18-447

Computer Architecture
Lecture 3: ISA Tradeoffs

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 1/16/2015

Agenda for Today

Deep dive into ISA and its tradeoffs

Upcoming Readings

Next Week (More ISA Tradeoffs + Your Lab + Homework):
o MIPS ISA Tutorial

o P&P Chapter 5: LC-3 ISA

o P&P, revised Appendix A — LC3b ISA

The Week After (Microarchitecture):
o P&H, Chapter 4, Sections 4.1-4.4

o P&P, revised Appendix C — LC3b datapath and
microprogrammed operation

We have provided example critical reviews for you to see,
on the course website

Last Lecture Recap

Levels of Transformation
o Algorithm, ISA, Microarchitecture

Moore's Law

What is Computer Architecture
Why Study Computer Architecture
Fundamental Concepts

Von Neumann Model

Dataflow Model

ISA vs. Microarchitecture

Assignments: HWO (today!), Lab1 (Jan 23), HW1 (Jan 28)

Review: ISA vs. Microarchitecture

= ISA
0 Agreed upon interface between software res
and hardware -
_ _ Algorithm
= SW/compiler assumes, HW promises E—
o What the software writer needs to know [o,

to write and debug system/user programs

= Microarchitecture
o Specific implementation of an ISA
o Not visible to the software
= Microprocessor
o ISA, uarch, circuits
o “Architecture” = ISA + microarchitecture

Review: ISA

Instructions
o Opcodes, Addressing Modes, Data Types
a Instruction Types and Formats .

o Registers, Condition Codes ‘ mtel
Memory

o Address space, Addressability, Alignment
o Virtual memory management

Call, Interrupt/Exception Handling

Access Control, Priority/Privilege

I/O: memory-mapped vs. instr.

Task/thread Management Volume 1
Basic Architecture

Power and Thermal Management

Multi-threading support, Multiprocessor support

Intel” 64 and |A-32 Architectures
Software Developer's Manual

Microarchitecture

Implementation of the ISA under specific design constraints
and goals

Anything done in hardware without exposure to software
Pipelining

In-order versus out-of-order instruction execution

Memory access scheduling policy

Speculative execution

Superscalar processing (multiple instruction issue?)

Clock gating

Caching? Levels, size, associativity, replacement policy
Prefetching?

Voltage/frequency scaling?

Error correction?

L U 0o U 0o 0o o o0 o0 o

Property ot ISA vs. Uarch?

ADD instruction’s opcode

Number of general purpose registers

Number of ports to the register file

Number of cycles to execute the MUL instruction

Whether or not the machine employs pipelined instruction
execution

Remember

o Microarchitecture: Implementation of the ISA under specific
design constraints and goals

Design Point

A set of design considerations and their importance

o leads to tradeoffs in both ISA and uarch

Considerations

Cost

Performance

Maximum power consumption
Energy consumption (battery life)
Availability

Reliability and Correctness

Time to Market

I N 0 e e N

Problem

Algorithm

Program

ISA

Microarchitecture

Circuits

Electrons

Design point determined by the “Problem” space
(application space), the intended users/market

Application Space

= Dream, and they will appear...

Other examples of the application space that contmue to
dnve the need for umique design pomts are the following:

1) scientific applications such as those whose computa-
tions control nuclear power plants, determine where to
dnll for oi1l, and predict the weather;

2) transaction-based applications such as those that
handle ATM transfers and e-commerce business;

3) busimess data processing applications, such as those
that handle mventory control, payrolls, IRS activity,
and vanous personnel record keeping, whether the per-
sonnel are employees, students, or voters;

4) network applications, such as high-speed routing of
Intemet packets, that enable the connection of your
home system to take advantage of the Internet;

5) guaranteed delivery (a k.a. real ime) applications that
require the result of a computation by a certain cntical
deadline;

6) embedded applications, where the processor 1s a com-
ponent of a larger system that is used to solve the (usu-
ally) dedicated application;

7) media applications such as those that decode video and
audio files;

8) random software packages that desktop users would
like to run on their PCs.

Each of these application areas has a very different set of
charactenistics. Each application area demands a different set

of tradeoffs to be made m specifying the microprocessor to
do the job.

10

Tradeotts: Soul of Computer Architecture

s [SA-level tradeoffs
s Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point
o Why art?

11

Why Is It (Somewhat) Art?

New demands
from the top
(Look Up) New demands and

personalities of users
(Look Up)

Runtime System

ISA

New issues and
capabilities

at the bottom
(Look Down)

= We do not (fully) know the future (applications, users, market)

12

Why Is It (Somewhat) Art?

Changing demands
at the top
(Look Up and Forward)

Changing demands and
personalities of users
(Look Up and Forward)

Runtime System

ISA

Changing issues and
capabilities

at the bottom

(Look Down and Forward)

= And, the future is not constant (it changes)!

13

Analogue from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a power plant boiler room be later used as a
classroom?

14

Macro-Architecture: Boiler Room

At the west end of campus was a small structure that housed thi boiler ' l
room that functioned as the school's power plant. Below, in the rain beside

the railroad tracks, a farmer’s goat grazed and occasionally wandered up to
eat the grass of this yet untamed end of campus.

