
18-447

Computer Architecture

Lecture 5: Intro to Microarchitecture:

Single-Cycle

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 1/26/2015

Agenda for Today & Next Few Lectures

 Start Microarchitecture

 Single-cycle Microarchitectures

 Multi-cycle Microarchitectures

 Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

2

Recap of Two Weeks and Last Lecture

 Computer Architecture Today and Basics (Lectures 1 & 2)

 Fundamental Concepts (Lecture 3)

 ISA basics and tradeoffs (Lectures 3 & 4)

 Last Lecture: ISA tradeoffs continued + MIPS ISA

 Instruction length

 Uniform vs. non-uniform decode

 Number of registers

 Addressing modes

 Aligned vs. unaligned access

 RISC vs. CISC properties

 MIPS ISA Overview

3

Assignment for You

 Not to be turned in

 As you learn the MIPS ISA, think about what tradeoffs the
designers have made

 in terms of the ISA properties we talked about

 And, think about the pros and cons of design choices

 In comparison to ARM, Alpha

 In comparison to x86, VAX

 And, think about the potential mistakes

 Branch delay slot?

 Load delay slot?

 No FP, no multiply, MIPS (initial)

 4

Look Backward

Food for Thought for You

 How would you design a new ISA?

 Where would you place it?

 What design choices would you make in terms of ISA
properties?

 What would be the first question you ask in this process?

 “What is my design point?”

5

Look Forward & Up

Review: Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 SIMD (single instruction multiple data) vs. SISD

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

6

Think Programmer vs. (Micro)architect

Review: A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes

7

Now That We Have an ISA

 How do we implement it?

 i.e., how do we design a system that obeys the
hardware/software interface?

 Aside: “System” can be solely hardware or a combination of
hardware and software

 Remember “Translation of ISAs”

 A virtual ISA can be converted by “software” into an
implementation ISA

 We will assume “hardware” for most lectures

8

Implementing the ISA:

Microarchitecture Basics

9

How Does a Machine Process Instructions?

 What does processing an instruction mean?

 Remember the von Neumann model

AS = Architectural (programmer visible) state before an
instruction is processed

Process instruction

AS’ = Architectural (programmer visible) state after an
instruction is processed

 Processing an instruction: Transforming AS to AS’ according
to the ISA specification of the instruction

10

The “Process instruction” Step

 ISA specifies abstractly what AS’ should be, given an
instruction and AS

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how AS is transformed to AS’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: AS AS’ (transform AS to AS’ in a single clock cycle)

 Choice 2: AS AS+MS1 AS+MS2 AS+MS3 AS’ (take multiple

clock cycles to transform AS to AS’)

11

A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction
execution

 No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

12

A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic
determined by?

13

AS’ AS Sequential
Logic
(State)

Combinational
Logic

Remember: Programmer Visible (Architectural) State

14

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers

- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time

long clock cycle time

 Multi-cycle machines

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

15

Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control
unit” step by step.

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
16

Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine:

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Multi-cycle machine:

 All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

17

Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

18

Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as the
one during which data signals are operated on

 Everything related to an instruction happens in one clock cycle
(serialized processing)

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in
the current cycle

 Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

 We will see the difference clearly in microprogrammed
multi-cycle microarchitectures

19

Many Ways of Datapath and Control Design

 There are many ways of designing the data path and
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath
design

 20

Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI hopefully small

 Clock cycle time = short
21

Now, we have

two degrees of freedom

to optimize independently

A Single-Cycle Microarchitecture

A Closer Look

22

Remember…

 Single-cycle machine

23

AS Sequential
Logic
(State)

Combinational
Logic

AS’

Let’s Start with the State Elements

 Data and control inputs

24

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done

 25

Instruction Processing

 5 generic steps (P&H book)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB)

26

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full MIPS Datapath

27

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Datapath for

Arithmetic and Logical Instructions

28

R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

 ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

 if MEM[PC] == ADD rd rs rt

 GPR[rd] GPR[rs] + GPR[rt]

 PC PC + 4

29

0
6-bit

rs
5-bit

rt
5-bit

R-type rd
5-bit

0
5-bit

ADD
6-bit

ALU Datapath

30

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
 GPR[rd] GPR[rs] + GPR[rt]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

 ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

 if MEM[PC] == ADDI rt rs immediate

 GPR[rt] GPR[rs] + sign-extend (immediate)

 PC PC + 4

31

ADDI
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Datapath for R and I-Type ALU Insts.

