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Agenda for Today & Next Few Lectures 

 Start Microarchitecture 

 

 Single-cycle Microarchitectures 

 

 Multi-cycle Microarchitectures 

 

 Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 
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Recap of Two Weeks and Last Lecture 

 Computer Architecture Today and Basics (Lectures 1 & 2) 

 Fundamental Concepts (Lecture 3) 

 ISA basics and tradeoffs (Lectures 3 & 4) 

 

 Last Lecture: ISA tradeoffs continued + MIPS ISA 

 Instruction length 

 Uniform vs. non-uniform decode 

 Number of registers 

 Addressing modes 

 Aligned vs. unaligned access 

 RISC vs. CISC properties 

 MIPS ISA Overview 
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Assignment for You  

 Not to be turned in 

 

 As you learn the MIPS ISA, think about what tradeoffs the 
designers have made  

 in terms of the ISA properties we talked about 
 

 And, think about the pros and cons of design choices 

 In comparison to ARM, Alpha  

 In comparison to x86, VAX 
 

 And, think about the potential mistakes 

 Branch delay slot? 

 Load delay slot? 

 No FP, no multiply, MIPS (initial) 
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Look Backward 



Food for Thought for You 

 How would you design a new ISA? 

 

 Where would you place it? 

 What design choices would you make in terms of ISA 
properties? 

 

 What would be the first question you ask in this process? 

 “What is my design point?” 
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Look Forward & Up 



Review: Other Example ISA-level Tradeoffs 

 Condition codes vs. not 

 VLIW vs. single instruction 

 SIMD (single instruction multiple data) vs. SISD 

 Precise vs. imprecise exceptions 

 Virtual memory vs. not 

 Unaligned access vs. not 

 Hardware interlocks vs. software-guaranteed interlocking 

 Software vs. hardware managed page fault handling 

 Cache coherence (hardware vs. software) 

 … 
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Think Programmer vs. (Micro)architect 



Review: A Note on RISC vs. CISC 

 Usually, … 

 

 RISC 

 Simple instructions 

 Fixed length 

 Uniform decode 

 Few addressing modes 

 

 CISC 

 Complex instructions 

 Variable length 

 Non-uniform decode 

 Many addressing modes 
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Now That We Have an ISA 

 How do we implement it? 

 

 i.e., how do we design a system that obeys the 
hardware/software interface? 

 

 Aside: “System” can be solely hardware or a combination of 
hardware and software 

 Remember “Translation of ISAs” 

 A virtual ISA can be converted by “software” into an 
implementation ISA 

 

 We will assume “hardware” for most lectures 
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Implementing the ISA: 

Microarchitecture Basics 
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How Does a Machine Process Instructions?  

 What does processing an instruction mean? 

 Remember the von Neumann model 

 

AS = Architectural (programmer visible) state before an 
instruction is processed 

 

Process instruction 

 

AS’ = Architectural (programmer visible) state after an 
instruction is processed 

 

 Processing an instruction: Transforming AS to AS’ according 
to the ISA specification of the instruction 
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The “Process instruction” Step 

  ISA specifies abstractly what AS’ should be, given an 
instruction and AS 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how AS is transformed to AS’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: AS  AS’ (transform AS to AS’ in a single clock cycle) 

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple 

clock cycles to transform AS to AS’) 
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A Very Basic Instruction Processing Engine 

 Each instruction takes a single clock cycle to execute 

 Only combinational logic is used to implement instruction 
execution  

 No intermediate, programmer-invisible state updates 

 

AS = Architectural (programmer visible) state  

at the beginning of a clock cycle 

 

Process instruction in one clock cycle 

 

AS’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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A Very Basic Instruction Processing Engine 

 Single-cycle machine 

 

 

 

 

 

 

 

 

 What is the clock cycle time determined by? 

 What is the critical path of the combinational logic 
determined by? 
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AS’  AS Sequential 
Logic  
(State) 

Combinational 
Logic 



Remember: Programmer Visible (Architectural) State 
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M[0] 

M[1] 

M[2] 

M[3] 

M[4] 

M[N-1] 
Memory 

array of storage locations 
indexed by an address 

Program Counter 
memory address 
of the current instruction 

Registers 

-  given special names in the ISA 
     (as opposed to addresses) 
-  general vs. special purpose 
 

Instructions (and programs) specify how to transform 
             the values of programmer visible state 



Single-cycle vs. Multi-cycle Machines 

 Single-cycle machines 

 Each instruction takes a single clock cycle 

 All state updates made at the end of an instruction’s execution 

 Big disadvantage: The slowest instruction determines cycle time  

long clock cycle time 
 

 Multi-cycle machines  

 Instruction processing broken into multiple cycles/stages 

 State updates can be made during an instruction’s execution 

 Architectural state updates made only at the end of an instruction’s 
execution 

 Advantage over single-cycle: The slowest “stage” determines cycle time 
 

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level 
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Instruction Processing “Cycle” 

 Instructions are processed under the direction of a “control 
unit” step by step.  

