
18-447
Computer Architecture

Lecture 6: Multi-Cycle and
Microprogrammed Microarchitectures

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 1/28/2015

Agenda for Today & Next Few Lectures
n  Single-cycle Microarchitectures

n  Multi-cycle and Microprogrammed Microarchitectures

n  Pipelining

n  Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n  Out-of-Order Execution

n  Issues in OoO Execution: Load-Store Handling, …

2

Reminder on Assignments
n  Lab 2 due next Friday (Feb 6)

q  Start early!

n  HW 1 due today
n  HW 2 out

n  Remember that all is for your benefit
q  Homeworks, especially so
q  All assignments can take time, but the goal is for you to learn

very well

3

Lab 1 Grades

n  Mean: 88.0
n  Median: 96.0
n  Standard Deviation: 16.9

4

0	

5	

10	

15	

20	

25	

30	 40	 50	 60	 70	 80	 90	 100	

N
um

be
r	 o

f	 S
tu
de

nt
s	

Extra Credit for Lab Assignment 2

n  Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

n  Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

n  We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

n  For the extra credit, the microcoded implementation should
execute the same programs that your ordinary
implementation does, and you should demo it by the normal
lab deadline.

n  You will get maximum 4% of course grade
n  Document what you have done and demonstrate well

5

Readings for Today
n  P&P, Revised Appendix C

q  Microarchitecture of the LC-3b
q  Appendix A (LC-3b ISA) will be useful in following this

n  P&H, Appendix D
q  Mapping Control to Hardware

n  Optional
q  Maurice Wilkes, “The Best Way to Design an Automatic

Calculating Machine,” Manchester Univ. Computer Inaugural
Conf., 1951.

6

Readings for Next Lecture
n  Pipelining

q  P&H Chapter 4.5-4.8

n  Pipelined LC-3b Microarchitecture
q  http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?

media=18447-lc3b-pipelining.pdf

7

Recap of Last Lecture
n  Intro to Microarchitecture: Single-cycle Microarchitectures

q  Single-cycle vs. multi-cycle
q  Instruction processing “cycle”
q  Datapath vs. control logic
q  Hardwired vs. microprogrammed control
q  Performance analysis: Execution time equation
q  Power analysis: Dynamic power equation

n  Detailed walkthrough of a single-cycle MIPS implementation
q  Datapath
q  Control logic
q  Critical path analysis

n  (Micro)architecture design principles

8

Review: A Key System Design Principle
n  Keep it simple

n  “Everything should be made as simple as possible, but no
simpler.”
q  Albert Einstein

n  And, keep it low cost: “An engineer is a person who can do
for a dime what any fool can do for a dollar.”

n  For more, see:
q  Butler W. Lampson, “Hints for Computer System Design,” ACM

Operating Systems Review, 1983.
q  http://research.microsoft.com/pubs/68221/acrobat.pdf

9

Review: (Micro)architecture Design Principles

n  Critical path design
q  Find and decrease the maximum combinational logic delay
q  Break a path into multiple cycles if it takes too long

n  Bread and butter (common case) design
q  Spend time and resources on where it matters most

n  i.e., improve what the machine is really designed to do

q  Common case vs. uncommon case

n  Balanced design
q  Balance instruction/data flow through hardware components
q  Design to eliminate bottlenecks: balance the hardware for the

work

10

Review: Single-Cycle Design vs. Design Principles

n  Critical path design

n  Bread and butter (common case) design

n  Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?

11

Multi-Cycle Microarchitectures

12

Multi-Cycle Microarchitectures
n  Goal: Let each instruction take (close to) only as much time

it really needs

n  Idea
q  Determine clock cycle time independently of instruction

processing time
q  Each instruction takes as many clock cycles as it needs to take

n  Multiple state transitions per instruction
n  The states followed by each instruction is different

13

Remember: The “Process instruction” Step
 n  ISA specifies abstractly what AS’ should be, given an

instruction and AS
q  It defines an abstract finite state machine where

n  State = programmer-visible state
n  Next-state logic = instruction execution specification

q  From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
n  One state transition per instruction

n  Microarchitecture implements how AS is transformed to AS’
q  There are many choices in implementation
q  We can have programmer-invisible state to optimize the speed of

instruction execution: multiple state transitions per instruction
n  Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
n  Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple

clock cycles to transform AS to AS’)
14

Multi-Cycle Microarchitecture
AS = Architectural (programmer visible) state

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

15

Benefits of Multi-Cycle Design
n  Critical path design

q  Can keep reducing the critical path independently of the worst-
case processing time of any instruction

