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Agenda for Today 
n  Deep dive into ISA and its tradeoffs 
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Upcoming Readings 
n  Next Week (More ISA Tradeoffs + Your Lab + Homework): 

q  MIPS ISA Tutorial 
q  P&P Chapter 5: LC-3 ISA  
q  P&P, revised Appendix A – LC3b ISA 

n  The Week After (Microarchitecture): 
q  P&H, Chapter 4, Sections 4.1-4.4 
q  P&P, revised Appendix C – LC3b datapath and 

microprogrammed operation 

n  We have provided example critical reviews for you to see, 
on the course website 
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Last Lecture Recap 
n  Levels of Transformation 

q  Algorithm, ISA, Microarchitecture 

n  Moore’s Law 
n  What is Computer Architecture 
n  Why Study Computer Architecture 
n  Fundamental Concepts 
n  Von Neumann Model 
n  Dataflow Model 
n  ISA vs. Microarchitecture 

n  Assignments: HW0 (today!), Lab1 (Jan 23), HW1 (Jan 28) 
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Review: ISA vs. Microarchitecture 

n  ISA 
q  Agreed upon interface between software 

and hardware 
n  SW/compiler assumes, HW promises 

q  What the software writer needs to know 
to write and debug system/user programs  

n  Microarchitecture 
q  Specific implementation of an ISA 
q  Not visible to the software 

n  Microprocessor 
q  ISA, uarch, circuits 
q  “Architecture” = ISA + microarchitecture 

5 

Microarchitecture 

ISA 

Program 

Algorithm 

Problem 

Circuits 

Electrons 



Review: ISA 
n  Instructions 

q  Opcodes, Addressing Modes, Data Types 
q  Instruction Types and Formats 
q  Registers, Condition Codes 

n  Memory 
q  Address space, Addressability, Alignment 
q  Virtual memory management 

n  Call, Interrupt/Exception Handling 
n  Access Control, Priority/Privilege  
n  I/O: memory-mapped vs. instr. 
n  Task/thread Management 
n  Power and Thermal Management 
n  Multi-threading support, Multiprocessor support 
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Microarchitecture 
n  Implementation of the ISA under specific design constraints 

and goals 
n  Anything done in hardware without exposure to software 

q  Pipelining 
q  In-order versus out-of-order instruction execution 
q  Memory access scheduling policy 
q  Speculative execution 
q  Superscalar processing (multiple instruction issue?) 
q  Clock gating 
q  Caching? Levels, size, associativity, replacement policy 
q  Prefetching? 
q  Voltage/frequency scaling? 
q  Error correction? 
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Property of ISA vs. Uarch? 
n  ADD instruction’s opcode 
n  Number of general purpose registers 
n  Number of ports to the register file 
n  Number of cycles to execute the MUL instruction 
n  Whether or not the machine employs pipelined instruction 

execution 

n  Remember 
q  Microarchitecture: Implementation of the ISA under specific 

design constraints and goals 
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Design Point 
n  A set of design considerations and their importance  

q  leads to tradeoffs in both ISA and uarch 

n  Considerations 
q  Cost 
q  Performance 
q  Maximum power consumption 
q  Energy consumption (battery life) 
q  Availability 
q  Reliability and Correctness  
q  Time to Market 

n  Design point determined by the “Problem” space 
(application space), the intended users/market 
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Application Space 
n  Dream, and they will appear… 
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Tradeoffs: Soul of Computer Architecture 

n  ISA-level tradeoffs 

n  Microarchitecture-level tradeoffs 

n  System and Task-level tradeoffs 
q  How to divide the labor between hardware and software 

n  Computer architecture is the science and art of making the 
appropriate trade-offs to meet a design point 
q  Why art? 
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Why Is It (Somewhat) Art? 
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n  We do not (fully) know the future (applications, users, market) 

Logic 
 Circuits 

Electrons 

New demands  
from the top 
(Look Up) 

New issues and 
capabilities 
at the bottom 
(Look Down) 

New demands and 
personalities of users 
(Look Up) 



Why Is It (Somewhat) Art? 
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n  And, the future is not constant (it changes)! 