 Instruction cycle: Sequence of steps to process an instruction 

 Fundamentally, there are six phases: 
 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Not all instructions require all six stages (see P&P Ch. 4) 
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Instruction Processing “Cycle” vs. Machine Clock Cycle 

 Single-cycle machine:  

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 

 Multi-cycle machine:  

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete 

 In fact, each phase can take multiple clock cycles to complete 
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Instruction Processing Viewed Another Way 
 Instructions transform Data (AS) to Data’ (AS’) 

 This transformation is done by functional units  
 Units that “operate” on data 

 These units need to be told what to do to the data 
 

 An instruction processing engine consists of two components 

 Datapath: Consists of hardware elements that deal with and 
transform data signals 

 functional units that operate on data 

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers 

 storage units that store data (e.g., registers) 

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data 
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Single-cycle vs. Multi-cycle: Control & Data 

 Single-cycle machine: 

 Control signals are generated in the same clock cycle as the 
one during which data signals are operated on 

 Everything related to an instruction happens in one clock cycle 
(serialized processing) 

 

 Multi-cycle machine: 

 Control signals needed in the next cycle can be generated in 
the current cycle 

 Latency of control processing can be overlapped with latency 
of datapath operation (more parallelism) 

 

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitectures 
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Many Ways of Datapath and Control Design 

 There are many ways of designing the data path and 
control logic 

 

 Single-cycle, multi-cycle, pipelined datapath and control 

 Single-bus vs. multi-bus datapaths 

 See your homework 2 question 

 Hardwired/combinational vs. microcoded/microprogrammed 
control 

 Control signals generated by combinational logic versus 

 Control signals stored in a memory structure 

 

 Control signals and structure depend on the datapath 
design 
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Flash-Forward: Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
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Now, we have  

two degrees of freedom 

to optimize independently 



A Single-Cycle Microarchitecture 

A Closer Look 
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Remember… 

 Single-cycle machine 
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AS Sequential 
Logic  
(State) 

Combinational 
Logic 

AS’  



Let’s Start with the State Elements 

 Data and control inputs 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



For Now, We Will Assume 

 “Magic” memory and register file 
 

 Combinational read 

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port 

 

 Synchronous write 

 the selected register is updated on the positive edge clock 
transition when write enable is asserted 

 Cannot affect read output in between clock edges 
 

 

 Single-cycle, synchronous memory 

 Contrast this with memory that tells when the data is ready 

 i.e., Ready bit: indicating the read or write is done 
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Instruction Processing 

 5 generic steps (P&H book) 

 Instruction fetch (IF) 

 Instruction decode and register operand fetch (ID/RF) 

 Execute/Evaluate memory address (EX/AG) 

 Memory operand fetch (MEM) 

 Store/writeback result (WB)  
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



What Is To Come: The Full MIPS Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Datapath for 

Arithmetic and Logical Instructions 
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R-Type ALU Instructions 

 Assembly (e.g., register-register signed addition) 

  ADD rdreg rsreg rtreg 

 

 Machine encoding 

 

 

 

 

 Semantics 

 

  if MEM[PC] == ADD rd rs rt 

   GPR[rd]  GPR[rs] + GPR[rt]   

   PC  PC + 4 
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ALU Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

if MEM[PC] == ADD rd rs rt 
 GPR[rd]  GPR[rs] + GPR[rt]   
 PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



I-Type ALU Instructions 

 Assembly (e.g., register-immediate signed additions) 

  ADDI rtreg rsreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics 

  if MEM[PC] == ADDI rt rs immediate 

           GPR[rt]  GPR[rs] + sign-extend (immediate) 

           PC  PC + 4 
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Datapath for R and I-Type ALU Insts. 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

if MEM[PC] == ADDI rt rs immediate 
GPR[rt]  GPR[rs] + sign-extend (immediate)  
PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 



Single-Cycle Datapath for 

Data Movement Instructions 
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Load Instructions 

 Assembly (e.g., load 4-byte word) 

  LW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==LW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

GPR[rt]  MEM[ translate(EA) ]  

PC  PC + 4 
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LW Datapath 
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Store Instructions 

 Assembly (e.g., store 4-byte word) 

  SW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==SW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

MEM[ translate(EA) ]  GPR[rt]  

PC  PC + 4 
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SW Datapath 
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Load-Store Datapath 
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2004 Elsevier. ALL RIGHTS RESERVED.] 



