
18-447

Computer Architecture

Lecture 8: Pipelining II:

Data and Control Dependence Handling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/2/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

2

Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 3

Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

4

Recap of Last Lecture

 Wrap Up Microprogramming

 Horizontal vs. Vertical Microcode

 Nanocode vs. Millicode

 Pipelining

 Basic Idea and Characteristics of An Ideal Pipeline

 Pipelined Datapath and Control

 Issues in Pipeline Design

 Resource Contention

 Dependences and Their Types

 Control vs. data (flow, anti, output)

 Five Fundamental Ways of Handling Data Dependences

 Dependence Detection

 Interlocking

 Scoreboarding vs. Combinational

5

Review: Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

 Handling dependences

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls

6

Review: Dependences and Their Types

 Also called “dependency” or less desirably “hazard”

 Dependences dictate ordering requirements between
instructions

 Two types

 Data dependence

 Control dependence

 Resource contention is sometimes called resource
dependence

 However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

7

Review: Interlocking

 Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

 Software based interlocking

 vs.

 Hardware based interlocking

 MIPS acronym?

8

Review: Once You Detect the Dependence in Hardware

 What do you do afterwards?

 Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

 Option 1: Stall the dependent instruction right away

 Option 2: Stall the dependent instruction only when
necessary data forwarding/bypassing

 Option 3: …

9

Data Forwarding/Bypassing

 Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

 Goal: We do not want to stall the pipeline unnecessarily

 Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

 Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

 Benefit: Consumer can move in the pipeline until the point
the value can be supplied less stalling

10

A Special Case of Data Dependence

 Control dependence

 Data dependence on the Instruction Pointer / Program Counter

11

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

 12

Data Dependence Handling:

More Depth & Implementation

13

Remember: Data Dependence Types

14

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

Remember: How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

15

Aside: Relevant Seminar Announcement

 Practical Data Value Speculation for Future High-End
Processors

 Arthur Perais, INRIA (France)

 Thursday, Feb 5, 4:30-5:30pm, CIC Panther Hollow Room

 Summary:

 Value prediction (VP) was proposed to enhance the
performance of superscalar processors by breaking RAW
dependencies. However, it has generally been considered too
complex to implement. During this presentation, we will
review different sources of additional complexity and propose
solutions to address them.

 http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minars

16

http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars

RAW Dependence Handling

 Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

17

MEM

WB IF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEM IF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict
between two data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?

18

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Safe and Unsafe Movement of Pipeline

19

i:rk_

j:_rk Reg Read

Reg Write

iFj

stage X

stage Y

dist(i,j) dist(X,Y) ??

dist(i,j) > dist(X,Y) ??

RAW Dependence

i:_rk

j:rk_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk_

j:rk_ Reg Write

Reg Write

iOj

WAW Dependence

dist(i,j) dist(X,Y) Unsafe to keep j moving

dist(i,j) > dist(X,Y) Safe

RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

 What about WAW and WAR dependence?

 What about memory data dependence?

 20

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Pipeline Stall: Resolving Data Dependence

21

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx _
j: _ rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx _
bubble
j: _ rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx _
bubble
bubble
j: _ rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

ID

IF

i: rx _
bubble
bubble
bubble
j: _ rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WB i

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction
 wait until its source data value is available
 1. stop all up-stream stages
 2. drain all down-stream stages

How to Implement Stalling

 Stall
 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one
(called “bubbles”)

22

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

 Must stall the ID stage when IB in ID stage wants to read a
register to be written by IA in EX, MEM or WB stage

23

Stall Condition Evaluation Logic

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to
advance normally during stall cycles

24

Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no
instruction can be completed

 For a program with N instructions and S stall cycles,
 Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

 suppose i1,i2 and i3 all depend on i0, once i1’s dependence is
resolved, i2 and i3 must be okay too

25

Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

26

 addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0
 bne $t0, $zero, exit2
 sll $t1, $s1, 2
 add $t2, $a0, $t1
 lw $t3, 0($t2)
 lw $t4, 4($t2)
 slt $t0, $t4, $t3
 beq $t0, $zero, exit2

 addi $s1, $s1, -1
 j for2tst
exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Reducing Stalls with Data Forwarding

 Also called Data Bypassing

 We have already seen the basic idea before

 Forward the value to the dependent instruction as soon as
it is available

 Remember dataflow?

 Data value supplied to dependent instruction as soon as it is
available

 Instruction executes when all its operands are available

 Data forwarding brings a pipeline closer to data flow
execution principles

27

Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a communication abstraction

 “add rx ry rz” means

 1. get the results of the last instructions to define the values of
RF[ry] and RF[rz], respectively,

 2. until another instruction redefines RF[rx], younger instructions
that refer to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “data flow”
between operations, thus

28

ID ID ID IF ID

WB IF ID EX MEM add rz r- r-

addi r- rz r- MEM IF EX WB

Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by
IA in EX, MEM or WB stage, then the operand required by IB
is not yet in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple
definitions are outstanding

29

Data Forwarding Paths (v1)

30

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

dist(i,j)=3

internal
forward?

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Paths (v2)

31

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

Assumes RF forwards internally [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

 forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

 forward operand from WB stage // dist=2

else

 use operand from register file // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs() appear in the forwarding logic?

32

What does the above not take into account?

Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an
immediately preceding LW instruction requires a stall

33

R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB

Sample Assembly, No Forwarding (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

34

 addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0
 bne $t0, $zero, exit2
 sll $t1, $s1, 2
 add $t2, $a0, $t1
 lw $t3, 0($t2)
 lw $t4, 4($t2)
 slt $t0, $t4, $t3
 beq $t0, $zero, exit2

 addi $s1, $s1, -1
 j for2tst
exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

35

 addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0
 bne $t0, $zero, exit2
 sll $t1, $s1, 2
 add $t2, $a0, $t1
 lw $t3, 0($t2)
 lw $t4, 4($t2)
 nop
 slt $t0, $t4, $t3
 beq $t0, $zero, exit2

 addi $s1, $s1, -1
 j for2tst
exit2:

Pipelining the LC-3b

36

Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence

37

An Example LC-3b Pipeline

39

40

41

42

43

44

Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be
used in pipelined datapath (can be propagated to stages later
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of
dependencies

45

46

Control Store in a Pipelined Machine

47

 Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals

48

Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf

49

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the LC-3b

50

Questions to Ponder

 What is the role of the hardware vs. the software in data
dependence handling?

 Software based interlocking

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline
slots?

 What are the advantages/disadvantages of each?

51

Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling static scheduling

 Hardware based instruction scheduling dynamic scheduling

52

More on Software vs. Hardware
 Software based scheduling of instructions static scheduling

 Compiler orders the instructions, hardware executes them in
that order

 Contrast this with dynamic scheduling (in which hardware can
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

 How can the compiler alleviate this (i.e., estimate the
unknown)?

 Answer: Profiling

53

Control Dependence Handling

54

Review: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

 55

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

56

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

57

Stall Fetch Until Next PC is Available: Good Idea?

58

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IF IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve,
just guess nextPC = PC+4 to keep fetching every cycle
 Is this a good guess?

 What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

 Overall, typically ~70% taken and ~30% not taken
 [Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

59

Guessing NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction (and branch
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Profile guided code positioning Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions Trace cache

60

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions

combine predicates (predicate combining)

2. Convert control dependences into data dependences

predicated execution

61

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code fewer mipredictions/stalls

-- Possibly unnecessary work

 -- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

 62