Over a 20 month period from 1912 - 1914, Machinery Hall was built on top of
that boiler room. The massive tower, which has become a symbol of Came-

gie Mellon, was designed to disguise the smokestack. Architect Henry
Hornboste! had created a “temple of technology” that would become
~ one of the most renowned buildings of the Beaux Arts style in the country.

Early course catalogs described the boiller room as a classroom where stu
dents learned about powsr generating machinery. The tower continued to
balch smoke until 1975, but in 1979 the boiler room became the cleanest
room on campus with the construction of the Nanofabrication Facility, The
coal bin area became the offices and computer room of the D-level.

15

How Can We Adapt to the Future

This is part of the task of a good computer architect

Many options (bag of tricks)
o Keen insight and good design

o Good use of fundamentals and principles
Efficient design
Heterogeneity
Reconfigurability

o Good use of the underlying technology

a ...

16

ISA Principles and Tradeotts

Many Ditterent ISAs Over Decades

Xx86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine
VLIW ISAs: Multiflow, Cydrome, 1A-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM

What are the fundamental differences?
o E.g., how instructions are specified and what they do

o E.g., how complex are the instructions
18

Instruction

Basic element of the HW/SW interface

Consists of

o opcode: what the instruction does

o operands: who it is to do it to

o Example from the Alpha ISA:

31 26 25 1615 0
Opcode Number

Opcode RA Disp

Opcode RA RB Disp

Opcode RA RB Function RC

PALcode Format

Branch Format
Memory Format

Operate Format

19

MIPS

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit
opcode |rs rt immediate

6-bit 5-bit 5-bit 16-bit

opcode |immediate

6-bit 26-bit

R-type

I-type

J-type

20

ARM

33222222222211111111119876543210
1098765432109876543210
Cond |0(0]|1| Opcode |S Rn Rd Operand 2 Data Processing /
PSR Transfer
Cond |0O|O|O|O|O(O|A|S Rd Rn Rs 1]10{0|1 Rm Multiply
Cond |(O(0|O|O|1|U[A[S| RdHi RdLo Rn 1(0]|0]|1 Rm Multiply Long
Cond |(O|O|O|1|0O(B|O|O Rn Rd o(o|(o|o|1|0Of0O(1 Rm Single Data Swap
Cond |O|O|O(1|O(O|1|O|1 |1 [t 1|[1|1|1|{1|1[1|1[(1]|O|0O|O]|1 Rn Branch and Exchange
Cond |O|O|O(P|U[O|W|L Rn Rd O(0|O(O|1|S|H|1 Rm Halfword Data Transfer:
register offset
Cond |0O|O|O(P|U[T|W|L Rn Rd Offset [1|S|H|1| Offset | Halfword Data Transfer:
immediate offset
Cond |O|1|1(P|U[B|W|L Rn Rd Offset Single Data Transfer
Cond [Of1]1 1 Undefined
Cond [1|O0[O(P[U[S|W|L Rn Register List Block Data Transfer
Cond |1|0|1(L Offset Branch
Cond |1|1|0O(P|U[N|W|L Rn CRd CP# Offset Coprocessor Data
Transfer
Cond |1(1]|1|0]| CP Opc CRn CRd CP# CP |0 CRHBm Coprocessor Data
Operation
Cond [1(1]|1|0|CPOpc|L| CRn Rd CP# CP |1| CRHRm Coprocessor Register
Transfer
Cond |1|1]|1(1 Ignored by processor Software Interrupt
33222222222211111111119876543210
1098765432109876543210

Figure 4-1: ARM instruction set formats :1

Set of Instructions, Encoding, and Spec

ADD'
AND’
BR
JMP
JSR(R)
LDB®
LDW*
LEA"
RTI
SHF"
STB
STW
TRAP
XOR'

not used

not used

15 14 13 12 11 1@ 9 8 7 & 5 4 3 2 1 Q

I I I | | I I I I I I
0001 DR SR1 A op.spec
1 1 1 1 1 1 1 1 | 1 1
T T T T T T T
0101 DR SRI1 A op.spec
1 1 1 1 1 1 1 1 1 1
T T 1 17 17 717 1+T 1T "1 "1 "1 "1T "T"°71
0000 z(p PCoffset?
| | | | | | | | | | |
I I I T I I I I T I I
1100 000 BaseR 000000
1 1 1 1 1 1 | IR S N I N —
T T T T T T T T T T
0100 operand.specifier
1 1 1 1 1 1 1 1 1 1 1 1 1
0010 DR BaseR boffseté
1 1 1 1 1 1 | [N I N S S —
I I I I I I I I I I I I
0110 DR BaseR offseté
| 1 1 1 1 | | | | | 1 1
T T T T 1T T 17 "7 "7 "“"17T "“"T "T"°71
1110 DR PCoffset?
1000 000000000000
1 1 1 1 1 1 1 1 | 1 1 1 1 1
I T I I I I I T I I
1101 DR SR A |D| amountd4
1 1 1 l 1 1 1 1 1 1
0011 SR BaseR boffseté
1 1 1 1 1 1 1 1 1 L1
I I I I I I I I I I I I
0111 SR BaseR offseté
1 1 1 1 1 | | | | | 1 1
T T T T T T T T T T T T
1111 frapvect8

1001

T T L T
A op.spec

1 1 1
T T T T

1 1 1 1 1 1 1
T T T T T T T

= Example from LC-3b ISA
a http://

www.ece.utexas.edu/
~patt/11s.460N/
handouts/new_byte.pdf

= X86 Manual

= Why unused instructions?