Logic 
 Circuits 

Electrons 

Changing demands  
at the top 
(Look Up and Forward) 

Changing issues and 
capabilities 
at the bottom 
(Look Down and Forward) 

Changing demands and 
personalities of users 
(Look Up and Forward) 



Analogue from Macro-Architecture 
n  Future is not constant in macro-architecture, either 

n  Example: Can a power plant boiler room be later used as a 
classroom? 
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Macro-Architecture: Boiler Room 
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How Can We Adapt to the Future 
n  This is part of the task of a good computer architect 

n  Many options (bag of tricks) 
q  Keen insight and good design 
q  Good use of fundamentals and principles 

n  Efficient design 
n  Heterogeneity 
n  Reconfigurability 
n  … 

q  Good use of the underlying technology 
q  … 
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ISA Principles and Tradeoffs 
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Many Different ISAs Over Decades 
n  x86 
n  PDP-x: Programmed Data Processor (PDP-11) 
n  VAX 
n  IBM 360 
n  CDC 6600 
n  SIMD ISAs: CRAY-1, Connection Machine 
n  VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC) 
n  PowerPC, POWER 
n  RISC ISAs: Alpha, MIPS, SPARC, ARM 

n  What are the fundamental differences? 
q  E.g., how instructions are specified and what they do  
q  E.g., how complex are the instructions 
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Instruction 
n  Basic element of the HW/SW interface 
n  Consists of  

q  opcode: what the instruction does 
q  operands: who it is to do it to 

q  Example from the Alpha ISA: 
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MIPS 
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ARM 
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Set of Instructions, Encoding, and Spec 
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n  Example from LC-3b ISA 
q  http://

www.ece.utexas.edu/
~patt/11s.460N/
handouts/new_byte.pdf 

n  x86 Manual 

n  Why unused instructions? 
n  Aside: concept of “bit 

steering” 
q  A bit in the instruction 

determines the 
interpretation of other 
bits 



Bit Steering in Alpha 

23 



What Are the Elements of An ISA? 
n  Instruction sequencing model 

q  Control flow vs. data flow 
q  Tradeoffs? 
 

n  Instruction processing style 
q  Specifies the number of “operands” an instruction “operates” 

on and how it does so 
q  0, 1, 2, 3 address machines 

n  0-address: stack machine (op, push A, pop A) 
n  1-address: accumulator machine (op ACC, ld A, st A) 
n  2-address: 2-operand machine (op S,D; one is both source and dest) 

n  3-address: 3-operand machine (op S1,S2,D; source and dest separate) 

q  Tradeoffs? See your homework question 
n  Larger operate instructions vs. more executed operations 
n  Code size vs. execution time vs. on-chip memory space 
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An Example: Stack Machine 
+ Small instruction size (no operands needed for operate 
instructions) 

q  Simpler logic 
q  Compact code 

+ Efficient procedure calls: all parameters on stack 
q  No additional cycles for parameter passing 

-- Computations that are not easily expressible with “postfix 
notation” are difficult to map to stack machines 

q  Cannot perform operations on many values at the same time 
(only top N values on the stack at the same time) 

q  Not flexible  
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An Example: Stack Machine (II) 
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Koopman, “Stack Computers: 
The New Wave,” 1989. 
http://www.ece.cmu.edu/
~koopman/stack_computers/
sec3_2.html 
 



An Example: Stack Machine Operation 
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Koopman, “Stack Computers: 
The New Wave,” 1989. 
http://www.ece.cmu.edu/
~koopman/stack_computers/
sec3_2.html 
 



Other Examples 
n  PDP-11: A 2-address machine 

q  PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers 
q  Why? Limited bits to specify an instruction 
q  Disadvantage: One source operand is always clobbered with 

the result of the instruction 
n  How do you ensure you preserve the old value of the source? 

n  X86: A 2-address (memory/memory) machine 
n  Alpha: A 3-address (load/store) machine 
n  MIPS?  
n  ARM? 
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What Are the Elements of An ISA? 
n  Instructions 

q  Opcode 
q  Operand specifiers (addressing modes) 

n  How to obtain the operand? 

n  Data types 
q  Definition: Representation of information for which there are 

instructions that operate on the representation 
q  Integer, floating point, character, binary, decimal, BCD 
q  Doubly linked list, queue, string, bit vector, stack 

n  VAX: INSQUEUE and REMQUEUE instructions on a doubly linked 
list or queue; FINDFIRST 

n  Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 
1977. 

n  X86: SCAN opcode operates on character strings; PUSH/POP 
29 

Why are there different addressing modes? 



