
18-447
Computer Architecture
Lecture 3: ISA Tradeoffs

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 1/16/2015

Agenda for Today
n  Deep dive into ISA and its tradeoffs

2

Upcoming Readings
n  Next Week (More ISA Tradeoffs + Your Lab + Homework):

q  MIPS ISA Tutorial
q  P&P Chapter 5: LC-3 ISA
q  P&P, revised Appendix A – LC3b ISA

n  The Week After (Microarchitecture):
q  P&H, Chapter 4, Sections 4.1-4.4
q  P&P, revised Appendix C – LC3b datapath and

microprogrammed operation

n  We have provided example critical reviews for you to see,
on the course website

3

Last Lecture Recap
n  Levels of Transformation

q  Algorithm, ISA, Microarchitecture

n  Moore’s Law
n  What is Computer Architecture
n  Why Study Computer Architecture
n  Fundamental Concepts
n  Von Neumann Model
n  Dataflow Model
n  ISA vs. Microarchitecture

n  Assignments: HW0 (today!), Lab1 (Jan 23), HW1 (Jan 28)

4

Review: ISA vs. Microarchitecture

n  ISA
q  Agreed upon interface between software

and hardware
n  SW/compiler assumes, HW promises

q  What the software writer needs to know
to write and debug system/user programs

n  Microarchitecture
q  Specific implementation of an ISA
q  Not visible to the software

n  Microprocessor
q  ISA, uarch, circuits
q  “Architecture” = ISA + microarchitecture

5

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Review: ISA
n  Instructions

q  Opcodes, Addressing Modes, Data Types
q  Instruction Types and Formats
q  Registers, Condition Codes

n  Memory
q  Address space, Addressability, Alignment
q  Virtual memory management

n  Call, Interrupt/Exception Handling
n  Access Control, Priority/Privilege
n  I/O: memory-mapped vs. instr.
n  Task/thread Management
n  Power and Thermal Management
n  Multi-threading support, Multiprocessor support

6

Microarchitecture
n  Implementation of the ISA under specific design constraints

and goals
n  Anything done in hardware without exposure to software

q  Pipelining
q  In-order versus out-of-order instruction execution
q  Memory access scheduling policy
q  Speculative execution
q  Superscalar processing (multiple instruction issue?)
q  Clock gating
q  Caching? Levels, size, associativity, replacement policy
q  Prefetching?
q  Voltage/frequency scaling?
q  Error correction?

7

Property of ISA vs. Uarch?
n  ADD instruction’s opcode
n  Number of general purpose registers
n  Number of ports to the register file
n  Number of cycles to execute the MUL instruction
n  Whether or not the machine employs pipelined instruction

execution

n  Remember
q  Microarchitecture: Implementation of the ISA under specific

design constraints and goals

8

Design Point
n  A set of design considerations and their importance

q  leads to tradeoffs in both ISA and uarch

n  Considerations
q  Cost
q  Performance
q  Maximum power consumption
q  Energy consumption (battery life)
q  Availability
q  Reliability and Correctness
q  Time to Market

n  Design point determined by the “Problem” space
(application space), the intended users/market

9

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space
n  Dream, and they will appear…

10

Tradeoffs: Soul of Computer Architecture

n  ISA-level tradeoffs

n  Microarchitecture-level tradeoffs

n  System and Task-level tradeoffs
q  How to divide the labor between hardware and software

n  Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point
q  Why art?

11

Why Is It (Somewhat) Art?

12

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

n  We do not (fully) know the future (applications, users, market)

Logic
 Circuits

Electrons

New demands
from the top
(Look Up)

New issues and
capabilities
at the bottom
(Look Down)

New demands and
personalities of users
(Look Up)

Why Is It (Somewhat) Art?

13

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

n  And, the future is not constant (it changes)!

Logic
 Circuits

Electrons

Changing demands
at the top
(Look Up and Forward)

Changing issues and
capabilities
at the bottom
(Look Down and Forward)

Changing demands and
personalities of users
(Look Up and Forward)

Analogue from Macro-Architecture
n  Future is not constant in macro-architecture, either

n  Example: Can a power plant boiler room be later used as a
classroom?