= Aside: concept of “bit

steering”

o A bit in the instruction
determines the
interpretation of other
bits

22

Bit Steering in Alpha

Figure 3—4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb |SBZ|0| Function Rc

26 25 2120 1312 11

If bit <12> of the instruction 1s 0, the Rb field specifies a source register operand.

If bit <12> of the instruction i1s 1, an 8-bit zero-extended literal constant is formed by bits
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and 255
and 1s zero-extended to 64 bits. Symbolically, the integer Rbv operand is formed as follows:

23

What Are the Elements of An ISA?

Instruction sequencing model
o Control flow vs. data flow
o Tradeoffs?

Instruction processing style

o Specifies the number of “operands” an instruction “operates”
on and how it does so

a 0, 1, 2, 3 address machines
0-address: stack machine (op, push A, pop A)
1-address: accumulator machine (op ACC, Id A, st A)
2-address: 2-operand machine (op S,D; one is both source and dest)

3-address: 3-operand machine (op S1,52,D; source and dest separate)

o Tradeoffs? See your homework question
Larger operate instructions vs. more executed operations
Code size vs. execution time vs. on-chip memory space
24

An Example: Stack Machine

+ Small instruction size (no operands needed for operate
instructions)

o Simpler logic
o Compact code

+ Efficient procedure calls: all parameters on stack
o No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines
o Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)
o Not flexible

25

An Example: Stack Machine (II)

DS
DATA STACK

RS
RETURN STACK

o

CONTROL
LOGIC
& IR

Figure 3.1 -- The canonical stack machine.

DI O

naocwm

- . > Koopman, “Stack Computers:
The New Wave,” 1989.
http://www.ece.cmu.edu/

-— pC ~koopman/stack computers/
sec3 2.html

e MAR

+ ADDRESS
DATA PROGRAM
| MEMORY

26

An Example: Stack Machine Operation

—_— 98 12
= T
:‘E — | = |- | = | =—>
— ——)
== = Koopman, “Stack Computers:
EMPTY PUSH PUSH The New Wave,” 1989.
STACK 98 12 http://www.ece.cmu.edu/
~koopman/stack computers/
45 57 5586 sec3_2.html
12 98 =
— T |
98 e
——
= | =
PUSH * *
45

Figure 3.2 -- An example stack machine.

27

Other Examples

PDP-11: A 2-address machine
o PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers
o Why? Limited bits to specify an instruction

o Disadvantage: One source operand is always clobbered with
the result of the instruction

How do you ensure you preserve the old value of the source?

X86: A 2-address (memory/memory) machine
Alpha: A 3-address (load/store) machine
MIPS?

ARM?

28

What Are the Elements of An ISA?

Instructions
o Opcode

o Operand specifiers (addressing modes)
How to obtain the operand? why are there different addressing modes?

Data types

o Definition: Representation of information for which there are
instructions that operate on the representation

o Integer, floating point, character, binary, decimal, BCD

o Doubly linked list, queue, string, bit vector, stack

VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

X86: SCAN opcode operates on character strings; PUSH/POP
29

Data Type Tradeotts

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions

Example: Early RISC architectures vs. Intel 432
o Early RISC: Only integer data type
o Intel 432: Object data type, capability based machine
30

An Example: BCD

= Each decimal digit is encoded with a fixed number of bits

wr—

e = Te i AT T e .
Y i . p . % AR ol

"Binary clot bn the English
Wikipedia. ki/
File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock™ by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - http://
commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg

31

What Are the Elements of An ISA?

Memory organization

o Address space: How many uniquely identifiable locations in
memory

o Addressability: How much data does each uniquely identifiable

location store
Byte addressable: most ISAs, characters are 8 bits
Bit addressable: Burroughs 1700. Why?
64-bit addressable: Some supercomputers. Why?
32-bit addressable: First Alpha

Food for thought

0 How do you add 2 32-bit numbers with only byte addressability?
0 How do you add 2 8-bit numbers with only 32-bit addressability?
0 Big endian vs. little endian? MSB at low or high byte.

o Support for virtual memory

32

Some Historical Readings

= If you want to dig deeper
= Wilner, “"Design of the Burroughs 1700,” AFIPS 1972.

= Levy, "The Intel iAPX 432,"” 1981.

o http://www.cs.washington.edu/homes/levy/capabook/
Chapter9.pdf

33

What Are the Elements of An ISA?

Registers
o How many
o Size of each register

Why is having registers a good idea?
o Because programs exhibit a characteristic called data locality

o A recently produced/accessed value is likely to be used more
than once (temporal locality)

Storing that value in a register eliminates the need to go to
memory each time that value is needed

34

Programmer Visible (Architectural) State

Memory

array of storage locations
indexed by an address

M[O]

M[1]

M[2]

M[3]

M[4]

M[N-1]

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Program Counter

memory address
of the current instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

35

Aside: Programmer Invisible State

Microarchitectural state
Programmer cannot access this directly

E.g. cache state
E.g. pipeline registers

36

Evolution of Register Architecture

Accumulator
o a legacy from the “adding” machine days

Accumulator + address registers
o heed register indirection

o initially address registers were special-purpose, i.e., can only
be loaded with an address for indirection

o eventually arithmetic on addresses became supported

General purpose registers (GPR)
o all registers good for all purposes

o grew from a few registers to 32 (common for RISC) to 128 in
Intel IA-64

37

Instruction Classes

Operate instructions

o Process data: arithmetic and logical operations
o Fetch operands, compute result, store result

o Implicit sequential control flow

Data movement instructions

o Move data between memory, registers, I/O devices
o Implicit sequential control flow

Control flow instructions
o Change the sequence of instructions that are executed

38

What Are the Elements of An ISA?

