
18-447

Computer Architecture

Lecture 28: Memory Consistency and 

Cache Coherence 

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 4/8/2015



My Office Hours Today

 Moved to 3:45-5pm

2



Assignments

 Lab 7 out

 Due April 17

 HW 6

 Due Friday (April 10)

 Midterm II

 April 24
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A Note on 740 Next Semester

 If you like 447, 740 is the next course in sequence

 Tentative Time: Lect. MW 7:30-9:20pm, Rect. T 7:30pm

 Content:

 Lectures: More advanced, with a different perspective

 Readings: Many fundamental and research readings; will do 
many critical reviews

 Recitations: Delving deeper into papers, concepts, advanced 
topics & discussions

 Project: Relatively open ended semester-long research 
project. Proposal  milestones  final poster and 

presentation

 Exams: lighter and fewer

 Homeworks: None

 More relaxed course where you can go deeper and obtain 
the tools to advance the state of the art 4



A Note on Internships & Jobs

 If you are interested in pursuing computer architecture

 Research

 Internships

 Jobs

 Let me know & I can help
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Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches 

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)
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Memory Ordering in 

Multiprocessors
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Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the 
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential 
consistency,” ISCA 2007.
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Memory Consistency vs. Cache Coherence

 Consistency is about ordering of all memory operations 
from different processors (i.e., to different memory 
locations)

 Global ordering of accesses to all memory locations

 Coherence is about ordering of operations from different 
processors to the same memory location

 Local ordering of accesses to each cache block
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Difficulties of Multiprocessing

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs
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Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the 
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”) 
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware 
designer’s life difficult
 Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity
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Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order 
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load 
and store operations in the order specified by the sequential 
program

 Advantages: 1) Architectural state is precise within an execution. 2) 

Architectural state is consistent across different runs of the program 

Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces 

performance, increases complexity, reduces scalability
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Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if 
they have no dependency

 Advantage: Lots of parallelism  high performance

 Disadvantage: Order can change across runs of the same 
program  Very hard to debug
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Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order 
with respect to the “thread” running on that processor 
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations 
concurrently

 How does the memory see the order of operations from all 
processors? 

 In other words, what is the ordering of operations across 
different processors?
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Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times 
to have the same order of execution  Repeatability

 Correctness

 Can we have incorrect execution if the order of memory 
operations is different from the point of view of different 
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder 
for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches)
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When Could Order Affect Correctness?

 When protecting shared data
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Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside 
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at 
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of 
synchronization primitives to enable the programmer to 
protect shared data
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Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion 

(synchronization) is correctly implemented

 We will assume this 

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct 
synchronization

 If hardware primitives are not correct (or unpredictable), 
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about 
or use, programmer’s life is still tough
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Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A, 

which means F1 must be 1 (as A happens before B), 

which means P2 should not enter the critical section.



A Question

 Can the two processors be in the critical section at the 
same time given that they both obey the von Neumann 
model?

 Answer: yes
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Both Processors in Critical Section
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A appeared to happen 

before X

X appeared to happen 

before A



The Problem

 The two processors did NOT see the same order of 
operations to memory

 The “happened before” relationship between multiple 
updates to memory was inconsistent between the two 
processors’ points of view

 As a result, each processor thought the other was not in 
the critical section
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How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the 
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s 
operations appear in sequential order with respect to its 
own operations.
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Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions on 
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this 
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA
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Programmer’s Abstraction

 Memory is a switch that services one load or store at a time 
from any processor

 All processors see the currently serviced load or store at the 
same time

 Each processor’s operations are serviced in program order
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MEMORY
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Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on 
implementation and dynamic latencies
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Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same 
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be 
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)

29



Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement 
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all 
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about a enforcing a global order only at the boundaries 
of synchronization?

 Relaxed memory models

 Acquire-release consistency model
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Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC 
implementation difficult

 Out-of-order execution 

 Loads happen out-of-order with respect to each other and 
with respect to independent stores  makes it difficult for all 

processors to see the same global order of all memory 
operations

 Caching 

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors 
 makes it difficult for all processors to see the same global 

order of all memory operations
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Weaker Memory Consistency

 The ordering of operations is important when the order 
affects operations on shared data  i.e., when processors 

need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory 
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before 
fence is executed

 All memory operations after the fence must wait for the fence to 
complete

 Fences complete in program order

 All synchronization operations act like a fence
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Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory 
operations

 Enables the hardware implementation of performance     

enhancement techniques to be simpler 

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the 
“fences” correct)

 Another example of the programmer-microarchitect tradeoff
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Related Questions

 Question 4 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=final.pdf
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Caching in Multiprocessors

 Caching not only complicates ordering of all operations…

 A memory location can be present in multiple caches

 Prevents the effect of a store or load to be seen by other 
processors  makes it difficult for all processors to see the 

same global order of (all) memory operations

 … but it also complicates ordering of operations on a single 
memory location

 A memory location can be present in multiple caches

 Makes it difficult for processors that have cached the same 
location to have the correct value of that location (in the 
presence of updates to that location)
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Cache Coherence
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Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with 
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA 
1988.
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Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?
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Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]



Cache Coherence 

 Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?
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P1 P2

x

Interconnection Network

Main Memory

1000



The Cache Coherence Problem
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P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000



The Cache Coherence Problem
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P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000



The Cache Coherence Problem
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P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000



The Cache Coherence Problem
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P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 

load 1000



Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to 
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache. 

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches. 

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes 
to it
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A Very Simple Coherence Scheme (VI)

 Caches “snoop” (observe) each other’s write/read 
operations. If a processor writes to a block, all others 
invalidate the block.

 A simple protocol:
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 Write-through, no-
write-allocate 
cache

 Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

 Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder 

 need to worry about hardware caches to maintain program 
correctness?

-- Overhead in ensuring coherence in software (e.g., page 
protection and page-based software coherence)

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache 
access this way
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Maintaining Coherence

 Need to guarantee that all processors see a consistent 
value (i.e., consistent updates) for the same memory 
location

 Writes to location A by P0 should be seen by P1 
(eventually), and all writes to A should appear in some 
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent global order seen 
by all processors

 Need a global point of serialization for this store ordering
47



Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory 
location to all other processors

 Another cache that has the location either updates or 
invalidates its local copy
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Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one 
copy (local), update it

 On a Read:

 If local copy is Invalid, put out request

 (If another node has a copy, it returns it, otherwise 
memory does)
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Coherence: Update vs. Invalidate (II)

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written 
data and address to sharers

 (Other nodes update the data in their caches if block is 
present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation 
of address to sharers

 (Other nodes invalidate block in their caches if block is 
present)
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Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids 

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores, 

updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid 

mutual invalidation-reacquire)
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Two Cache Coherence Methods 

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Directory Based 

Cache Coherence
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Directory Based Coherence

 Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the block 
and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data 

 On a write: invalidate all caches that have the block and reset 
their bits

 Have an “exclusive bit” associated with each block in each cache 
(so that the cache can update the exclusive block silently)
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Directory Based Coherence Example (I)
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Directory Based Coherence Example (I)
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