Datapath for Non-Control-Flow Insts. 
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Single-Cycle Datapath for 

Control Flow Instructions 
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Unconditional Jump Instructions 

 Assembly 

  J immediate26 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==J immediate26 

   target = { PC[31:28], immediate26, 2’b00 }  

   PC  target 
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Unconditional Jump Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 

0 

X 
0 

0 

X 

if MEM[PC]==J immediate26 
    PC = { PC[31:28], immediate26, 2’b00 } 



Aside: MIPS Cheat Sheet 

 http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?m
edia=mips_reference_data.pdf 

 

 On the 447 website 
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http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=mips_reference_data.pdf
http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=mips_reference_data.pdf


Conditional Branch Instructions 

 Assembly (e.g., branch if equal) 

  BEQ rsreg rtreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics (assuming no branch delay slot) 

 if MEM[PC]==BEQ rs rt immediate16 

target = PC + 4 + sign-extend(immediate) x 4  

if GPR[rs]==GPR[rt] then  PC  target 

    else  PC  PC + 4 
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Conditional Branch Datapath (for you to finish) 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

watch out 



Putting It All Together 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Control Logic 
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Single-Cycle Hardwired Control 

 As combinational function of Inst=MEM[PC] 

 

 

 

 

 

 

 Consider 

 All R-type and I-type ALU instructions 

 LW and SW 

 BEQ, BNE, BLEZ, BGTZ 

 J, JR, JAL, JALR 
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Single-Bit Control Signals 
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When De-asserted When asserted Equation 

RegDest 
GPR write select 
according to rt, i.e., 
inst[20:16] 

GPR write select 
according to rd, i.e., 
inst[15:11] 

opcode==0 

ALUSrc 

2nd ALU input from 2nd 
GPR read port 

2nd ALU input from sign-
extended 16-bit 
immediate 

(opcode!=0) && 

(opcode!=BEQ) && 

(opcode!=BNE) 

MemtoReg 
Steer ALU result to GPR 
write port 

steer memory load to 
GPR wr. port 

opcode==LW 

RegWrite 

GPR write disabled GPR write enabled (opcode!=SW) && 

(opcode!=Bxx) && 

(opcode!=J) && 

(opcode!=JR)) 

JAL and JALR require additional RegDest and MemtoReg options  



Single-Bit Control Signals 
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When De-asserted When asserted Equation 

MemRead 
Memory read disabled Memory read port 

return load value 
opcode==LW 

 

MemWrite 
Memory write disabled Memory write enabled opcode==SW 

 

PCSrc1 

According to PCSrc2 next PC is based on 26-
bit immediate jump 
target 

(opcode==J) || 

(opcode==JAL) 

PCSrc2 
next PC = PC + 4 next PC is based on 16-

bit immediate branch 
target 

(opcode==Bxx) && 

“bcond is satisfied” 

JR and JALR require additional PCSrc options  



ALU Control 

 case opcode 

‘0’  select operation according to funct 

‘ALUi’  selection operation according to opcode  

‘LW’  select addition 

‘SW’  select addition 

‘Bxx’  select bcond generation function 

 __  don’t care 

 

 Example ALU operations 

 ADD, SUB, AND, OR, XOR, NOR, etc. 

 bcond on equal, not equal, LE zero, GT zero, etc. 
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R-Type ALU 

 

52 

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken 

PCSrc1=Jump 

ALU operation 

bcond 

**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 
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I-Type ALU 
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What is in That Control Box? 

 Combinational Logic  Hardwired Control 

 Idea: Control signals generated combinationally based on 
instruction 

 Necessary in a single-cycle microarchitecture… 

 

 Sequential Logic  Sequential/Microprogrammed Control 

 Idea: A memory structure contains the control signals 
associated with an instruction 

 Control Store 
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Evaluating the Single-Cycle 

Microarchitecture 
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A Single-Cycle Microarchitecture 

 Is this a good idea/design? 

 

 When is this a good design? 