14

Macro-Architecture: Boiler Room

15

How Can We Adapt to the Future
n  This is part of the task of a good computer architect

n  Many options (bag of tricks)
q  Keen insight and good design
q  Good use of fundamentals and principles

n  Efficient design
n  Heterogeneity
n  Reconfigurability
n  …

q  Good use of the underlying technology
q  …

16

ISA Principles and Tradeoffs

17

Many Different ISAs Over Decades
n  x86
n  PDP-x: Programmed Data Processor (PDP-11)
n  VAX
n  IBM 360
n  CDC 6600
n  SIMD ISAs: CRAY-1, Connection Machine
n  VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
n  PowerPC, POWER
n  RISC ISAs: Alpha, MIPS, SPARC, ARM

n  What are the fundamental differences?
q  E.g., how instructions are specified and what they do
q  E.g., how complex are the instructions

18

Instruction
n  Basic element of the HW/SW interface
n  Consists of

q  opcode: what the instruction does
q  operands: who it is to do it to

q  Example from the Alpha ISA:

19

MIPS

20

opcode	

6-­‐bit	

rs	

5-­‐bit	

rt	

5-­‐bit	

immediate	

16-­‐bit	

I-­‐type	

R-­‐type	
 0	

6-­‐bit	

rs	

5-­‐bit	

rt	

5-­‐bit	

rd	

5-­‐bit	

shamt	

5-­‐bit	

funct	

6-­‐bit	

opcode	

6-­‐bit	

immediate	

26-­‐bit	

J-­‐type	

ARM

21

Set of Instructions, Encoding, and Spec

22

n  Example from LC-3b ISA
q  http://

www.ece.utexas.edu/
~patt/11s.460N/
handouts/new_byte.pdf

n  x86 Manual

n  Why unused instructions?
n  Aside: concept of “bit

steering”
q  A bit in the instruction

determines the
interpretation of other
bits

Bit Steering in Alpha

23

What Are the Elements of An ISA?
n  Instruction sequencing model

q  Control flow vs. data flow
q  Tradeoffs?

n  Instruction processing style
q  Specifies the number of “operands” an instruction “operates”

on and how it does so
q  0, 1, 2, 3 address machines

n  0-address: stack machine (op, push A, pop A)
n  1-address: accumulator machine (op ACC, ld A, st A)
n  2-address: 2-operand machine (op S,D; one is both source and dest)

n  3-address: 3-operand machine (op S1,S2,D; source and dest separate)

q  Tradeoffs? See your homework question
n  Larger operate instructions vs. more executed operations
n  Code size vs. execution time vs. on-chip memory space

24

An Example: Stack Machine
+ Small instruction size (no operands needed for operate
instructions)

q  Simpler logic
q  Compact code

+ Efficient procedure calls: all parameters on stack
q  No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines

q  Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)

q  Not flexible

25

An Example: Stack Machine (II)

26

Koopman, “Stack Computers:
The New Wave,” 1989.
http://www.ece.cmu.edu/
~koopman/stack_computers/
sec3_2.html

An Example: Stack Machine Operation

27

Koopman, “Stack Computers:
The New Wave,” 1989.
http://www.ece.cmu.edu/
~koopman/stack_computers/
sec3_2.html

Other Examples
n  PDP-11: A 2-address machine

q  PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers
q  Why? Limited bits to specify an instruction
q  Disadvantage: One source operand is always clobbered with

the result of the instruction
n  How do you ensure you preserve the old value of the source?

n  X86: A 2-address (memory/memory) machine
n  Alpha: A 3-address (load/store) machine
n  MIPS?
n  ARM?

28

What Are the Elements of An ISA?
n  Instructions

q  Opcode
q  Operand specifiers (addressing modes)

n  How to obtain the operand?

n  Data types
q  Definition: Representation of information for which there are

instructions that operate on the representation
q  Integer, floating point, character, binary, decimal, BCD
q  Doubly linked list, queue, string, bit vector, stack

n  VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

n  Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

n  X86: SCAN opcode operates on character strings; PUSH/POP
29

Why are there different addressing modes?

