
18-447

Computer Architecture

Lecture 32: Heterogeneous Systems

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/20/2015

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 In-memory computation and predictable performance

 Multi-core issues (e.g., heterogeneous multi-core)

 Interconnection networks
2

First, Some Administrative

Things

3

Midterm II and Midterm II Review

 Midterm II is this Friday (April 24, 2015)

 12:30-2:30pm, CIC Panther Hollow Room (4th floor)

 Please arrive 5 minutes early and sit with 1-seat separation

 Same rules as Midterm I except you get to have 2 cheat sheets

 Covers all topics we have examined so far, with more focus on
Lectures 17-32 (Memory Hierarchy and Multiprocessors)

 Midterm II Review is Wednesday (April 22)

 Come prepared with questions on concepts and lectures

 Detailed homework and exam questions and solutions  study

on your own and ask TAs during office hours

4

Suggestions for Midterm II

 Solve past midterms (and finals) on your own…

 And, check your solutions vs. the online solutions

 Questions will be similar in spirit

 http://www.ece.cmu.edu/~ece447/s15/doku.php?id=exams

 Do Homework 7 and go over past homeworks.

 Study and internalize the lecture material well.

 Buzzwords can help you. Ditto for slides and videos.

 Understand how to solve all homework & exam questions.

 Study hard.

 Also read: https://piazza.com/class/i3540xiz8ku40a?cid=335

5

http://www.ece.cmu.edu/~ece447/s15/doku.php?id=exams
https://piazza.com/class/i3540xiz8ku40a?cid=335

Lab 8: Multi-Core Cache Coherence

 Due May 3; Last submission accepted on May 10, 11:59pm

 Cycle-level modeling of the MESI cache coherence protocol

 Since this is the last lab

 An automatic extension of 7 days granted for everyone

 No other late days accepted

6

Reminder on Collaboration on 447 Labs

 Reminder of 447 policy:

 Absolutely no form of collaboration allowed

 No discussions, no code sharing, no code reviews with fellow
students, no brainstorming, …

 All labs and all portions of each lab has to be your own
work

 Just focus on doing the lab yourself, alone

7

We Have Another Course for Collaboration

 740 is the next course in sequence

 Tentative Time: Lect. MW 7:30-9:20pm, (Rect. T 7:30pm)

 Content:

 Lectures: More advanced, with a different perspective

 Recitations: Delving deeper into papers, advanced topics

 Readings: Many fundamental and research readings; will do
many reviews

 Project: More open ended research project. Proposal 
milestones  final poster and presentation

 Done in groups of 1-3

 Focus of the course is the project (and papers)

 Exams: lighter and fewer

 Homeworks: None

8

A Note on Testing Your Own Code

 We provide the reference simulator to aid you

 Do not expect it to be given, and do not rely on it much

 In real life, there are no reference simulators

 The architect designs the reference simulator

 The architect verifies it

 The architect tests it

 The architect fixes it

 The architect makes sure there are no bugs

 The architect ensures the simulator matches the specification

9

Lab 6 Grade Distribution

10

Lab 6 Extra Credit Recognitions

 Stay tuned…

11

Lab 4-5 Special Recognition

 Limited out-of-order execution

 Terence An

12

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 In-memory computation and predictable performance

 Multi-core issues (e.g., heterogeneous multi-core)

 Interconnection networks
13

Today

 Heterogeneity (asymmetry) in system design

 Evolution of multi-core systems

 Handling serial and parallel bottlenecks better

 Heterogeneous multi-core systems

14

Heterogeneity (Asymmetry)

15

Heterogeneity (Asymmetry)  Specialization

 Heterogeneity and asymmetry have the same meaning

 Contrast with homogeneity and symmetry

 Heterogeneity is a very general system design concept (and
life concept, as well)

 Idea: Instead of having multiple instances of the same
“resource” to be the same (i.e., homogeneous or symmetric),
design some instances to be different (i.e., heterogeneous or
asymmetric)

 Different instances can be optimized to be more efficient in
executing different types of workloads or satisfying different
requirements/goals

 Heterogeneity enables specialization/customization
16

Why Asymmetry in Design? (I)

 Different workloads executing in a system can have different
behavior

 Different applications can have different behavior

 Different execution phases of an application can have different behavior

 The same application executing at different times can have different
behavior (due to input set changes and dynamic events)

