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Logistics

 Lab 7 and Lab 8

 Final Exam

 Midterm II scores

 Course grades so far

 Course evaluations

 740 next semester

 Plans for Wed and Fri lectures
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Lab 6 Extra Credit

 2.5% Ashish Shrestha (ashresth)

 2.5% Amanda Marano (amarano)

 2.5% Pete Ehrett (wpe)

 2.0% Jared Choi (jaewonch)

 2.0% Akshai Subramanian (avsubram)

 2.0% Sohil Shah (sohils)

 2.0% Raghav Gupta (raghavg)

 1.5% Kais Kudrolli (kkudroll)
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Lab 7

 Abstract, cycle-level modeling of the memory hierarchy

 L2 Cache and Main Memory Controllers

 A key part of all modern computing systems today

 You can submit until May 1 and still get full credit

 Feel free to submit the Extra Credit portion as well

 Prefetching

 You can get up to 2% of course grade as extra credit

 Remember: The goal is for you to learn…
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Extra Credit Lab 8: Multi-Core Cache Coherence

 Completely extra credit (all get 5% for free; can get 5% more)

 Last submission accepted on May 10, 11:59pm; no late submissions

 Cycle-level modeling of the MESI cache coherence protocol
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AVG = 152

Median = 154 

STDDEV = 37

Max = 240 

Min = 61 



Midterm 2 Grade Distribution (%)
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Final Exam: May 5

 May 5, 5:30-8:30pm, Location: BH A51

 Comprehensive (over all topics in course)

 Three cheat sheets allowed

 We will (likely) have a review session on Friday

 Remember this is 22% of your grade

 I will take into account your improvement over the course

 Know all concepts, especially the previous midterm concepts

 Same advice as before for Midterms I and II
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Course Grades So Far
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A Note on 740, Research, Jobs/Internships

 I am teaching 740 next semester (Fall 2015)

 Lectures M, W 7:30-9:20pm

 Recitations T 7:30-9:20pm

 If you are enjoying 447 and are doing well, you can take it

 feel free to talk with me

 If you are excited about Computer Architecture research or 
looking for a job/internship in this area 

 talk with me
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More on 740

 740 is the next course in sequence

 Time: Lect. MW 7:30-9:20pm, Rect. T 7:30-9:20pm

 Content:

 Lectures: More advanced, with a different perspective

 Recitations: Delving deeper into papers, advanced topics

 Readings: Many fundamental and research readings; will do 
many reviews

 Project: More open ended research project. Proposal 
milestones  final poster and presentation

 Done in groups of 1-3

 Focus of the course is the project and critical reviews of readings

 Exams: lighter and fewer

 Homeworks: None
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Course Evaluations (due May 11)

 Due May 11, 11:59pm

 Please do not forget to fill out the course evaluations

 http://www.cmu.edu/hub/fce/

 Your feedback is very important

 I read these very carefully, and take into account every piece 
of feedback

 And, improve the course for the future

 Please take the time to write out feedback

 State the things you liked, topics you enjoyed, what you think 
the course contributed to your learning, what we can improve on 

 Please don’t just say “the course is hard and fast paced” 

 Because you knew that from the very beginning!
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Extra Credit for Course Evaluations

 0.25% extra credit for everyone in the class if more than 
90% (i.e., 25) of you fill out the evaluations
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Plan for Wed and Fri Sessions This Week

 Wednesday: Informal Q&A Session

 Location: Porch

 Tentative format: Fun, information, food

 Come with questions (about comp arch/systems, and anything 
else)

 We will have food

 Friday: Final Exam Review

 Location: HH 1107

 Tentative format: TAs will go over Midterms I and II and 
answer your questions
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Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches 

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 In-memory computation and predictable performance

 Multi-core issues (e.g., heterogeneous multi-core)

 Interconnection networks
15



Interconnection Network Basics
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Where Is Interconnect Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

17
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Why Is It Important?

 Affects the scalability of the system

 How large of a system can you build?

 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?

 How long are the latencies to memory?

 How much energy is spent on communication?
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Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive 

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy
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Topology

 Bus (simplest)

 Point-to-point connections (ideal and most costly)

 Crossbar (less costly)

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …
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Metrics to Evaluate Interconnect Topology

 Cost

 Latency (in hops, in nanoseconds)

 Contention

 Many others exist you should think about

 Energy

 Bandwidth

 Overall system performance
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Bus

All nodes connected to a single link

+ Simple + Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading  reduced frequency)

- High contention  fast saturation
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Point-to-Point 

Every node connected to every other

with direct/isolated links

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is no issue

-- Highest cost

O(N) connections/ports 

per node

O(N2) links

-- Not scalable

-- How to lay out on chip?
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Crossbar

 Every node connected to every other with a shared link for 
each destination

 Enables concurrent transfers to non-conflicting destinations 

 Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable  O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II
24

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7



Another Crossbar Design
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Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request
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Bufferless and Buffered Crossbars
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Can We Get Lower Cost than A Crossbar?