n  Bread and butter (common case) design
q  Can optimize the number of states it takes to execute “important”

instructions that make up much of the execution time

n  Balanced design
q  No need to provide more capability or resources than really

needed
n  An instruction that needs resource X multiple times does not require

multiple X’s to be implemented
n  Leads to more efficient hardware: Can reuse hardware components

needed multiple times for an instruction

16

Remember: Performance Analysis
n  Execution time of an instruction

q  {CPI} x {clock cycle time}

n  Execution time of a program
q  Sum over all instructions [{CPI} x {clock cycle time}]
q  {# of instructions} x {Average CPI} x {clock cycle time}

n  Single cycle microarchitecture performance
q  CPI = 1
q  Clock cycle time = long

n  Multi-cycle microarchitecture performance
q  CPI = different for each instruction

n  Average CPI à hopefully small

q  Clock cycle time = short
17

Now, we have
two degrees of freedom
to optimize independently

A Multi-Cycle Microarchitecture
A Closer Look

18

How Do We Implement This?
n  Maurice Wilkes, “The Best Way to Design an Automatic

Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

n  The concept of microcoded/microprogrammed machines

19

Microprogrammed Multi-Cycle uArch
n  Key Idea for Realization

q  One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

q  A state is defined by the control signals asserted in it

q  Control signals for the next state determined in current
state

20

The Instruction Processing Cycle

q  Fetch
q  Decode
q  Evaluate Address
q  Fetch Operands
q  Execute
q  Store Result

21

A Basic Multi-Cycle Microarchitecture
n  Instruction processing cycle divided into “states”

n  A stage in the instruction processing cycle can take multiple states

n  A multi-cycle microarchitecture sequences from state to
state to process an instruction
n  The behavior of the machine in a state is completely determined by

control signals in that state

n  The behavior of the entire processor is specified fully by a
finite state machine

n  In a state (clock cycle), control signals control two things:
n  How the datapath should process the data
n  How to generate the control signals for the next clock cycle

22

Microprogrammed Control Terminology
n  Control signals associated with the current state

q  Microinstruction

n  Act of transitioning from one state to another
q  Determining the next state and the microinstruction for the

next state
q  Microsequencing

n  Control store stores control signals for every possible state
q  Store for microinstructions for the entire FSM

n  Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

23

What Happens In A Clock Cycle?
n  The control signals (microinstruction) for the current state

control two things:
q  Processing in the data path
q  Generation of control signals (microinstruction) for the next

cycle
q  See Supplemental Figure 1 (next slide)

n  Datapath and microsequencer operate concurrently

n  Question: why not generate control signals for the current
cycle in the current cycle?
q  This will lengthen the clock cycle
q  Why would it lengthen the clock cycle?
q  See Supplemental Figure 2

24

A Clock Cycle

25

A Bad Clock Cycle!

26

A Simple LC-3b Control and Datapath

27

Read Appendix C
under Technical Docs

What Determines Next-State Control Signals?
n  What is happening in the current clock cycle

q  See the 9 control signals coming from “Control” block
n  What are these for?

n  The instruction that is being executed
q  IR[15:11] coming from the Data Path

n  Whether the condition of a branch is met, if the instruction
being processed is a branch
q  BEN bit coming from the datapath

n  Whether the memory operation is completing in the current
cycle, if one is in progress
q  R bit coming from memory

28

A Simple LC-3b Control and Datapath

29

The State Machine for Multi-Cycle Processing
n  The behavior of the LC-3b uarch is completely determined by

q  the 35 control signals and
q  additional 7 bits that go into the control logic from the datapath

n  35 control signals completely describe the state of the control
structure

n  We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of
q  Nodes (one corresponding to each state)
q  Arcs (showing flow from each state to the next state(s))

30

An LC-3b State Machine
n  Patt and Patel, Appendix C, Figure C.2

n  Each state must be uniquely specified
q  Done by means of state variables

n  31 distinct states in this LC-3b state machine
q  Encoded with 6 state variables

n  Examples
q  State 18,19 correspond to the beginning of the instruction

processing cycle
q  Fetch phase: state 18, 19 à state 33 à state 35
q  Decode phase: state 32

31

C.2. THE STATE MACHINE 5

R

PC<!BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<!SR[7:0]

MDR <! M

IR <! MDR

R

DR<!SR1+OP2*
set CC

DR<!SR1&OP2*
set CC

[BEN]