Data Type Tradeoffs 
n  What is the benefit of having more or high-level data types 

in the ISA? 
n  What is the disadvantage? 

n  Think compiler/programmer vs. microarchitect 

n  Concept of semantic gap 
q  Data types coupled tightly to the semantic level, or complexity 

of instructions 

n  Example: Early RISC architectures vs. Intel 432 
q  Early RISC: Only integer data type 
q  Intel 432: Object data type, capability based machine 
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An Example: BCD 
n  Each decimal digit is encoded with a fixed number of bits 

31 

"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English 
Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg 

"Digital-BCD-clock" by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - http://
commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg 



What Are the Elements of An ISA? 
n  Memory organization 

q  Address space: How many uniquely identifiable locations in 
memory 

q  Addressability: How much data does each uniquely identifiable 
location store 
n  Byte addressable: most ISAs, characters are 8 bits 
n  Bit addressable: Burroughs 1700. Why? 
n  64-bit addressable: Some supercomputers. Why? 
n  32-bit addressable: First Alpha 
n  Food for thought 

q  How do you add 2 32-bit numbers with only byte addressability? 
q  How do you add 2 8-bit numbers with only 32-bit addressability? 
q  Big endian vs. little endian? MSB at low or high byte. 

q  Support for virtual memory 
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Some Historical Readings 
n  If you want to dig deeper 

n  Wilner, “Design of the Burroughs 1700,” AFIPS 1972. 

n  Levy, “The Intel iAPX 432,” 1981. 
q  http://www.cs.washington.edu/homes/levy/capabook/

Chapter9.pdf  
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What Are the Elements of An ISA? 
n  Registers 

q  How many 
q  Size of each register 

n  Why is having registers a good idea? 
q  Because programs exhibit a characteristic called data locality  
q  A recently produced/accessed value is likely to be used more 

than once (temporal locality) 
n  Storing that value in a register eliminates the need to go to 

memory each time that value is needed  
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Programmer Visible (Architectural) State 
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Aside: Programmer Invisible State 
n  Microarchitectural state 
n  Programmer cannot access this directly  

n  E.g. cache state 
n  E.g. pipeline registers 
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Evolution of Register Architecture 
n  Accumulator 

q  a legacy from the “adding” machine days 

 
n  Accumulator + address registers 

q  need register indirection 
q  initially address registers were special-purpose, i.e., can only 

be loaded with an address for indirection 
q  eventually arithmetic on addresses became supported 

n  General purpose registers (GPR) 
q  all registers good for all purposes 
q  grew from a few registers to 32 (common for RISC) to 128 in 

Intel IA-64 
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Instruction Classes 
n  Operate instructions 

q  Process data: arithmetic and logical operations 
q  Fetch operands, compute result, store result 
q  Implicit sequential control flow 

n  Data movement instructions 
q  Move data between memory, registers, I/O devices 
q  Implicit sequential control flow 

n  Control flow instructions 
q  Change the sequence of instructions that are executed 
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What Are the Elements of An ISA? 
n  Load/store vs. memory/memory architectures 

q  Load/store architecture: operate instructions operate only on 
registers 
n  E.g., MIPS, ARM and many RISC ISAs 

q  Memory/memory architecture: operate instructions can 
operate on memory locations 
n  E.g., x86, VAX and many CISC ISAs 
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What Are the Elements of An ISA? 
n  Addressing modes specify how to obtain the operands 

q  Absolute 	
   	
   	
  LW	
  rt,	
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  immediate	
  value	
  as	
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What Are the Benefits of Different Addressing Modes? 