 E.g., locality, predictability of branches, instruction-level parallelism, data
dependencies, serial fraction, bottlenecks in parallel portion, interference
characteristics, …

 Systems are designed to satisfy different metrics at the same
time

 There is almost never a single goal in design, depending on design point

 E.g., Performance, energy efficiency, fairness, predictability, reliability,
availability, cost, memory capacity, latency, bandwidth, …

17

Why Asymmetry in Design? (II)

 Problem: Symmetric design is one-size-fits-all

 It tries to fit a single-size design to all workloads and
metrics

 It is very difficult to come up with a single design

 that satisfies all workloads even for a single metric

 that satisfies all design metrics at the same time

 This holds true for different system components, or
resources

 Cores, caches, memory, controllers, interconnect, disks,
servers, …

 Algorithms, policies, …

18

Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different “workload” behaviors

 Asymmetric: Enables customization and adaptation

 Processing requirements vary across workloads (applications and phases)

 Execute code on best-fit resources (minimal energy, adequate perf.)

19

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

We Have Already Seen Examples Before (in 447)

 CRAY-1 design: scalar + vector pipelines

 Modern processors: scalar instructions + SIMD extensions

 Decoupled Access Execute: access + execute processors

 Thread Cluster Memory Scheduling: different memory
scheduling policies for different thread clusters

 RAIDR: Heterogeneous refresh rate

 Hybrid memory systems

 DRAM + Phase Change Memory

 Fast, Costly DRAM + Slow, Cheap DRAM

 Reliable, Costly DRAM + Unreliable, Cheap DRAM

 …

20

An Example Asymmetric Design: CRAY-1

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

21

Remember: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Take turns accessing memory

Remember: Throughput vs. Fairness

23

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Remember: Achieving the Best of Both Worlds

24

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Remember: Heterogeneous Retention Times in DRAM

25

Aside: Examples from Life

 Heterogeneity is abundant in life

 both in nature and human-made components

 Humans are heterogeneous

 Cells are heterogeneous  specialized for different tasks

 Organs are heterogeneous

 Cars are heterogeneous

 Buildings are heterogeneous

 Rooms are heterogeneous

 …

26

General-Purpose vs. Special-Purpose

 Asymmetry is a way of enabling specialization

 It bridges the gap between purely general purpose and
purely special purpose

 Purely general purpose: Single design for every workload or
metric

 Purely special purpose: Single design per workload or metric

 Asymmetric: Multiple sub-designs optimized for sets of
workloads/metrics and glued together

 The goal of a good asymmetric design is to get the best of
both general purpose and special purpose

27

Asymmetry Advantages and Disadvantages

 Advantages over Symmetric Design

+ Can enable optimization of multiple metrics

+ Can enable better adaptation to workload behavior

+ Can provide special-purpose benefits with general-purpose
usability/flexibility

 Disadvantages over Symmetric Design

- Higher overhead and more complexity in design, verification

- Higher overhead in management: scheduling onto asymmetric
components

- Overhead in switching between multiple components can lead
to degradation

28

Yet Another Example

 Modern processors integrate general purpose cores and
GPUs

 CPU-GPU systems

 Heterogeneity in execution models

29

 Memory system

 Applications are increasingly data intensive

 Data storage and movement limits performance & efficiency

 Efficiency (performance and energy)  scalability

 Enables scalable systems  new applications

 Enables better user experience  new usage models

 Predictability and robustness

 Resource sharing and unreliable hardware causes QoS issues

 Predictable performance and QoS are first class constraints

Three Key Problems in Future Systems

30

Multi-Core Design

31

Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

32

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Many Cores on Chip

 What we want:

 N times the performance with N times the cores when we
parallelize an application on N cores

 What we get:

 Amdahl’s Law (serial bottleneck)

 Bottlenecks in the parallel portion

33

Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
34

Speedup =
1

+1 - f
f

N

The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

 Serialized code sections

 Reduce performance

 Limit scalability

 Waste energy

35

Example from MySQL

36

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

Today

Asymmetric

Demands in Different Code Sections

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

37

“Large” vs. “Small” Cores

38

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

39

Meet Large: IBM POWER4

 Tendler et al., “POWER4 system microarchitecture,” IBM J
R&D, 2002.