PC<!MDR

32

1

5

0

0

1
To 18

To 18 To 18

R R

[IR[15:12]]

28

30

R7<!PC
MDR<!M[MAR]

set CC

BEN<!IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<!SR1 XOR OP2*

4

22

To 11
1011

JSR
JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<!B+off6

set CC

To 18

MAR<!B+off6

DR<!MDR
set CC

To 18

MDR<!M[MAR]
25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<!PC+LSHF(off9, 1)

14

LDW

MAR<!B+LSHF(off6,1) MAR<!B+LSHF(off6,1)

PC<!PC+LSHF(off9,1)

33

35

DR<!SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<!M[MAR[15:1]’0]

DR<!SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<!SR

To 18

R R

M[MAR]<!MDR
16

23

R R

17

To 19

24

M[MAR]<!MDR**

MAR<!LSHF(ZEXT[IR[7:0]],1)
15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<!BaseR

PC<!PC+LSHF(off11,1)

R7<!PC

R7<!PC

13

Figure C.2: A state machine for the LC-3b

LC-3b State Machine: Some Questions
n  How many cycles does the fastest instruction take?

n  How many cycles does the slowest instruction take?

n  Why does the BR take as long as it takes in the FSM?

n  What determines the clock cycle time?

33

LC-3b Datapath
n  Patt and Patel, Appendix C, Figure C.3

n  Single-bus datapath design
q  At any point only one value can be “gated” on the bus (i.e.,

can be driving the bus)
q  Advantage: Low hardware cost: one bus
q  Disadvantage: Reduced concurrency – if instruction needs the

bus twice for two different things, these need to happen in
different states

n  Control signals (26 of them) determine what happens in the
datapath in one clock cycle
q  Patt and Patel, Appendix C, Table C.1

34

C.4. THE CONTROL STRUCTURE 7

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU
16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]
WE

LOGIC

Figure C.3: The LC-3b data path

provide you with the additional flexibility of more states, so we have selected a control
store consisting of 26 locations.

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or
store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains
the address to be read and the microinstruction asserts READ, it will take five cycles
before the contents of the specified location in memory are available to be loaded into
MDR. (Note that the microinstruction asserts READ by means of three control signals:
MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses
an instruction from memory during the fetch phase of each instruction cycle. For the
LC-3b to operate correctly, state 33 must execute five times before moving on to state
35. That is, until MDR contains valid data from the memory location specified by the
contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,
the memory has completed the “read,” resulting in valid data in MDR, so the processor
can move on to state 35. What if the microarchitecture did not wait for the memory to
complete the read operation before moving on to state 35? Since the contents of MDR
would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-
ory knows it needs five clock cycles to complete the read, it asserts a ready signal
(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,
100001) if the memory read will not complete in the current clock cycle and state 35
(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure
C.5) to produce the next state address.

Remember the MIPS datapath

LC-3b Datapath: Some Questions

n  How does instruction fetch happen in this datapath
according to the state machine?

n  What is the difference between gating and loading?

n  Is this the smallest hardware you can design?

38

LC-3b Microprogrammed Control Structure

n  Patt and Patel, Appendix C, Figure C.4

n  Three components:
q  Microinstruction, control store, microsequencer

n  Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

n  Each microinstruction is stored in a unique location in the
control store (a special memory structure)

n  Unique location: address of the state corresponding to the
microinstruction
q  Remember each state corresponds to one microinstruction

n  Microsequencer determines the address of the next
microinstruction (i.e., next state)

39

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store
6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

J LD
.PC

LD
.BEN

LD
.IR

LD
.M

DR

LD
.M

AR

LD
.REG

LD
.CC

Con
d

IR
D

Gate
PC

Gate
MDR

Gate
ALU

Gate
MARMUX

Gate
SH

F
PC

MUX
DRMUX
SR

1M
UX

ADDR1M
UX

ADDR2M
UX

MARMUX

010000 (State 16)
010001 (State 17)

010011 (State 19)
010010 (State 18)

010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)

001000 (State 8)
001001 (State 9)
001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)

000000 (State 0)
000001 (State 1)
000010 (State 2)
000011 (State 3)
000100 (State 4)
000101 (State 5)
000110 (State 6)
000111 (State 7)

ALU
K

MIO
.EN

R.W LS
HF1

DATA
.SI

ZE

Figure C.7: Specification of the control store

LC-3b Microsequencer

n  Patt and Patel, Appendix C, Figure C.5

n  The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

n  Next address depends on 9 control signals (plus 7 data
signals)