n  Another example of programmer vs. microarchitect tradeoff 

n  Advantage of more addressing modes: 
q  Enables better mapping of high-level constructs to the 

machine: some accesses are better expressed with a different 
mode à reduced number of instructions and code size 
n  Think array accesses (autoincrement mode) 
n  Think indirection (pointer chasing) 
n  Sparse matrix accesses 

n  Disadvantage: 
q  More work for the compiler 
q  More work for the microarchitect 
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ISA Orthogonality 
n  Orthogonal ISA: 

q  All addressing modes can be used with all instruction types 
q  Example: VAX 

n  (~13 addressing modes) x (>300 opcodes) x (integer and FP 
formats) 

n  Who is this good for? 
n  Who is this bad for? 
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Is the LC-3b ISA Orthogonal? 
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LC-3b: Addressing Modes of ADD 
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LC-3b: Addressing Modes of of JSR(R) 
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What Are the Elements of An ISA? 
n  How to interface with I/O devices 

q  Memory mapped I/O 
n  A region of memory is mapped to I/O devices 
n  I/O operations are loads and stores to those locations 

q  Special I/O instructions 
n  IN and OUT instructions in x86 deal with ports of the chip 

q  Tradeoffs? 
n  Which one is more general purpose? 
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What Are the Elements of An ISA? 
n  Privilege modes 

q  User vs supervisor 
q  Who can execute what instructions? 

n  Exception and interrupt handling 
q  What procedure is followed when something goes wrong with an 

instruction? 
q  What procedure is followed when an external device requests the processor? 
q  Vectored vs. non-vectored interrupts (early MIPS) 

n  Virtual memory 
q  Each program has the illusion of the entire memory space, which is greater 

than physical memory 

n  Access protection 

n  We will talk about these later 
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Another Question or Two 
n  Does the LC-3b ISA contain complex instructions? 

n  How complex can an instruction be? 
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Complex vs. Simple Instructions 
n  Complex instruction: An instruction does a lot of work, e.g. 

many operations 
q  Insert in a doubly linked list 
q  Compute FFT 
q  String copy 

n  Simple instruction: An instruction does small amount of 
work, it is a primitive using which complex operations can 
be built 
q  Add 
q  XOR 
q  Multiply 
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Complex vs. Simple Instructions 
n  Advantages of Complex instructions 

+ Denser encoding à smaller code size à better memory 
utilization, saves off-chip bandwidth, better cache hit rate 
(better packing of instructions) 

+ Simpler compiler: no need to optimize small instructions as 
much  

 

n  Disadvantages of Complex Instructions 
- Larger chunks of work à compiler has less opportunity to 

optimize (limited in fine-grained optimizations it can do) 
- More complex hardware à translation from a high level to 

control signals and optimization needs to be done by hardware 
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ISA-level Tradeoffs: Semantic Gap 
n  Where to place the ISA? Semantic gap 

q  Closer to high-level language (HLL) à Small semantic gap, 
complex instructions 

q  Closer to hardware control signals? à Large semantic gap, 
simple instructions 

n  RISC vs. CISC machines 
q  RISC: Reduced instruction set computer 
q  CISC: Complex instruction set computer 

n  FFT, QUICKSORT, POLY, FP instructions? 
n  VAX INDEX instruction (array access with bounds checking) 
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ISA-level Tradeoffs: Semantic Gap 
n  Some tradeoffs (for you to think about) 

n  Simple compiler, complex hardware vs.                                  
complex compiler, simple hardware 
q  Caveat: Translation (indirection) can change the tradeoff! 

n  Burden of backward compatibility 

n  Performance? Energy Consumption? 
q  Optimization opportunity: Example of VAX INDEX instruction: 

who (compiler vs. hardware) puts more effort into 
optimization? 

q  Instruction size, code size 
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X86: Small  Semantic Gap: String Operations 

n  An instruction operates on a string 
q  Move one string of arbitrary length to another location 
q  Compare two strings  

n  Enabled by the ability to specify repeated execution of an 
instruction (in the ISA) 
q  Using a “prefix” called REP prefix 

n  Example: REP MOVS instruction 
q  Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4) 
q  Implicit source and destination registers pointing to the two 

strings (ESI, EDI) 
q  Implicit count register (ECX) specifies how long the string is 
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X86: Small Semantic Gap: String Operations 
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REP MOVS (DEST SRC) 

How many instructions does this take in MIPS? 



