
18-447

Computer Architecture

Lecture 28: Memory Consistency and

Cache Coherence

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 4/8/2015

My Office Hours Today

 Moved to 3:45-5pm

2

Assignments

 Lab 7 out

 Due April 17

 HW 6

 Due Friday (April 10)

 Midterm II

 April 24

3

A Note on 740 Next Semester

 If you like 447, 740 is the next course in sequence

 Tentative Time: Lect. MW 7:30-9:20pm, Rect. T 7:30pm

 Content:

 Lectures: More advanced, with a different perspective

 Readings: Many fundamental and research readings; will do
many critical reviews

 Recitations: Delving deeper into papers, concepts, advanced
topics & discussions

 Project: Relatively open ended semester-long research
project. Proposal milestones final poster and

presentation

 Exams: lighter and fewer

 Homeworks: None

 More relaxed course where you can go deeper and obtain
the tools to advance the state of the art 4

A Note on Internships & Jobs

 If you are interested in pursuing computer architecture

 Research

 Internships

 Jobs

 Let me know & I can help

5

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)

6

Memory Ordering in

Multiprocessors

7

Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

8

Memory Consistency vs. Cache Coherence

 Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)

 Global ordering of accesses to all memory locations

 Coherence is about ordering of operations from different
processors to the same memory location

 Local ordering of accesses to each cache block

9

Difficulties of Multiprocessing

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

10

Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware
designer’s life difficult
 Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity

11

Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

 Advantages: 1) Architectural state is precise within an execution. 2)

Architectural state is consistent across different runs of the program

Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces

performance, increases complexity, reduces scalability
12

Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if
they have no dependency

 Advantage: Lots of parallelism high performance

 Disadvantage: Order can change across runs of the same
program Very hard to debug

13

Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations
concurrently

 How does the memory see the order of operations from all
processors?

 In other words, what is the ordering of operations across
different processors?

14

Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times
to have the same order of execution Repeatability

 Correctness

 Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

15

When Could Order Affect Correctness?

 When protecting shared data

16

Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

17

Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented

 We will assume this

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct
synchronization

 If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

18

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

19

Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),

which means P2 should not enter the critical section.

A Question

 Can the two processors be in the critical section at the
same time given that they both obey the von Neumann
model?

 Answer: yes

20

21

Both Processors in Critical Section

22

23

A appeared to happen

before X

X appeared to happen

before A

The Problem

 The two processors did NOT see the same order of
operations to memory

 The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

 As a result, each processor thought the other was not in
the critical section

24

How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

25

Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA

26

Programmer’s Abstraction

 Memory is a switch that services one load or store at a time
from any processor

 All processors see the currently serviced load or store at the
same time

 Each processor’s operations are serviced in program order

27

MEMORY

P1 P3P2 Pn

Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on
implementation and dynamic latencies

28

Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)

29

Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about a enforcing a global order only at the boundaries
of synchronization?

 Relaxed memory models

 Acquire-release consistency model

30

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores makes it difficult for all

processors to see the same global order of all memory
operations

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors
 makes it difficult for all processors to see the same global

order of all memory operations

31

Weaker Memory Consistency

 The ordering of operations is important when the order
affects operations on shared data i.e., when processors

need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before
fence is executed

 All memory operations after the fence must wait for the fence to
complete

 Fences complete in program order

 All synchronization operations act like a fence

32

Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory
operations

 Enables the hardware implementation of performance

enhancement techniques to be simpler

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the
“fences” correct)

 Another example of the programmer-microarchitect tradeoff

33

Related Questions

 Question 4 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=final.pdf

34

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Caching in Multiprocessors

 Caching not only complicates ordering of all operations…

 A memory location can be present in multiple caches

 Prevents the effect of a store or load to be seen by other
processors makes it difficult for all processors to see the

same global order of (all) memory operations

 … but it also complicates ordering of operations on a single
memory location

 A memory location can be present in multiple caches

 Makes it difficult for processors that have cached the same
location to have the correct value of that location (in the
presence of updates to that location)

35

Cache Coherence

36

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

37

Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

38

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence

 Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

39

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

40

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

41

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

42

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

43

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes
to it

44

A Very Simple Coherence Scheme (VI)

 Caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate the block.

 A simple protocol:

45

 Write-through, no-
write-allocate
cache

 Actions of the local
processor on the
cache block: PrRd,
PrWr,

 Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

 need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software (e.g., page
protection and page-based software coherence)

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

46

Maintaining Coherence

 Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

 Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent global order seen
by all processors

 Need a global point of serialization for this store ordering
47

Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory
location to all other processors

 Another cache that has the location either updates or
invalidates its local copy

48

Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

 On a Read:

 If local copy is Invalid, put out request

 (If another node has a copy, it returns it, otherwise
memory does)

49

Coherence: Update vs. Invalidate (II)

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written
data and address to sharers

 (Other nodes update the data in their caches if block is
present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation
of address to sharers

 (Other nodes invalidate block in their caches if block is
present)

50

Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,

updates were useless

- Write-through cache policy bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid

mutual invalidation-reacquire)

51

Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

52

Directory Based

Cache Coherence

53

Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the block
and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each cache
(so that the cache can update the exclusive block silently)

54

Directory Based Coherence Example (I)

55

Directory Based Coherence Example (I)

56