43

10APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

The Microsequencer: Some Questions
n  When is the IRD signal asserted?

n  What happens if an illegal instruction is decoded?

n  What are condition (COND) bits for?

n  How is variable latency memory handled?

n  How do you do the state encoding?
q  Minimize number of state variables (~ control store size)
q  Start with the 16-way branch
q  Then determine constraint tables and states dependent on COND

45

An Exercise in
Microprogramming

46

Handouts
n  7 pages of Microprogrammed LC-3b design

n  http://www.ece.cmu.edu/~ece447/s14/doku.php?
id=techdocs

n  http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?
media=lc3b-figures.pdf

47

A Simple LC-3b Control and Datapath

48

C.2. THE STATE MACHINE 5

R

PC<!BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<!SR[7:0]

MDR <! M

IR <! MDR

R

DR<!SR1+OP2*
set CC

DR<!SR1&OP2*
set CC

[BEN]

PC<!MDR

32

1

5

0

0

1
To 18

To 18 To 18

R R

[IR[15:12]]

28

30

R7<!PC
MDR<!M[MAR]

set CC

BEN<!IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<!SR1 XOR OP2*

4

22

To 11
1011

JSR
JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<!B+off6

set CC

To 18

MAR<!B+off6

DR<!MDR
set CC

To 18

MDR<!M[MAR]
25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<!PC+LSHF(off9, 1)

14

LDW

MAR<!B+LSHF(off6,1) MAR<!B+LSHF(off6,1)

PC<!PC+LSHF(off9,1)

33

35

DR<!SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<!M[MAR[15:1]’0]

DR<!SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<!SR

To 18

R R

M[MAR]<!MDR
16

23

R R

17

To 19

24

M[MAR]<!MDR**

MAR<!LSHF(ZEXT[IR[7:0]],1)
15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<!BaseR

PC<!PC+LSHF(off11,1)

R7<!PC

R7<!PC

13

Figure C.2: A state machine for the LC-3b

C.4. THE CONTROL STRUCTURE 7

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU
16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]
WE

LOGIC

Figure C.3: The LC-3b data path

provide you with the additional flexibility of more states, so we have selected a control
store consisting of 26 locations.

10APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow theState	 18	 (010010)	
State	 33	 (100001)	
State	 35	 (100011)	
State	 32	 (100000)	
State	 6	 	 	 	 (000110)	
State	 25	 (011001)	
State	 27	 (011011)	

State	 Machine	 for	 LDW	 Microsequencer	

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or
store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains
the address to be read and the microinstruction asserts READ, it will take five cycles
before the contents of the specified location in memory are available to be loaded into
MDR. (Note that the microinstruction asserts READ by means of three control signals:
MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses
an instruction from memory during the fetch phase of each instruction cycle. For the
LC-3b to operate correctly, state 33 must execute five times before moving on to state
35. That is, until MDR contains valid data from the memory location specified by the
contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,
the memory has completed the “read,” resulting in valid data in MDR, so the processor
can move on to state 35. What if the microarchitecture did not wait for the memory to
complete the read operation before moving on to state 35? Since the contents of MDR
would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-
ory knows it needs five clock cycles to complete the read, it asserts a ready signal
(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,
100001) if the memory read will not complete in the current clock cycle and state 35
(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure
C.5) to produce the next state address.

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store
6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,
starting at state 10 or state 11, depending on which illegal opcode was being decoded.
In both cases, the sequence of microinstructions would respond to the fact that an
instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not
among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6
shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

J LD
.PC

LD
.BEN

LD
.IR

LD
.M

DR

LD
.M

AR

LD
.REG

LD
.CC

Con
d

IR
D

Gate
PC

Gate
MDR

Gate
ALU

Gate
MARMUX

Gate
SH

F
PC

MUX
DRMUX
SR

1M
UX

ADDR1M
UX

ADDR2M
UX

MARMUX

010000 (State 16)
010001 (State 17)

010011 (State 19)
010010 (State 18)

010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)

001000 (State 8)
001001 (State 9)
001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)

000000 (State 0)
000001 (State 1)
000010 (State 2)
000011 (State 3)
000100 (State 4)
000101 (State 5)
000110 (State 6)
000111 (State 7)

ALU
K

MIO
.EN

R.W LS
HF1

DATA
.SI

ZE

Figure C.7: Specification of the control store

End of the Exercise in
Microprogramming

57

Homework 2
n  You will write the microcode for some states in LC-3b as

specified in Appendix C

58

Lab 2 Extra Credit
n  Microprogrammed MIPS implementation

n  Exercise your creativity!