Data Type Tradeoffs
n  What is the benefit of having more or high-level data types

in the ISA?
n  What is the disadvantage?

n  Think compiler/programmer vs. microarchitect

n  Concept of semantic gap
q  Data types coupled tightly to the semantic level, or complexity

of instructions

n  Example: Early RISC architectures vs. Intel 432
q  Early RISC: Only integer data type
q  Intel 432: Object data type, capability based machine

30

An Example: BCD
n  Each decimal digit is encoded with a fixed number of bits

31

"Binary clock" by Alexander Jones & Eric Pierce - Own work, based on Wapcaplet's Binary clock.png on the English
Wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Binary_clock.svg#mediaviewer/File:Binary_clock.svg

"Digital-BCD-clock" by Julo - Own work. Licensed under Public Domain via Wikimedia Commons - http://
commons.wikimedia.org/wiki/File:Digital-BCD-clock.jpg#mediaviewer/File:Digital-BCD-clock.jpg

What Are the Elements of An ISA?
n  Memory organization

q  Address space: How many uniquely identifiable locations in
memory

q  Addressability: How much data does each uniquely identifiable
location store
n  Byte addressable: most ISAs, characters are 8 bits
n  Bit addressable: Burroughs 1700. Why?
n  64-bit addressable: Some supercomputers. Why?
n  32-bit addressable: First Alpha
n  Food for thought

q  How do you add 2 32-bit numbers with only byte addressability?
q  How do you add 2 8-bit numbers with only 32-bit addressability?
q  Big endian vs. little endian? MSB at low or high byte.

q  Support for virtual memory
32

Some Historical Readings
n  If you want to dig deeper

n  Wilner, “Design of the Burroughs 1700,” AFIPS 1972.

n  Levy, “The Intel iAPX 432,” 1981.
q  http://www.cs.washington.edu/homes/levy/capabook/

Chapter9.pdf

33

What Are the Elements of An ISA?
n  Registers

q  How many
q  Size of each register

n  Why is having registers a good idea?
q  Because programs exhibit a characteristic called data locality
q  A recently produced/accessed value is likely to be used more

than once (temporal locality)
n  Storing that value in a register eliminates the need to go to

memory each time that value is needed

34

Programmer Visible (Architectural) State

35

M[0]	

M[1]	

M[2]	

M[3]	

M[4]	

M[N-­‐1]	

Memory	

array	
 of	
 storage	
 locaDons	

indexed	
 by	
 an	
 address	

Program	
 Counter	

memory	
 address	

of	
 the	
 current	
 instrucDon	

Registers	

-­‐	
 	
 given	
 special	
 names	
 in	
 the	
 ISA	

	
 	
 	
 	
 	
 (as	
 opposed	
 to	
 addresses)	

-­‐	
 	
 general	
 vs.	
 special	
 purpose	

	

InstrucDons	
 (and	
 programs)	
 specify	
 how	
 to	
 transform	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 the	
 values	
 of	
 programmer	
 visible	
 state	

Aside: Programmer Invisible State
n  Microarchitectural state
n  Programmer cannot access this directly

n  E.g. cache state
n  E.g. pipeline registers

36

Evolution of Register Architecture
n  Accumulator

q  a legacy from the “adding” machine days

n  Accumulator + address registers

q  need register indirection
q  initially address registers were special-purpose, i.e., can only

be loaded with an address for indirection
q  eventually arithmetic on addresses became supported

n  General purpose registers (GPR)
q  all registers good for all purposes
q  grew from a few registers to 32 (common for RISC) to 128 in

Intel IA-64

37

Instruction Classes
n  Operate instructions

q  Process data: arithmetic and logical operations
q  Fetch operands, compute result, store result
q  Implicit sequential control flow

n  Data movement instructions
q  Move data between memory, registers, I/O devices
q  Implicit sequential control flow

n  Control flow instructions
q  Change the sequence of instructions that are executed

38

What Are the Elements of An ISA?
n  Load/store vs. memory/memory architectures

q  Load/store architecture: operate instructions operate only on
registers
n  E.g., MIPS, ARM and many RISC ISAs

q  Memory/memory architecture: operate instructions can
operate on memory locations
n  E.g., x86, VAX and many CISC ISAs

39

What Are the Elements of An ISA?
n  Addressing modes specify how to obtain the operands

q  Absolute 	
 	
 	
 LW	
 rt,	
 10000	

	
 use	
 immediate	
 value	
 as	
 address	

q  Register	
 Indirect:	
 	
 	
 LW	
 rt,	
 (rbase)	

	
 use	
 GPR[rbase]	
 as	
 address	

q  Displaced	
 or	
 based: 	
 LW	
 rt,	
 offset(rbase)	

	
 use	
 offset+GPR[rbase]	
 as	
 address	

q  Indexed: 	
 	