32

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1
ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt] GPR[rs] + sign-extend (immediate)
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

Single-Cycle Datapath for

Data Movement Instructions

33

Load Instructions

 Assembly (e.g., load 4-byte word)

 LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==LW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

GPR[rt] MEM[translate(EA)]

PC PC + 4

34

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

LW Datapath

35

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 GPR[rt] MEM[translate(EA)]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

1

0

Store Instructions

 Assembly (e.g., store 4-byte word)

 SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==SW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

MEM[translate(EA)] GPR[rt]

PC PC + 4

36

SW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

SW Datapath

37

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 MEM[translate(EA)] GPR[rt]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

0

add

ALUSrc

isItype

RegDest
isItype

0

1

Load-Store Datapath

38

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add
isStore

isLoad

ALUSrc

isItype

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

39

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc

isItype

MemtoReg

isLoad

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

40

Unconditional Jump Instructions

 Assembly

 J immediate26

 Machine encoding

 Semantics

 if MEM[PC]==J immediate26

 target = { PC[31:28], immediate26, 2’b00 }

 PC target

41

J
6-bit

immediate
26-bit

J-type

Unconditional Jump Datapath

42

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
 PC = { PC[31:28], immediate26, 2’b00 }

Aside: MIPS Cheat Sheet

 http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?m
edia=mips_reference_data.pdf

 On the 447 website

43

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=mips_reference_data.pdf
http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=mips_reference_data.pdf

Conditional Branch Instructions

 Assembly (e.g., branch if equal)

 BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

 if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC target

 else PC PC + 4

44

BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Conditional Branch Datapath (for you to finish)

45

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

PC

Instruction

memory

Read
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

46

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Control Logic

47

Single-Cycle Hardwired Control

 As combinational function of Inst=MEM[PC]

 Consider

 All R-type and I-type ALU instructions

 LW and SW

 BEQ, BNE, BLEZ, BGTZ

 J, JR, JAL, JALR

 48

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

0 6 11 16 21 26 31

0 16 21 26 31

0 26 31

Single-Bit Control Signals

49

When De-asserted When asserted Equation

RegDest
GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

ALUSrc

2nd ALU input from 2nd
GPR read port

2nd ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&

(opcode!=BEQ) &&

(opcode!=BNE)

MemtoReg
Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options

Single-Bit Control Signals

50

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1

According to PCSrc2 next PC is based on 26-
bit immediate jump
target

(opcode==J) ||

(opcode==JAL)

PCSrc2
next PC = PC + 4 next PC is based on 16-

bit immediate branch
target

(opcode==Bxx) &&

“bcond is satisfied”

JR and JALR require additional PCSrc options

ALU Control

 case opcode

‘0’ select operation according to funct

‘ALUi’ selection operation according to opcode

‘LW’ select addition

‘SW’ select addition

‘Bxx’ select bcond generation function

 __ don’t care

 Example ALU operations

 ADD, SUB, AND, OR, XOR, NOR, etc.

 bcond on equal, not equal, LE zero, GT zero, etc.

51

R-Type ALU

52

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0 funct

I-Type ALU

53

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

0

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

opcode

LW

54

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

1

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

SW

55

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
1

0

X X
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

Branch (Not Taken)

56

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

X X

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Branch (Taken)

57

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

X X

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Jump

58

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

X X

X

X

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

X

What is in That Control Box?

 Combinational Logic Hardwired Control

 Idea: Control signals generated combinationally based on
instruction

 Necessary in a single-cycle microarchitecture…

 Sequential Logic Sequential/Microprogrammed Control

 Idea: A memory structure contains the control signals
associated with an instruction

 Control Store

59

Evaluating the Single-Cycle

Microarchitecture

60

A Single-Cycle Microarchitecture

 Is this a good idea/design?