Load/store vs. memory/memory architectures

o Load/store architecture: operate instructions operate only on
registers

E.g., MIPS, ARM and many RISC ISAs

o Memory/memory architecture: operate instructions can
operate on memory locations

E.g., x86, VAX and many CISC ISAs

39

What Are the Elements of An ISA?

Addressing modes specify how to obtain the operands

a

Absolute LW rt, 10000

use immediate value as address

Register Indirect: LW rt, (r,...)

use GPR[r,,..] as address

Displaced or based: LW rt, offset(r,...)
use offset+GPR[r,...] as address

Indexed: LW rt, (r .o Findey)
use GPR[r,,..J+GPRI[r. 4oy
Memory Indirect LW rt ((r...))

use value at M[GPR[r__..]] as address

Auto inc/decrement LW Rt, (r,...)

use GRP[r,...] as address, but inc. or dec. GPR[r,_..] each time

] as address

40

What Are the Benefits of Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level constructs to the
machine: some accesses are better expressed with a different
mode = reduced number of instructions and code size

Think array accesses (autoincrement mode)
Think indirection (pointer chasing)
Sparse matrix accesses

Disadvantage:

a More work for the compiler
o More work for the microarchitect

41

ISA Orthogonality

Orthogonal ISA:
o All addressing modes can be used with all instruction types

o Example: VAX

(~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

Who is this good for?
Who is this bad for?

42

Is the LC-3b ISA Orthogonal?

ADD'
AND’
BR
JMP
JSR(R)
LDB”
LDW*
LEA"
RTI
SHF"
STB
STW
TRAP

+

XOR

not used

not used

15 14 13 12 11 10 9 7 é 5 4 3 2 1

I I I I I I I I I I I
0001 DR SR1 A op.spec

1 1 1 1 1 1 1 1 | 1 1

T T T T T T T T T T T
0101 DR SRI1 A op.spec

1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T
0000 njiz|p PCoffset?

1 1 1 | 1 | 1 | 1 1 1

I I I T I I I T T T I I
1100 000 BaseR 000000

1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T
0100 A operand.specifier

1 1 1 1 1 1 1 1 1 1 1 1
0010 DR BaseR boffseté

1 1 1 1 1 1 1 1 1 1 1 1

I I I I I I I I I I I I
0110 DR BaseR offseté

| 1 1 1 1 | | | | | 1 1

T T T T T T T T T T T T T
1110 DR PCoffset?
1000 000000000000

1 1 1 1 1 1 1 1 1 1 1 1 1

I T I I I I I T I I
1101 DR SR A |D| amountd4

1 1 1 l 1 1 1 1 1 1
0011 SR BaseR boffseté

1 1 1 1 1 1 1 | 1 || 1

I I I I I I I I I I I I
0111 SR BaseR offseté

1 1 1 1 1 | | | | 1 1 1

T T T T T T T T T T T T
1111 0000 trapvect8

I I I I I I I I I I I
1001 DR SR1 A op.spec

1 1 1 1 1 1 1 1 1 1 1

T T T 1 I I T T T T T T T
1010

1 1 1 1 1 | 1 1 1 1 1 1 1

T T T T T T T T T T T T T
1011

1 1 1 1 1 1 1 1 1 1 1 1 1

43

LLC-3b: Addressing Modes of ADD

Encodings
15 12, 1 9 8 é 5 4 3 2 a
I I I I 1 1 I I I I
0001 DR SR1 (0| 00 | SR2
| | | | | | | | | |
15 12 | 11 9 8 é 5 4 a
I | I I I I I I | I |
0001 DR SR1 |1 imm5
| | | | | | | | | | |
Operation
if (bit[5] == 0)
DR = SR1 + SR2;
else

DR = SR1 + SEXT(immb5);
setee();

L.C-3b: Addressing Modes of of J[SR(R)

Encodings

15 12 11 10 0
T T T T T T T T T T T

|
JSR 0100 1 PCoffsetl1
|

15 12 1 1w 9 8 é 5 0

|
JSRR 0100 0| 00 | BaseR 000000
||

Operation

R7=PC';
if (bit[11] ==0)
PC = BaseR;
else
PC = PC' + LSHF(SEXT(PCoffsetl1), 1);

Description

First, the incremented PC 1s saved m R7. Thus 1s the linkage back to the calling routine. Then, the PC 1s
loaded with the address of the first mstruction of the subroutine, causing an unconditional jump to that
address. The address of the subroutine is obtained from the base register (if bit[11] 1s 0), or the address 1s
computed by sign-extending bits [10:0] to 16 bats, left-shifting the result one bit, and then adding this value
to the incremented PC (af bit[11] 15 1).

What Are the Elements of An ISA?