 Yet still have low contention compared to a bus?

 Idea: Multistage networks
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Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches 
between terminals/nodes

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:
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Multistage Networks (Circuit Switched)

 A multistage network has more restrictions on feasible 
concurrent Tx-Rx pairs vs a crossbar

 But more scalable than crossbar in cost, e.g., O(N 
logN) for Butterfly
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Multistage Networks (Packet Switched)

 Packets “hop” from router to router, pending availability of 
the next-required switch and buffer
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Aside: Circuit vs. Packet Switching

 Circuit switching sets up full path before transmission

 Establish route then send data

 Noone else can use those links while “circuit” is set

+ faster arbitration

-- setting up and bringing down “path” takes time

 Packet switching routes per packet in each router

 Route each packet individually (possibly via different paths)

 If link is free, any packet can use it

-- potentially slower --- must dynamically switch

+ no setup, bring down time

+ more flexible, does not underutilize links
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Switching vs. Topology

 Circuit/packet switching choice independent of topology

 It is a higher-level protocol on how a message gets sent to 
a destination

 However, some topologies are more amenable to circuit vs. 
packet switching
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Another Example: Delta Network

 Single path from source to 
destination

 Each stage has different 
routers

 Proposed to replace costly 
crossbars as processor-memory 
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979.
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Another Example: Omega Network

 Single path from source to 
destination

 All stages are the same

 Used in NYU 
Ultracomputer

 Gottlieb et al. “The NYU 
Ultracomputer - Designing 
an MIMD Shared Memory 
Parallel Computer,” IEEE 
Trans. On Comp., 1983.
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Ring

Each node connected to exactly two other nodes. Nodes form 
a continuous pathway such that packets can reach any 
node.

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

- Bisection bandwidth remains constant

Used in Intel Haswell, 

Intel Larrabee, IBM Cell, 

many commercial systems today
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Unidirectional Ring

 Single directional pathway

 Simple topology and implementation

 Reasonable performance if N and performance needs 
(bandwidth & latency) still moderately low

 O(N) cost

 N/2 average hops; latency depends on utilization
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Bidirectional Rings

Multi-directional pathways, or multiple rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which 
ring to inject a packet into)
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Hierarchical Rings

+ More scalable

+ Lower latency

- More complex
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More on Hierarchical Rings

 Rachata+, “Design and Evaluation of Hierarchical Rings 
with Deflection Routing,” SBAC-PAD 2014.

 http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-
with-deflection_sbacpad14.pdf

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring
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 Each node connected to 4 neighbors (N, E, S, W)

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

prototypes

Mesh
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Torus

 Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

- Unequal link lengths
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Torus, continued

 Weave nodes to make inter-node latencies ~constant
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Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

Fat trees avoid this problem (CM-5)

Trees
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CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in 
hardware

 Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992.

45



Hypercube

 “N-dimensional cube” or “N-cube”

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D
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Caltech Cosmic Cube

 64-node message passing 
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.
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Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive 

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy
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Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Tradeoffs?
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Destination

Bufferless Deflection Routing

 Key idea: Packets are never buffered in the network. When 
two packets contend for the same link, one is deflected.1

50
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.



Bufferless Deflection Routing

 Input buffers are eliminated: packets are buffered in
pipeline latches and on network links
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Routing Algorithm

 Three Types

 Deterministic: always chooses the same path for a 
communicating source-destination pair

 Oblivious: chooses different paths, without considering 
network state

 Adaptive: can choose different paths, adapting to the state of 
the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths
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Deterministic Routing

 All packets between the same (source, dest) pair take the 
same path

 Dimension-order routing

 First traverse dimension X, then traverse dimension Y

 E.g., XY routing (used in Cray T3D, and many on-chip 
networks)

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity
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Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet 
downstream
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Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

55



Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992.
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Oblivious Routing: Valiant’s Algorithm

 An example of oblivious algorithm

 Goal: Balance network load 

 Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use 
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)
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Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to

 Productive output port: port that gets the packet closer to its 
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on 
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom
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On-Chip Networks
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