59

The Control Store: Some Questions
n  What control signals can be stored in the control store?

 vs.

n  What control signals have to be generated in hardwired
logic?
q  i.e., what signal cannot be available without processing in the

datapath?

n  Remember the MIPS datapath
q  One PCSrc signal depends on processing that happens in the

datapath (bcond logic)

60

Variable-Latency Memory
n  The ready signal (R) enables memory read/write to execute

correctly
q  Example: transition from state 33 to state 35 is controlled by

the R bit asserted by memory when memory data is available

n  Could we have done this in a single-cycle
microarchitecture?

61

The Microsequencer: Advanced Questions
n  What happens if the machine is interrupted?

n  What if an instruction generates an exception?

n  How can you implement a complex instruction using this
control structure?
q  Think REP MOVS

62

The Power of Abstraction
n  The concept of a control store of microinstructions enables

the hardware designer with a new abstraction:
microprogramming

n  The designer can translate any desired operation to a
sequence of microinstructions

n  All the designer needs to provide is
q  The sequence of microinstructions needed to implement the

desired operation
q  The ability for the control logic to correctly sequence through

the microinstructions
q  Any additional datapath control signals needed (no need if the

operation can be “translated” into existing control signals)

63

Let’s Do Some More Microprogramming
n  Implement REP MOVS in the LC-3b microarchitecture

n  What changes, if any, do you make to the
q  state machine?
q  datapath?
q  control store?
q  microsequencer?

n  Show all changes and microinstructions
n  Coming up in Homework 2

64

Aside: Alignment Correction in Memory
n  Remember unaligned accesses

n  LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary
q  Convenience to the programmer/compiler

n  How does the hardware ensure this works correctly?
q  Take a look at state 29 for LDB
q  States 24 and 17 for STB
q  Additional logic to handle unaligned accesses

65

Aside: Memory Mapped I/O
n  Address control logic determines whether the specified

address of LDx and STx are to memory or I/O devices

n  Correspondingly enables memory or I/O devices and sets
up muxes

n  Another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store
q  These signals are dependent on address

66

Advantages of Microprogrammed Control
n  Allows a very simple design to do powerful computation by

controlling the datapath (using a sequencer)
q  High-level ISA translated into microcode (sequence of microinstructions)
q  Microcode (ucode) enables a minimal datapath to emulate an ISA
q  Microinstructions can be thought of as a user-invisible ISA (micro ISA)

n  Enables easy extensibility of the ISA
q  Can support a new instruction by changing the microcode
q  Can support complex instructions as a sequence of simple microinstructions

n  If I can sequence an arbitrary instruction then I can sequence
an arbitrary “program” as a microprogram sequence
q  will need some new state (e.g. loop counters) in the microcode for sequencing

more elaborate programs

67

Update of Machine Behavior
n  The ability to update/patch microcode in the field (after a

processor is shipped) enables
q  Ability to add new instructions without changing the processor!
q  Ability to “fix” buggy hardware implementations

n  Examples
q  IBM 370 Model 145: microcode stored in main memory, can be

updated after a reboot
q  IBM System z: Similar to 370/145.

n  Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

q  B1700 microcode can be updated while the processor is running
n  User-microprogrammable machine!

68

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Horizontal Microcode

70

Microprogram counter

Address select logic

Adder

1

Input

Datapath
control
outputs

Microcode
storage

Inputs from instruction
register opcode field

Outputs

Sequencing
control

[Based	 on	 original	 figure	 from	 P&H	 CO&D,	 COPYRIGHT	
2004	 Elsevier.	 ALL	 RIGHTS	 RESERVED.]	

ALUSrcA	 	
IorD	 	
IRWrite	
PCWrite	
PCWriteCond	
….	

n-‐bit	 µPC	 input	

k-‐
bi
t	 “

co
nt
ro
l”
	 o
ut
pu

t	

Control	 Store:	 2n×	 k	 bit	 	 (not	 including	 sequencing)	

Vertical Microcode

71

Microprogram counter

Address select logic

Adder

1

Input

Datapath
control
outputs

Microcode
storage

Inputs from instruction
register opcode field

Outputs

Sequencing
control

“PC	 ⇐	 PC+4”	
“PC	 ⇐	 ALUOut”	
“PC	 ⇐	 PC[31:28],IR[25:0],2’b00”	
“IR	 ⇐	 MEM[PC]”	
“A	 ←	 RF[IR[25:21]]”	
“B	 ←	 RF[IR[20:16]]”	
………….	 …….	