Small Semantic Gap Examples in VAX  
n  FIND FIRST 

q  Find the first set bit in a bit field 
q  Helps OS resource allocation operations 

n  SAVE CONTEXT, LOAD CONTEXT 
q  Special context switching instructions 

n  INSQUEUE, REMQUEUE 
q  Operations on doubly linked list 

n  INDEX 
q  Array access with bounds checking 

n  STRING Operations 
q  Compare strings, find substrings, … 

n  Cyclic Redundancy Check Instruction 
n  EDITPC 

q  Implements editing functions to display fixed format output 

n  Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78. 
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Small versus Large Semantic Gap 
n  CISC vs. RISC 

q  Complex instruction set computer à complex instructions   
n  Initially motivated by “not good enough” code generation 

q  Reduced instruction set computer à simple instructions 
n  John Cocke, mid 1970s, IBM 801 

q  Goal: enable better compiler control and optimization 

 

n  RISC motivated by  
q  Memory stalls (no work done in a complex instruction when 

there is a memory stall?) 
n  When is this correct? 

q  Simplifying the hardware à lower cost, higher frequency 
q  Enabling the compiler to optimize the code better 

n  Find fine-grained parallelism to reduce stalls 
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An Aside 
n  An Historical Perspective on RISC Development at IBM 

q  http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/risc/ 
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How High or Low Can You Go? 
n  Very large semantic gap 

q  Each instruction specifies the complete set of control signals in 
the machine 

q  Compiler generates control signals 
q  Open microcode (John Cocke, circa 1970s) 

n  Gave way to optimizing compilers 

n  Very small semantic gap 
q  ISA is (almost) the same as high-level language 
q  Java machines, LISP machines, object-oriented machines, 

capability-based machines 
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A Note on ISA Evolution 
n  ISAs have evolved to reflect/satisfy the concerns of the day 

n  Examples: 
q  Limited on-chip and off-chip memory size 
q  Limited compiler optimization technology 
q  Limited memory bandwidth 
q  Need for specialization in important applications (e.g., MMX) 

n  Use of translation (in HW and SW) enabled underlying 
implementations to be similar, regardless of the ISA 
q  Concept of dynamic/static interface: translation/interpretation 
q  Contrast it with hardware/software interface 
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Effect of Translation 
n  One can translate from one ISA to another ISA to change 

the semantic gap tradeoffs 
q  ISA (virtual ISA) à Implementation ISA  

n  Examples 
q  Intel’s and AMD’s x86 implementations translate x86 

instructions into programmer-invisible microoperations (simple 
instructions) in hardware 

q  Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software) 

n  Think about the tradeoffs 
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Hardware-Based Translation 
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Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000. 



Software-Based Translation  
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Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000. 



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture.  



ISA-level Tradeoffs: Instruction Length 
n  Fixed length: Length of all instructions the same 

 + Easier to decode single instruction in hardware 
 + Easier to decode multiple instructions concurrently 
 -- Wasted bits in instructions (Why is this bad?) 
 -- Harder-to-extend ISA (how to add new instructions?) 

n  Variable length: Length of instructions different 
(determined by opcode and sub-opcode) 

+ Compact encoding (Why is this good?) 
 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How? 

-- More logic to decode a single instruction 
-- Harder to decode multiple instructions concurrently 
 

n  Tradeoffs 
q  Code size (memory space, bandwidth, latency) vs. hardware complexity 
q  ISA extensibility and expressiveness vs. hardware complexity 
q  Performance? Smaller code vs. ease of decode 
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ISA-level Tradeoffs: Uniform Decode 
n  Uniform decode: Same bits in each instruction correspond 

to the same meaning 
q  Opcode is always in the same location 
q  Ditto operand specifiers, immediate values, … 
q  Many “RISC” ISAs: Alpha, MIPS, SPARC 
+ Easier decode, simpler hardware 
+ Enables parallelism: generate target address before knowing the 

instruction is a branch 
-- Restricts instruction format (fewer instructions?) or wastes space 