How to interface with I/O devices

o Memory mapped I/0O
A region of memory is mapped to I/O devices
I/O operations are loads and stores to those locations

o Special I/O instructions
IN and OUT instructions in x86 deal with ports of the chip

o Tradeoffs?
Which one is more general purpose?

46

What Are the Elements of An ISA?

Privilege modes
o User vs supervisor
o Who can execute what instructions?

Exception and interrupt handling

o What procedure is followed when something goes wrong with an
instruction?

o What procedure is followed when an external device requests the processor?
o Vectored vs. non-vectored interrupts (early MIPS)

Virtual memory

o Each program has the illusion of the entire memory space, which is greater
than physical memory

Access protection

We will talk about these later
47

Another Question or Two

Does the LC-3b ISA contain complex instructions?

How complex can an instruction be?

48

Complex vs. Simple Instructions

Complex instruction: An instruction does a lot of work, e.g.
many operations

o Insert in a doubly linked list
o Compute FFT
o String copy

Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built

o Add
o XOR
o Multiply

49

Complex vs. Simple Instructions

Advantages of Complex instructions

+ Denser encoding = smaller code size = better memory

utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions

- Larger chunks of work - compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware

50

ISA-level Tradeotts: Semantic Gap

Where to place the ISA? Semantic gap

o Closer to high-level language (HLL) - Small semantic gap,
complex instructions

o Closer to hardware control signals? - Large semantic gap,
simple instructions

RISC vs. CISC machines

o RISC: Reduced instruction set computer
o CISC: Complex instruction set computer
FFT, QUICKSORT, POLY, FP instructions?
VAX INDEX instruction (array access with bounds checking)

51

ISA-level Tradeotts: Semantic Gap

Some tradeoffs (for you to think about)

Simple compiler, complex hardware vs.
complex compiler, simple hardware

o Caveat: Translation (indirection) can change the tradeoff!

Burden of backward compatibility

Performance? Energy Consumption?

o Optimization opportunity: Example of VAX INDEX instruction:
who (compiler vs. hardware) puts more effort into
optimization?

o Instruction size, code size

52

X86: Small Semantic Gap: String Operations

An instruction operates on a string
o Move one string of arbitrary length to another location
o Compare two strings

Enabled by the ability to specify repeated execution of an
instruction (in the ISA)

o Using a “prefix” called REP prefix

Example: REP MOVS instruction

o Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)

o Implicit source and destination registers pointing to the two
strings (ESI, EDI)
o Implicit count register (ECX) specifies how long the string is

53

X386: Small Semantic Gap: String Operations

REP MOVS (DEST SRC) DEST « SRC;
IF (Byte move)
THENIFDF=0
THEN
" (RIE)SI < (RE)SI = 1;
IF AddressSize =16 ELSE(RIE)DI RIEDI- 1
THEN (RE)SI < RE)SI - 1;
Use CX for CountRegq; (RIEIDI < (RIE)DI - 1;
“ Fl;
ELSE IF AddressSize = 64 and REX.W used ELSE IF (Word move)
THEN Use RCX for CountReq; FI; THEN IF DF =0
ELSE A oo
« +2
. Fl;
Use ECX for CountReq; ELSE
Fl: (RIE)SI < (RE)SI - 2;
R|E)DI « (RIE)DI - 2;
WHILE CountReg = 0 f e R
ELSE IF (Doubleword move)
DO) o _ THEN IF DF =0
Service pending interrupts (if any); (RIE)SI < (RIE)SI + 4;
Execute associated string instruction; (FF;'E)D"_(R'E)D'+4'

ELSE
(RIE)SI « (RIE)SI - 4;
(RIE)DI « (RIE)DI - 4;

Fl;

ELSE IF (Quadword move)

THENIFDF =0
(RIE)SI « (RIE)SI + 8;
(RIE)DI < (RIE)DI + 8;
Fl;

ELSE
(RIE)SI « (RIE)SI - 8;
(RIE)DI « (RIE)DI - 8;

CountReqg « (CountReg - 1);
IF CountReg=0
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;
0D;

Fl;
Fl;

How many instructions does this take in MIPS?

Small Semantic Gap Examples in VAX

FIND FIRST

o Find the first set bit in a bit field

o Helps OS resource allocation operations
SAVE CONTEXT, LOAD CONTEXT

o Special context switching instructions
INSQUEUE, REMQUEUE

o Operations on doubly linked list
INDEX

o Array access with bounds checking
STRING Operations

o Compare strings, find substrings, ...
Cyclic Redundancy Check Instruction
EDITPC

o Implements editing functions to display fixed fo

1]
B
&

84-£L£61 1 TOA NOOEANVH FAINLOILHOYY O8L /1t XvA E00E0E

g la|

VAXII
780

ARCHITECTURE HANDBOOK

rmat output

Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

55

Small versus Large Semantic Gap

CISC vs. RISC
o Complex instruction set computer - complex instructions
Initially motivated by “not good enough” code generation

o Reduced instruction set computer = simple |nstruct|ons
John Cocke, mid 1970s, IBM 801
0 Goal: enable better compiler control and optimization

RISC motivated by \

o Memory stalls (no work done in a complex instruction when
there is a memory stall?)