ROM	

ALU
SrcA	 	

IorD	 	
IRW

rite	
PCW

rite	
PCW

riteCond	
…
.	

[Based	 on	 original	 figure	 from	 P&H	 CO&D,	 COPYRIGHT	
2004	 Elsevier.	 ALL	 RIGHTS	 RESERVED.]	

If	 done	 right	 (i.e.,	 m<<n,	 and	 m<<k),	 two	 ROMs	 together	 	
(2n×m+2m×k	 bit)	 should	 be	 smaller	 than	 horizontal	 microcode	 ROM	 (2n×k	 bit)	 	

m-‐bit	 input	

k-‐bit	 output	

n-‐bit	 µPC	 input	

1-‐bit	 signal	 means	 do	 this	 RT	
	 	 	 	 	 	 	 	 (or	 combinadon	 of	 RTs)	

Nanocode and Millicode
n  Nanocode:	 a	 level	 below	 tradidonal	 µcode	

q  	 µprogrammed	 control	 for	 sub-‐systems	 (e.g.,	 a	 complicated	 floadng-‐
point	 module)	 that	 acts	 as	 a	 slave	 in	 a	 µcontrolled	 datapath	

n  Millicode:	 a	 level	 above	 tradidonal	 µcode	
q  ISA-‐level	 subroudnes	 that	 can	 be	 called	 by	 the	 µcontroller	 to	 handle	

complicated	 operadons	 and	 system	 funcdons	
q  E.g.,	 Heller	 and	 Farrell,	 “Millicode	 in	 an	 IBM	 zSeries	 processor,”	 IBM	

JR&D,	 May/Jul	 2004.	

n  In	 both	 cases,	 we	 avoid	 complicadng	 the	 main	 µcontroller	 	
n  You	 can	 think	 of	 these	 as	 “microcode”	 at	 different	 levels	 of	

abstracdon

72

Nanocode Concept Illustrated

73

ROM	

µPC	

arithmedc	
datapath	

a	 “µcoded”	 FPU	 implementadon	

ROM	

µPC	

processor	
datapath	

a	 “µcoded”	 processor	 implementadon	

We	 refer	 to	 this	 	
as	 “nanocode”	
when	 a	 µcoded	
subsystem	 is	 embedded	 	
in	 a	 µcoded	 system	

Microcoded Multi-Cycle MIPS Design
n  P&H, Appendix D

n  Any ISA can be implemented this way

n  We will not cover this in class
n  However, you can do an extra credit assignment for Lab 2

74

Microcoded Multi-Cycle MIPS Design

75 [Based	 on	 original	 figure	 from	 P&H	 CO&D,	 COPYRIGHT	
2004	 Elsevier.	 ALL	 RIGHTS	 RESERVED.]	

Control Logic for MIPS FSM

76 [Based	 on	 original	 figure	 from	 P&H	 CO&D,	 COPYRIGHT	
2004	 Elsevier.	 ALL	 RIGHTS	 RESERVED.]	

Microprogrammed Control for MIPS FSM

77 [Based	 on	 original	 figure	 from	 P&H	 CO&D,	 COPYRIGHT	
2004	 Elsevier.	 ALL	 RIGHTS	 RESERVED.]	

Multi-Cycle vs. Single-Cycle uArch
n  Advantages

n  Disadvantages

n  You should be very familiar with this right now

78

Microprogrammed vs. Hardwired Control
n  Advantages

n  Disadvantages

n  You should be very familiar with this right now

79

Can We Do Better?
n  What limitations do you see with the multi-cycle design?

n  Limited concurrency
q  Some hardware resources are idle during different phases of

instruction processing cycle
q  “Fetch” logic is idle when an instruction is being “decoded” or

“executed”
q  Most of the datapath is idle when a memory access is

happening

80

Can We Use the Idle Hardware to Improve Concurrency?

n  Goal: Concurrency à throughput (more “work” completed
in one cycle)

n  Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction
q  E.g., when an instruction is being decoded, fetch the next

instruction
q  E.g., when an instruction is being executed, decode another

instruction
q  E.g., when an instruction is accessing data memory (ld/st),

execute the next instruction
q  E.g., when an instruction is writing its result into the register

file, access data memory for the next instruction
81