 

n  Non-uniform decode 
q  E.g., opcode can be the 1st-7th byte in x86 
+ More compact and powerful instruction format 
-- More complex decode logic 
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x86 vs. Alpha Instruction Formats 
n  x86: 

n  Alpha: 
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MIPS Instruction Format 
n  R-type, 3 register operands 

n  I-type, 2 register operands and 16-bit immediate operand 

n  J-type, 26-bit immediate operand 

n  Simple Decoding 
q  4 bytes per instruction, regardless of format 
q  must be 4-byte aligned           (2 lsb of PC must be 2b’00) 
q  format and fields easy to extract in hardware 
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ARM 
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A Note on Length and Uniformity 
n  Uniform decode usually goes with fixed length  

n  In a variable length ISA, uniform decode can be a property 
of instructions of the same length  
q  It is hard to think of it as a property of instructions of different 

lengths 
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A Note on RISC vs. CISC 
n  Usually, … 

n  RISC 
q  Simple instructions 
q  Fixed length 
q  Uniform decode 
q  Few addressing modes 

n  CISC 
q  Complex instructions 
q  Variable length 
q  Non-uniform decode 
q  Many addressing modes 
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ISA-level Tradeoffs: Number of Registers 
n  Affects: 

q  Number of bits used for encoding register address 
q  Number of values kept in fast storage (register file) 
q  (uarch) Size, access time, power consumption of register file 

n  Large number of registers: 
+ Enables better register allocation (and optimizations) by 

compiler à fewer saves/restores 
-- Larger instruction size 
-- Larger register file size 
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ISA-level Tradeoffs: Addressing Modes 
n  Addressing mode specifies how to obtain an operand of an 

instruction 
q  Register 
q  Immediate 
q  Memory (displacement, register indirect, indexed, absolute, 

memory indirect, autoincrement, autodecrement, …) 

n  More modes:  
+ help better support programming constructs (arrays, pointer-

based accesses) 
-- make it harder for the architect to design  
-- too many choices for the compiler?  

n  Many ways to do the same thing complicates compiler design 
n  Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981 
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x86 vs. Alpha Instruction Formats 
n  x86: 

n  Alpha: 
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x86 

register 

absolute 

register 
indirect 

register +  
displacement 



x86 
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indexed 
(base + 
index) 

scaled 
(base + 
index*4) 



X86 SIB-D Addressing Mode 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 
Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 
Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 
Also, see Section 3.7.3 and 3.7.5 



Other Example ISA-level Tradeoffs 
n  Condition codes vs. not 
n  VLIW vs. single instruction 
n  Precise vs. imprecise exceptions 
n  Virtual memory vs. not 
n  Unaligned access vs. not 
n  Hardware interlocks vs. software-guaranteed interlocking 
n  Software vs. hardware managed page fault handling 
n  Cache coherence (hardware vs. software) 
n  … 
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Back to Programmer vs. (Micro)architect 
n  Many ISA features designed to aid programmers 
n  But, complicate the hardware designer’s job 

n  Virtual memory 
q  vs. overlay programming  
q  Should the programmer be concerned about the size of code 

blocks fitting physical memory? 

n  Addressing modes 
n  Unaligned memory access 

q  Compile/programmer needs to align data 
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MIPS: Aligned Access 

n  LW/SW alignment restriction: 4-byte word-alignment 
q  not designed to fetch memory bytes not within a word boundary 
q  not designed to rotate unaligned bytes into registers 

n  Provide separate opcodes for the “infrequent” case 
 

 
 
q  LWL/LWR is slower  
q  Note LWL and LWR still fetch within word boundary 
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LWR  rd 3(r0) à 
 



X86: Unaligned Access 
n  LD/ST instructions automatically align data that spans a 

“word” boundary 
n  Programmer/compiler does not need to worry about where 

data is stored (whether or not in a word-aligned location) 
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X86: Unaligned Access 
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What About ARM? 
n  https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf 

q  Section A2.8 
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Aligned vs. Unaligned Access 
n  Pros of having no restrictions on alignment 

n  Cons of having no restrictions on alignment 

n  Filling in the above: an exercise for you… 
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