 A symmetric multi-core chip…

 Two powerful cores

40

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

41

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

42

Meet Small: Sun Niagara (UltraSPARC T1)

43

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Niagara Core

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

 Round robin thread selection (unless cache miss)

 Shared FP unit among cores

44

Remember the Demands

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

 Can we get the best of both worlds?

45

Performance vs. Parallelism

46

Assumptions:

1. Small cores takes an area budget of 1 and has

performance of 1

2. Large core takes an area budget of 4 and has

performance of 2

Tile-Large Approach

 Tile a few large cores

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem

+ High performance on single thread, serial code sections (2 units)

- Low throughput on parallel program portions (8 units)

47

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Tile-Small Approach

 Tile many small cores

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit)

48

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Can we get the best of both worlds?

 Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

 Tile Small

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

 Idea: Have both large and small on the same chip 

Performance asymmetry

49

Asymmetric Multi-Core

50

Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

51

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Accelerating Serial Bottlenecks

52

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP Approach

Single thread  Large core

Performance vs. Parallelism

53

Assumptions:

1. Small cores takes an area budget of 1 and has

performance of 1

2. Large core takes an area budget of 4 and has

performance of 2

ACMP Performance vs. Parallelism

5454

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Large

Cores

4 0 1

Small

Cores

0 16 12

Serial

Performance

2 1 2

Parallel

Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Area-budget = 16 small cores

Amdahl’s Law Modified

 Simplified Amdahl’s Law for an Asymmetric Multiprocessor

 Assumptions:

 Serial portion executed on the large core

 Parallel portion executed on both small cores and large cores

 f: Parallelizable fraction of a program

 L: Number of large processors

 S: Number of small processors

 X: Speedup of a large processor over a small one

55

Speedup =
1

+
f

S + X*L

1 - f

X

Caveats of Parallelism, Revisited

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
56

Speedup =
1

+1 - f
f

N

Accelerating Parallel Bottlenecks

 Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

 Examples:

 Critical sections that are contended

 Parallel stages that take longer than others to execute

 Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

57

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

58

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/

Contention for Critical Sections

59

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

60

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical

Section

Accelerated

by 2x

Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of
threads and limits scalability

61

MySQL (oltp-1)

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

Today

Asymmetric

A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

62

An Example: Accelerated Critical Sections

 Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

 Benefit:

 Reduces serialization due to contended locks

 Reduces the performance impact of hard-to-parallelize sections

 Programmer does not need to (heavily) optimize parallel code  fewer

bugs, improved productivity

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

63

64

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing

critical section

P4P3P2
P1

Accelerated Critical Sections (ACS)

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

65

A = compute()

LOCK X

result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send X, TPC,

STACK_PTR, CORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result = CS(A)

PUSH result

Release X

CSRET X

TPC:

POP result

print result

…

…

…

…

…

…

…

Waiting in

Critical Section

Request Buffer

(CSRB)

False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization

66

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section

Request Buffer

(CSRB)

4

4

A

B

32

5

To large core

From small cores

ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

67

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data

68

Cache Misses for Private Data

69

Private Data:

NewSubProblems

Shared Data:

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data
 Cache misses reduce if shared data > private data

70

This problem can be solved

ACS Comparison Points

 Conventional
locking

71

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

 Conventional
locking

 Large core executes
Amdahl’s serial part

 Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

72

ACS Performance

73

0

20

40

60

80

100

120

140

160

pagem
in

e

puzz
le

qsort

sq
lit

e

ts
p

ip
lo

oku
p

oltp
-1

oltp
-2

sp
ec

jb
b

w
eb

cac
he

hm
ea

n

S
p

e
e
d

u
p

 o
v
e
r

S
C

M
P

Accelerating Sequential Kernels

Accelerating Critical Sections

Equal-area comparison

Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores

ACMP = 1 large and 28 small cores

269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

74

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

1

2

3

4

5

0 8 16 24 32
0

1

2

3

4

5

6

7

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

2

4

6

8

10

12

14

0 8 16 24 32

0

1

2

3

4

5

6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32

S
p

e
e

d
u

p
 o

v
e

r
a

 s
m

a
ll

 c
o

re

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2(h) iplookup (k) specjbb (l) webcache(g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

75