When is this correct?
a Simplifying the hardware = lower cost, higher frequency

o Enabling the compiler to optimize the code better

Find fine-grained parallelism to reduce stalls
56

An Aside

= An Historical Perspective on RISC Development at IBM
a http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/risc/

57

How High or Low Can You Gor’

Very large semantic gap

o Each instruction specifies the complete set of control signals in
the machine

o Compiler generates control signals

o Open microcode (John Cocke, circa 1970s)
Gave way to optimizing compilers

Very small semantic gap

o ISAis (almost) the same as high-level language

o Java machines, LISP machines, object-oriented machines,
capability-based machines

58

A Note on ISA Evolution

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:

o Limited on-chip and off-chip memory size

o Limited compiler optimization technology

o Limited memory bandwidth

o Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

o Concept of dynamic/static interface: translation/interpretation
a Contrast it with hardware/software interface

59

Effect of Translation

One can translate from one ISA to another ISA to change
the semantic gap tradeoffs

o ISA (virtual ISA) > Implementation ISA

Examples

o Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

Think about the tradeoffs

60

Hardware-Based Translation

x86 instructions

\.

Superscalar
Decode
Units

Translate

Units

icro-ops

L

Dispatch
Unit

-
\

Functional
Units

NA

In-Order
Retire
Unit

Figure 2. Conventional superscalar out-of-order CPUs use hardware

to create and dispatch micro-ops that can execute in parallel.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

61

Software-Based Translation

BIOS

Code Morphing
Software

VLIW engine
Operating Code Morphing Applications
System Software

Figure 5. The Code Morphing software mediates between x86 software and the Crusoe processor.

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.
62

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

ISA-level Tradeotts: Instruction Length

Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently
-- Wasted bits in instructions (Why is this bad?)
-- Harder-to-extend ISA (how to add new instructions?)

Variable length: Length of instructions different
(determined by opcode and sub-opcode)
+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?
-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

Tradeoffs

a Code size (memory space, bandwidth, latency) vs. hardware complexity
o ISA extensibility and expressiveness vs. hardware complexity

o Performance? Smaller code vs. ease of decode
64

ISA-level Tradeoffs: Uniform Decode

Uniform decode: Same bits in each instruction correspond
to the same meaning

o Opcode is always in the same location

o Ditto operand specifiers, immediate values, ...

o Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

Non-uniform decode

o E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format
-- More complex decode logic

65

x86 vs. Alpha Instruction Formats

X86:

lnpsgé%f(ggn Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of 1,2, 0or4 1,2,0r4
(optional) / \ bytes or none bytes or none
65 32 0 7 65 32 0
Mod OpRgogc{e R/M Scale | Index Base
Alpha:
31 26 25 2120 16 15 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

066

MIPS Instruction Format

R-type, 3 register operands

0 rs rt rd shamt | funct R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

I-type, 2 register operands and 16-bit immediate operand

opcode |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit

J-type, 26-bit immediate operand

opcode | immediate J-type
6-bit 26-bit

Simple Decoding

o 4 bytes per instruction, regardless of format

o must be 4-byte aligned (2 Isb of PC must be 2b'00)
o format and fields easy to extract in hardware

67

ARM

33222222222211111111119876543210
1098765432109876543210
Cond |0(0]|1| Opcode |S Rn Rd Operand 2 Data Processing /
PSR Transfer
Cond |0O|O|O|O|O(O|A|S Rd Rn Rs 1]10{0|1 Rm Multiply
Cond |(O(0|O|O|1|U[A[S| RdHi RdLo Rn 1(0]|0]|1 Rm Multiply Long
Cond |(O|O|O|1|0O(B|O|O Rn Rd o(o|(o|o|1|0Of0O(1 Rm Single Data Swap
Cond |O|O|O(1|O(O|1|O|1 |1 [t 1|[1|1|1|{1|1[1|1[(1]|O|0O|O]|1 Rn Branch and Exchange
Cond |O|O|O(P|U[O|W|L Rn Rd O(0|O(O|1|S|H|1 Rm Halfword Data Transfer:
register offset
Cond |0O|O|O(P|U[T|W|L Rn Rd Offset [1|S|H|1| Offset | Halfword Data Transfer:
immediate offset
Cond |O|1|1(P|U[B|W|L Rn Rd Offset Single Data Transfer
Cond [Of1]1 1 Undefined
Cond [1|O0[O(P[U[S|W|L Rn Register List Block Data Transfer
Cond |1|0|1(L Offset Branch
Cond |1|1|0O(P|U[N|W|L Rn CRd CP# Offset Coprocessor Data
Transfer
Cond |1(1]|1|0]| CP Opc CRn CRd CP# CP |0 CRHBm Coprocessor Data
Operation
Cond [1(1]|1|0|CPOpc|L| CRn Rd CP# CP |1| CRHRm Coprocessor Register
Transfer
Cond |1|1]|1(1 Ignored by processor Software Interrupt
33222222222211111111119876543210
1098765432109876543210

Figure 4-1: ARM instruction set formats 8

A Note on Length and Uniformity

Uniform decode usually goes with fixed length

In a variable length ISA, uniform decode can be a property
of instructions of the same length

o Itis hard to think of it as a property of instructions of different
lengths

69

A Note on RISC vs. CISC
Usually, ...