 	
 LW	
 rt,	
 (rbase,	
 rindex)	

	
 use	
 GPR[rbase]+GPR[rindex]	
 as	
 address	

q  Memory	
 Indirect 	
 	
 LW	
 rt	
 ((rbase))	

	
 use	
 value	
 at	
 M[
 GPR[
 rbase	
]	
]	
 as	
 address	

q  Auto	
 inc/decrement 	
 LW	
 Rt,	
 (rbase)	

	
 use	
 GRP[rbase]	
 as	
 address,	
 but	
 inc.	
 or	
 dec.	
 GPR[rbase]	
 each	
 Dme	
 	

40

What Are the Benefits of Different Addressing Modes?

n  Another example of programmer vs. microarchitect tradeoff

n  Advantage of more addressing modes:
q  Enables better mapping of high-level constructs to the

machine: some accesses are better expressed with a different
mode à reduced number of instructions and code size
n  Think array accesses (autoincrement mode)
n  Think indirection (pointer chasing)
n  Sparse matrix accesses

n  Disadvantage:
q  More work for the compiler
q  More work for the microarchitect

41

ISA Orthogonality
n  Orthogonal ISA:

q  All addressing modes can be used with all instruction types
q  Example: VAX

n  (~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

n  Who is this good for?
n  Who is this bad for?

42

Is the LC-3b ISA Orthogonal?

43

LC-3b: Addressing Modes of ADD

44

LC-3b: Addressing Modes of of JSR(R)

45

What Are the Elements of An ISA?
n  How to interface with I/O devices

q  Memory mapped I/O
n  A region of memory is mapped to I/O devices
n  I/O operations are loads and stores to those locations

q  Special I/O instructions
n  IN and OUT instructions in x86 deal with ports of the chip

q  Tradeoffs?
n  Which one is more general purpose?

46

What Are the Elements of An ISA?
n  Privilege modes

q  User vs supervisor
q  Who can execute what instructions?

n  Exception and interrupt handling
q  What procedure is followed when something goes wrong with an

instruction?
q  What procedure is followed when an external device requests the processor?
q  Vectored vs. non-vectored interrupts (early MIPS)

n  Virtual memory
q  Each program has the illusion of the entire memory space, which is greater

than physical memory

n  Access protection

n  We will talk about these later
47

Another Question or Two
n  Does the LC-3b ISA contain complex instructions?

n  How complex can an instruction be?

48

Complex vs. Simple Instructions
n  Complex instruction: An instruction does a lot of work, e.g.

many operations
q  Insert in a doubly linked list
q  Compute FFT
q  String copy

n  Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built
q  Add
q  XOR
q  Multiply

49

Complex vs. Simple Instructions
n  Advantages of Complex instructions

+ Denser encoding à smaller code size à better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

n  Disadvantages of Complex Instructions
- Larger chunks of work à compiler has less opportunity to

optimize (limited in fine-grained optimizations it can do)
- More complex hardware à translation from a high level to

control signals and optimization needs to be done by hardware

50

ISA-level Tradeoffs: Semantic Gap
n  Where to place the ISA? Semantic gap

q  Closer to high-level language (HLL) à Small semantic gap,
complex instructions

q  Closer to hardware control signals? à Large semantic gap,
simple instructions

n  RISC vs. CISC machines
q  RISC: Reduced instruction set computer
q  CISC: Complex instruction set computer

n  FFT, QUICKSORT, POLY, FP instructions?
n  VAX INDEX instruction (array access with bounds checking)

51

ISA-level Tradeoffs: Semantic Gap
n  Some tradeoffs (for you to think about)

n  Simple compiler, complex hardware vs.
complex compiler, simple hardware
q  Caveat: Translation (indirection) can change the tradeoff!

n  Burden of backward compatibility

n  Performance? Energy Consumption?
q  Optimization opportunity: Example of VAX INDEX instruction:

who (compiler vs. hardware) puts more effort into
optimization?

q  Instruction size, code size

52

X86: Small Semantic Gap: String Operations

n  An instruction operates on a string
q  Move one string of arbitrary length to another location
q  Compare two strings

n  Enabled by the ability to specify repeated execution of an
instruction (in the ISA)
q  Using a “prefix” called REP prefix

n  Example: REP MOVS instruction
q  Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)
q  Implicit source and destination registers pointing to the two

strings (ESI, EDI)
q  Implicit count register (ECX) specifies how long the string is

53

X86: Small Semantic Gap: String Operations

54

REP MOVS (DEST SRC)

How many instructions does this take in MIPS?

