB
Inst R IF ALU|[MEM][wB

Inst, |F ID{ ALU
Inst, - |F
Inst,

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch ...

= Rather than waiting for true-dependence on PC to resolve,
just guess nextPC = PC+4 to keep fetching every cycle
Is this a good guess?

What do you lose if you guessed incorrectly?

= ~20% of the instruction mix is control flow
o ~50 % of “forward” control flow (i.e., if-then-else) is taken
o ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

= Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

59

Guessing NextPC = PC + 4

Always predict the next sequential instruction is the next
instruction to be executed

This is a form of next fetch address prediction (and branch
prediction)

How can you make this more effective?

Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed
o Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch
Profile guided code positioning = Pettis & Hansen, PLDI 1990.
o Hardware: ??? (how can you do this in hardware...)

Cache traces of executed instructions = Trace cache
60

Guessing NextPC = PC + 4

= How else can you make this more effective?

= Idea: Get rid of control flow instructions (or minimize their
occurrence)

= How?

1. Get rid of unnecessary control flow instructions -
combine predicates (predicate combining)

2. Convert control dependences into data dependences =
predicated execution

01

Predicate Combining (nof Predicated Execution)

Complex predicates are converted into multiple branches
o if((@a==Db)&& (c <d)&&(a>5000)) {..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

62