RISC

o Simple instructions

o Fixed length

o Uniform decode

o Few addressing modes

CISC

o Complex instructions

o Variable length

o Non-uniform decode

o Many addressing modes

70

ISA-level Tradeotts: Number of Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size

71

ISA-level Tradeotts: Addressing Modes

Addressing mode specifies how to obtain an operand of an
Instruction

o Register
o Immediate

o Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design

Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981
72

x86 vs. Alpha Instruction Formats

X86:

lnpsgé%f(ggn Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of 1,2, 0or4 1,2,0r4
(optional) / \ bytes or none bytes or none
65 32 0 7 65 32 0
Mod OpRgogc{e R/M Scale | Index Base
Alpha:
31 26 25 2120 16 15 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

73

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

reyr) AL o oL et |Aa4 [[ow [eH
r18(in) AX |cx [ox |ex |sP |22 |3 DI
rBZflr) EAX [ECx |EDx |EBx |ESe |eep [ESI_ | DI
X 8 6 mni) MMO [MM1 | MM2 [MM3_ | MM4 MM | MMs | MM7
XMMO [XMM1 | XMM2 | XMM3 | XMM4 | XMMS | XMMS | XMM7
ilndaclmal /digit (Opcode) 0 1 2 3 4 5 6 7
in binary) REG = 000 [oo1 [o010 011 [100 |01 [110 |11
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
A ERERERE
register /ED 010 |02 |0A |12 [1A |22 |2A |32 |3A
. . EBX 011 |03 0B 13 1B |23 2B 33 3B
indirect -1 100 |04 |oc |14 |1C |24 |2c |34 |3cC
isp32© 101 J05 0D 15 1D |25 2D 35 3D
EDH LA A R A F I E A
absolute
X]J+disp83 01 |000 |40 |48 50 58 60 |68 70 78
EC +disp8 001 4 435 512 58 61 69 71 79
EDX]+disp8 010 |42 4A |53 5A |62 BA |72 7A
EBX]+disp8 011 143 4B |54 5B |63 6B |73 /B
—][--]+disp§ > 100 J44 |4C gg 5C 64 |6C 74 | 7C
EBP+dispB 101 |45 40 |37 5D |65 6D |75 7D
ESI]+disp8 110 |46 |4E 5€ 66 | 6E 76 7€
EDI]+disp8 111 |47 4F 5F 67 6F 77 7F
EAX]+disp32 10 |000 |80 (88 90 98 |A0O (A8 |BO |B8
ECX[+disp32 001 |81 8s 91 95 | A1 AS | B1 BS
EDX]+disp32 010 |82 8A |92 9A |A2 |(AA |B2 BA
EBX]+disp32 011 |83 88 |93 98B |A3 |(AB |B3 BB
--][--]+disp32 100 |84 |8C 94 [9C A4 | AC B4 |BC
€ «-d|sp32 101 |85 8D |95 9D |A5 |(AD |BS BD
. ESI]+disp32 110 |86 |8E 96 9E A6 | AE B6 |BE
reglster + /ED +disp32 111 |87 |8F |97 |9F |A7 |AF |B7 |BF
i EAX/AX/AL/MMO/XMMO | 11 [000 JCO (8 DO |D8 |EO €8 FO F8
dISpIacement CX/CX/CL/MM/XMM1 001 Q1 cS D1 D9 |E] €S F1 FS
EDX/DX/DL/MM2/XMM2 010 |JcC2 CA D2 DA |E2 EA F2 FA
re iSter EBX/BX/BL/MM3/XMM3 011 JC3 CB D3 DB |E3 EB F3 FB
g ESP/SP/AH/MM4/XMM4 100 |C4 CC D4 |DC £4 EC F4 FC
€BP/BP/CH/MM5/XMMS 101 JC5 CD D5 DD |ES €D F5 FD
€SI/SI/DH/MMB/XMME 110 JC6 CE D6 |DE E6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 7 CF D7 DF E7 EF F7 FF
NOTES:

1. The [-][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
Ceneral nurnoce reaictere 1iced 2c 3 hace are indicatred 2croce the ton of the table