 When is this a good design?

 When is this a bad design?

 How can we design a better microarchitecture?

61

A Single-Cycle Microarchitecture: Analysis

 Every instruction takes 1 cycle to execute

 CPI (Cycles per instruction) is strictly 1

 How long each instruction takes is determined by how long
the slowest instruction takes to execute

 Even though many instructions do not need that long to
execute

 Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

 Critical path of the design is determined by the processing
time of the slowest instruction

62

What is the Slowest Instruction to Process?

 Let’s go back to the basics

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Do each of the above phases take the same time (latency)
for all instructions?

63

1. Instruction fetch (IF)
2. Instruction decode and
 register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Single-Cycle Datapath Analysis

 Assume

 memory units (read or write): 200 ps

 ALU and adders: 100 ps

 register file (read or write): 50 ps

 other combinational logic: 0 ps

64

steps IF ID EX MEM WB

Delay
resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600

SW 200 50 100 200 550

Branch 200 50 100 350

Jump 200 200

Let’s Find the Critical Path

65

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

66

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 400ps

100ps

100ps

LW

67

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 600ps

100ps

100ps

550ps

SW

68

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

100ps

550ps

Branch Taken

69

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

350ps

200ps

Jump

70

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps

100ps

200ps

What About Control Logic?

 How does that affect the critical path?

 Food for thought for you:

 Can control logic be on the critical path?

 A note on CDC 5600: control store access too long…

71

What is the Slowest Instruction to Process?

 Memory is not magic

 What if memory sometimes takes 100ms to access?

 Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

 And, what if you need to access memory more than once to
process an instruction?

 Which instructions need this?

 Do you provide multiple ports to memory?

72

Single Cycle uArch: Complexity
 Contrived

 All instructions run as slow as the slowest instruction

 Inefficient

 All instructions run as slow as the slowest instruction

 Must provide worst-case combinational resources in parallel as required
by any instruction

 Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

 Not necessarily the simplest way to implement an ISA

 Single-cycle implementation of REP MOVS (x86) or INDEX (VAX)?

 Not easy to optimize/improve performance

 Optimizing the common case does not work (e.g. common instructions)

 Need to optimize the worst case all the time
73

(Micro)architecture Design Principles

 Critical path design

 Find and decrease the maximum combinational logic delay

 Break a path into multiple cycles if it takes too long

 Bread and butter (common case) design

 Spend time and resources on where it matters most

 i.e., improve what the machine is really designed to do

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through hardware components

 Design to eliminate bottlenecks: balance the hardware for the
work

74

Single-Cycle Design vs. Design Principles

 Critical path design

 Bread and butter (common case) design

 Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?

75

Aside: System Design Principles

 When designing computer systems/architectures, it is
important to follow good principles

 Remember: “principled design” from our first lecture

 Frank Lloyd Wright: “architecture […] based upon principle,
and not upon precedent”

76

Aside: From Lecture 1

 “architecture […] based upon principle, and not upon
precedent”

77

Aside: System Design Principles

 We will continue to cover key principles in this course

 Here are some references where you can learn more

 Yale Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proc. of IEEE, 2001. (Levels of
transformation, design point, etc)

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966. (Flynn’s Bottleneck Balanced design)

 Gene M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," AFIPS Conference, April 1967.
(Amdahl’s Law Common-case design)

 Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

 http://research.microsoft.com/pubs/68221/acrobat.pdf

78

http://research.microsoft.com/pubs/68221/acrobat.pdf

Aside: One Important Principle

 Keep it simple

 “Everything should be made as simple as possible, but no
simpler.”

 Albert Einstein

 And, do not forget: “An engineer is a person who can do
for a dime what any fool can do for a dollar.”

 For more, see:

 Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

 http://research.microsoft.com/pubs/68221/acrobat.pdf

79

http://research.microsoft.com/pubs/68221/acrobat.pdf

Multi-Cycle Microarchitectures

80