Small Semantic Gap Examples in VAX
n  FIND FIRST

q  Find the first set bit in a bit field
q  Helps OS resource allocation operations

n  SAVE CONTEXT, LOAD CONTEXT
q  Special context switching instructions

n  INSQUEUE, REMQUEUE
q  Operations on doubly linked list

n  INDEX
q  Array access with bounds checking

n  STRING Operations
q  Compare strings, find substrings, …

n  Cyclic Redundancy Check Instruction
n  EDITPC

q  Implements editing functions to display fixed format output

n  Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.
55

Small versus Large Semantic Gap
n  CISC vs. RISC

q  Complex instruction set computer à complex instructions
n  Initially motivated by “not good enough” code generation

q  Reduced instruction set computer à simple instructions
n  John Cocke, mid 1970s, IBM 801

q  Goal: enable better compiler control and optimization

n  RISC motivated by
q  Memory stalls (no work done in a complex instruction when

there is a memory stall?)
n  When is this correct?

q  Simplifying the hardware à lower cost, higher frequency
q  Enabling the compiler to optimize the code better

n  Find fine-grained parallelism to reduce stalls
56

An Aside
n  An Historical Perspective on RISC Development at IBM

q  http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/risc/

57

How High or Low Can You Go?
n  Very large semantic gap

q  Each instruction specifies the complete set of control signals in
the machine

q  Compiler generates control signals
q  Open microcode (John Cocke, circa 1970s)

n  Gave way to optimizing compilers

n  Very small semantic gap
q  ISA is (almost) the same as high-level language
q  Java machines, LISP machines, object-oriented machines,

capability-based machines

58

A Note on ISA Evolution
n  ISAs have evolved to reflect/satisfy the concerns of the day

n  Examples:
q  Limited on-chip and off-chip memory size
q  Limited compiler optimization technology
q  Limited memory bandwidth
q  Need for specialization in important applications (e.g., MMX)

n  Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA
q  Concept of dynamic/static interface: translation/interpretation
q  Contrast it with hardware/software interface

59

Effect of Translation
n  One can translate from one ISA to another ISA to change

the semantic gap tradeoffs
q  ISA (virtual ISA) à Implementation ISA

n  Examples
q  Intel’s and AMD’s x86 implementations translate x86

instructions into programmer-invisible microoperations (simple
instructions) in hardware

q  Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

n  Think about the tradeoffs

60

Hardware-Based Translation

61

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

Software-Based Translation

62

Klaiber, “The Technology Behind Crusoe Processors,” Transmeta White Paper 2000.

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

ISA-level Tradeoffs: Instruction Length
n  Fixed length: Length of all instructions the same

 + Easier to decode single instruction in hardware
 + Easier to decode multiple instructions concurrently
 -- Wasted bits in instructions (Why is this bad?)
 -- Harder-to-extend ISA (how to add new instructions?)

n  Variable length: Length of instructions different
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)
 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

n  Tradeoffs
q  Code size (memory space, bandwidth, latency) vs. hardware complexity
q  ISA extensibility and expressiveness vs. hardware complexity
q  Performance? Smaller code vs. ease of decode

64

ISA-level Tradeoffs: Uniform Decode
n  Uniform decode: Same bits in each instruction correspond

to the same meaning
q  Opcode is always in the same location
q  Ditto operand specifiers, immediate values, …
q  Many “RISC” ISAs: Alpha, MIPS, SPARC
+ Easier decode, simpler hardware
+ Enables parallelism: generate target address before knowing the

instruction is a branch
-- Restricts instruction format (fewer instructions?) or wastes space

n  Non-uniform decode
q  E.g., opcode can be the 1st-7th byte in x86
+ More compact and powerful instruction format
-- More complex decode logic

65

x86 vs. Alpha Instruction Formats
n  x86:

n  Alpha:

66

MIPS Instruction Format
n  R-type, 3 register operands

n  I-type, 2 register operands and 16-bit immediate operand

n  J-type, 26-bit immediate operand

n  Simple Decoding
q  4 bytes per instruction, regardless of format
q  must be 4-byte aligned (2 lsb of PC must be 2b’00)
q  format and fields easy to extract in hardware