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX ESP] =] =]
X 8 6 [In decimal) Base - 0 1 2 3 4 5 6 7
Inblnary) Base = 000 001 010 on 100 10 110 11
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX o0 |ooo foo [o1 [oz |03 [o4 [os [oe |07
ECX 001 jog |09 |[0A |0B |oC |oD |0E |OF
€D 010 1o |11 |12 [13 |14 |15 |16 |17
EBX 011 |18 |19 [1Aa |18 |ic |10 |1E |1F
none 100 J20 |21 |22 |23 |24 |25 |26 |27
Eop) N B e R R - o
indexed ED& 111 |38 |39 |[3A |[3B |[3C [3D |[3€ |[3F
(base + EAX*2 01 |ooo Ja0 [41 (42 [a3 |24 [4a5 |46 |47
ECX*2 001 |48 |49 [4A |4B |4Cc |4D |4€ |4F
index) EDX*2 010 |50 |51 |52 |53 |54 |55 |s6 |57
EBX*2 011 |58 |59 |[5A |58 |5C |5D |5 |GF
none 100 |60 |61 |62 |63 |64 |65 |66 |67
EBP*2] 101 |ea |69 |sAa |[6B |sC |6D |6E |6F
ESI*Z] 170 70 |71 |72 |73 |74 |75 |78 |77
EDI*2 11 |78 |79 |74 |78 |7c |70 |7 |7F
EAX*4 10 |ooo fso |81 |82 |83 |84 |ss |[ss |87
ECX*4 001 |88 |89 |[s8a |sB |8C |8D |sE |s&F
EDX*4 010 Jso |81 |92 |3 |s4 |95 |96 |97
EBX*4 011 |8 |89 |[9A |SB |eC |90 |9 |9oF
none 100 JA0 |[A1 |A2 |[A3 |A4 |A5 |A6 |A7
EBP*4] 101 |A8 |AS |[AA |AB |AC |AD |AE |AF
ESI*4] 170 |80 |81 |B2 |[B3 |B4 |BS |BS |B7
scaled EDI*4 111 Iss |89 |Ba |BB |BC |BD |BE |BF
(base + EAX* 11 Jooo o [0 |2 |3 [aa |5 | |7
Al 18 (2|8 5 8 |8 [
H *
index*4) EBX*B 011 Jos |[pe |oa |p8 |oc |ob |DE |oF
none 100 leo |e1 |e2 |3 |e4 |es |es |€7
EBP*8] 101 |8 |69 |ea |eB |ec |eD |€EE |€F
ESI*B] 170 lfFo |F1 |2 |3 |F4 |F5 |F6 |F7
EDI*8 11 |8 |F9 |FA |FB |FC |FD [FE |FF
NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:
MOD bits _ Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

X386 SIB-D Addressing Mode

Base Index Scale Displacement
EAX l|‘.' . .." 7~ "\
EBX el [[Noe
ECX | N
DX | EX [20 8-bit
e |[*|TEX 1,0,
EBP " 4 16-bit
Ew | eg | | |
ESI | ' \g/ 32-bit
i { '. 8 'l
o | [P
Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

The following addressing modes suggest uses for common combinations of address components.

* Displacement — A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

®* Base — A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

* Base + Displacement — A base register and a displacement can be used together for two distinct purposes:
— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component

encodes the static offset to the beginning of the array. The base register holds the results of a calculation to
determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

77

X86 Manual: Suggested Uses of Addressing Modes

-

* (Index * Scale) + Displacement — This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The

displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts

the subscript into an index by applying the scaling factor.

* Base + Index + Displacement — Using two registers together supports either
a two-dimensional array (the displacement holds the address of the beginning of
the array) or one of several instances of an array of records (the displacement is

an offset to a field within the record).

* Base + (Index * Scale) + Displacement — Using all the addressing
components together allows efficient indexing of a two-dimensional array when

the elements of the array are 2, 4, or 8 bytes in size.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

78

Other Example ISA-level Tradeofts

Condition codes vs. not

VLIW vs. single instruction

Precise vs. imprecise exceptions

Virtual memory vs. not

Unaligned access vs. not

Hardware interlocks vs. software-guaranteed interlocking
Software vs. hardware managed page fault handling
Cache coherence (hardware vs. software)

79

Back to Programmer vs. (Micro)architect

Many ISA features designed to aid programmers
But, complicate the hardware designer’ s job

Virtual memory
o VS, overlay programming

o Should the programmer be concerned about the size of code
blocks fitting physical memory?

Addressing modes

Unalighed memory access
o Compile/programmer needs to align data

80

MIPS: Aligned Access

MSB [byte-3 byte-2 byte-1 byte-0 LSB
byte-7 byte-6 byte-5 byte-4

LW/SW alignment restriction: 4-byte word-alignment
o not designed to fetch memory bytes not within a word boundary
o not designed to rotate unaligned bytes into registers

Provide separate opcodes for the “infrequent” case

A B C D

LWL rd 6(r0) > | byte-6 byte-5 byte-4 D

LWR rd 3(r0) 2> byte-6 byte-5 byte-4 byte-3

o LWL/LWR is slower
o Note LWL and LWR still fetch within word boundary

81

X86: Unaligned Access

= LD/ST instructions automatically align data that spans a
“word” boundary

= Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are

even- numbered addresses, addresses evenly divisible by four, and addresses evenly

divisible ; respectively. However, to improve the perform rams,
a structures (especially stacks) should be aligned on natural boundaries whe

ever possible. The reason for this is that the processor requires two memory
esses to make an unaligned memory access; aligned accesses require only o

memory ord or doubleword operand that crosses a 4- ndary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and

requires two separate memory bus cycles for access.

82

X86: Unaligned Access

4EH FH A
12H eH
7AH DH A
Word at Address BH FEH H Doubleword at Address AH
Contains FEOGH 06H BH Contains 7AFEO636H
36H AH
Byte at Address OH — . -—
Contains 1FH Quadword at Address 6H
f A4H 8H Contains
7 1FA4
. e — - AFED6361FA4230BH
45H SH
67H 4H
Word at Address 2H _—
s 74CEH i " Double quadword at Address OH
at
Word at Address 1H CeH eH | Containe
Contains (B31H 31H 1H | 4€127AFE06361FA42308456774C8311;
12H OH y

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in
Memory

What About ARM?

s https://www.scss.tcd.ie/~waldroj/3d1/arm arm.pdf
o Section A2.8

84

Aligned vs. Unaligned Access

Pros of having no restrictions on alignment

Cons of having no restrictions on alignment

Filling in the above: an exercise for you...

85