 

 When is this a bad design? 

 

 How can we design a better microarchitecture? 
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A Single-Cycle Microarchitecture: Analysis 

 Every instruction takes 1 cycle to execute 

 CPI (Cycles per instruction) is strictly 1 

 

 How long each instruction takes is determined by how long 
the slowest instruction takes to execute 

 Even though many instructions do not need that long to 
execute 

 

 Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction 

 Critical path of the design is determined by the processing 
time of the slowest instruction 
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What is the Slowest Instruction to Process? 

 Let’s go back to the basics 

 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Do each of the above phases take the same time (latency) 
for all instructions? 
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1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Single-Cycle Datapath Analysis 

 Assume 

 memory units (read or write): 200 ps 

 ALU and adders: 100 ps 

 register file (read or write): 50 ps 

 other combinational logic: 0 ps 
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steps IF ID EX MEM WB 

Delay 
resources mem RF ALU mem RF 

R-type 200 50 100 50 400 

I-type 200 50 100 50 400 

LW 200 50 100 200 50 600 

SW 200 50 100 200 550 

Branch 200 50 100 350 

Jump 200 200 



Let’s Find the Critical Path 
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What About Control Logic?  

 How does that affect the critical path? 

 

 Food for thought for you: 

 Can control logic be on the critical path? 

 A note on CDC 5600: control store access too long… 
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What is the Slowest Instruction to Process? 

 Memory is not magic 

 

 What if memory sometimes takes 100ms to access? 

 

 Does it make sense to have a simple register to register 
add or jump to take {100ms+all else to do a memory 
operation}? 

 

 And, what if you need to access memory more than once to 
process an instruction? 

 Which instructions need this? 

 Do you provide multiple ports to memory? 

72 



Single Cycle uArch: Complexity 
 Contrived  

 All instructions run as slow as the slowest instruction 
 

 Inefficient 

 All instructions run as slow as the slowest instruction 

 Must provide worst-case combinational resources in parallel as required 
by any instruction 

 Need to replicate a resource if it is needed more than once by an 
instruction during different parts of the instruction processing cycle 

 

 Not necessarily the simplest way to implement an ISA 

 Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)? 
 

 Not easy to optimize/improve performance 

 Optimizing the common case does not work (e.g. common instructions) 

 Need to optimize the worst case all the time 
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(Micro)architecture Design Principles 

 Critical path design 

 Find and decrease the maximum combinational logic delay 

 Break a path into multiple cycles if it takes too long 

 

 Bread and butter (common case) design 

 Spend time and resources on where it matters most 

 i.e., improve what the machine is really designed to do 

 Common case vs. uncommon case  

 

 Balanced design 

 Balance instruction/data flow through hardware components 

 Design to eliminate bottlenecks: balance the hardware for the 
work 
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Single-Cycle Design vs. Design Principles 

 Critical path design 

 

 Bread and butter (common case) design 

 

 Balanced design 

 

 

 

How does a single-cycle microarchitecture fare in light of 
these principles? 
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Aside: System Design Principles 

 When designing computer systems/architectures, it is 
important to follow good principles 

 

 Remember: “principled design” from our first lecture 

 Frank Lloyd Wright: “architecture […] based upon principle, 
and not upon precedent” 
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Aside: From Lecture 1 

 “architecture […] based upon principle, and not upon 
precedent” 
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Aside: System Design Principles 

 We will continue to cover key principles in this course 

 Here are some references where you can learn more 

 

 Yale Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for 
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of 
transformation, design point, etc) 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966. (Flynn’s Bottleneck  Balanced design) 

 Gene M. Amdahl, "Validity of the single processor approach to achieving 
large scale computing capabilities," AFIPS Conference, April 1967. 
(Amdahl’s Law  Common-case design) 

 Butler W. Lampson, “Hints for Computer System Design,” ACM 
Operating Systems Review, 1983. 

 http://research.microsoft.com/pubs/68221/acrobat.pdf  
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Aside: One Important Principle   

 Keep it simple 

 

 “Everything should be made as simple as possible, but no 
simpler.” 

 Albert Einstein 

 

 And, do not forget: “An engineer is a person who can do 
for a dime what any fool can do for a dollar.” 

 

 For more, see: 

 Butler W. Lampson, “Hints for Computer System Design,” ACM 
Operating Systems Review, 1983. 

 http://research.microsoft.com/pubs/68221/acrobat.pdf  
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Multi-Cycle Microarchitectures 
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