67

R-­‐type	
 0	

6-­‐bit	

rs	

5-­‐bit	

rt	

5-­‐bit	

rd	

5-­‐bit	

shamt	

5-­‐bit	

funct	

6-­‐bit	

opcode	

6-­‐bit	

rs	

5-­‐bit	

rt	

5-­‐bit	

immediate	

16-­‐bit	

I-­‐type	

opcode	

6-­‐bit	

immediate	

26-­‐bit	

J-­‐type	

ARM

68

A Note on Length and Uniformity
n  Uniform decode usually goes with fixed length

n  In a variable length ISA, uniform decode can be a property
of instructions of the same length
q  It is hard to think of it as a property of instructions of different

lengths

69

A Note on RISC vs. CISC
n  Usually, …

n  RISC
q  Simple instructions
q  Fixed length
q  Uniform decode
q  Few addressing modes

n  CISC
q  Complex instructions
q  Variable length
q  Non-uniform decode
q  Many addressing modes

70

ISA-level Tradeoffs: Number of Registers
n  Affects:

q  Number of bits used for encoding register address
q  Number of values kept in fast storage (register file)
q  (uarch) Size, access time, power consumption of register file

n  Large number of registers:
+ Enables better register allocation (and optimizations) by

compiler à fewer saves/restores
-- Larger instruction size
-- Larger register file size

71

ISA-level Tradeoffs: Addressing Modes
n  Addressing mode specifies how to obtain an operand of an

instruction
q  Register
q  Immediate
q  Memory (displacement, register indirect, indexed, absolute,

memory indirect, autoincrement, autodecrement, …)

n  More modes:
+ help better support programming constructs (arrays, pointer-

based accesses)
-- make it harder for the architect to design
-- too many choices for the compiler?

n  Many ways to do the same thing complicates compiler design
n  Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981

72

x86 vs. Alpha Instruction Formats
n  x86:

n  Alpha:

73

74

x86

register

absolute

register
indirect

register +
displacement

x86

75

indexed
(base +
index)

scaled
(base +
index*4)

X86 SIB-D Addressing Mode

76

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

77

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

78

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

Other Example ISA-level Tradeoffs
n  Condition codes vs. not
n  VLIW vs. single instruction
n  Precise vs. imprecise exceptions
n  Virtual memory vs. not
n  Unaligned access vs. not
n  Hardware interlocks vs. software-guaranteed interlocking
n  Software vs. hardware managed page fault handling
n  Cache coherence (hardware vs. software)
n  …

79

Back to Programmer vs. (Micro)architect
n  Many ISA features designed to aid programmers
n  But, complicate the hardware designer’s job

n  Virtual memory
q  vs. overlay programming
q  Should the programmer be concerned about the size of code

blocks fitting physical memory?

n  Addressing modes
n  Unaligned memory access

q  Compile/programmer needs to align data

80

MIPS: Aligned Access

n  LW/SW alignment restriction: 4-byte word-alignment
q  not designed to fetch memory bytes not within a word boundary
q  not designed to rotate unaligned bytes into registers

n  Provide separate opcodes for the “infrequent” case

q  LWL/LWR is slower
q  Note LWL and LWR still fetch within word boundary

81

byte-­‐3	
 byte-­‐2	
 byte-­‐1	
 byte-­‐0	

byte-­‐7	
 byte-­‐6	
 byte-­‐5	
 byte-­‐4	

MSB	
 LSB	

A	
 B	
 C	
 D	

byte-­‐6	
 byte-­‐5	
 byte-­‐4	
 D	

byte-­‐6	
 byte-­‐5	
 byte-­‐4	
 byte-­‐3	

LWL rd 6(r0) à

LWR rd 3(r0) à

X86: Unaligned Access
n  LD/ST instructions automatically align data that spans a

“word” boundary
n  Programmer/compiler does not need to worry about where

data is stored (whether or not in a word-aligned location)

82

X86: Unaligned Access

83

What About ARM?
n  https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf

q  Section A2.8

84

Aligned vs. Unaligned Access
n  Pros of having no restrictions on alignment

n  Cons of having no restrictions on alignment

n  Filling in the above: an exercise for you…

85

