18-447

Computer Architecture
Lecture 27: Multiprocessors

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 4/6/2015

As signments

Lab 7 out
o Due April 17

HW 6
o Due Friday (April 10)

Midterm II
o April 24

Where We Are in Lecture Schedule

= The memory hierarchy

s Caches, caches, more caches

= Virtualizing the memory hierarchy: Virtual Memory
= Main memory: DRAM

= Main memory control, scheduling

= Memory latency tolerance techniques

= Non-volatile memory

= Multiprocessors

= Coherence and consistency

= Interconnection networks

= Multi-core issues (e.g., heterogeneous multi-core)

Multiprocessors and
Issues 1n Multiprocessing

Readings: Multiprocessing

Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

Recommended
o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Memory Consistency

= Required

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

Readings: Cache Coherence

Required
a Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t and 4t revised eds.)

Recommended:

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

Why Parallel Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main (or Original) Goal

a Improve performance (Execution time or task throughput)
Execution time of a program governed by Amdahl’ s Law

Other Goals

a Reduce power consumption
(4N units at freq F/4) consume less power than (N units at freq F)
Why?

a Improve cost efficiency and scalability, reduce complexity
Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

I'ypes of Parallelism and How to Exploit

.
1 Qe . .
]%nslgrluctlon Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism
o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)
10

Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
11

Multiprocessing Fundamentals

12

Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
13

Main Design Issues in Tightly-Coupled MP

Shared memory synchronization
o How to handle locks, atomic operations

Cache coherence

o How to ensure correct operation in the presence of private
caches

Memory consistency: Ordering of memory operations
o What should the programmer expect the hardware to provide?

Shared resource management

Communication: Interconnects
14

Main Programming Issues in Tightly-Coupled MP

Load imbalance
o How to partition a single task into multiple tasks

Synchronization
o How to synchronize (efficiently) between tasks
o How to communicate between tasks

o Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, ...

Ensuring correct operation while optimizing for performance

15

Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading), e.g., switch on L3 miss

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous

o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

16

Limits of Parallel Speedup

Parallel Speedup Example

ax* + asx® + ax? + a;x + a,

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

18

R — auxt + ax® + I R o 5 10, OO

Sgle. prvesser 14 opee IS (da*gm?"f“)

19

‘2 |
R. = a k" + GX*+ 0,X5r a0 + Qg

———

Three praa-sscf‘s . T3 ({mc:—.‘\mwﬁ”-\ 3 Pf&‘&.)

20

Speedup with 3 Processors

Ty =5 cycles

Specdup whh Ipvressws = 5 S - o s

ZC«.>
Ts

ls T™HS o Fer— cm:w'iq;n?

21

Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s\%\e’—pmaésw a\,s(/mv\:

28

|

OLN“ 3= 03X3 3 az_xl = 0,|>6 ""ao

=S :<<(a«x+a3§x + o,_JX + a.)x + Qo

(,"}orf\(f"$ et e ch)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

22

Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel
Speedup

Unfair comparisons
Compare best parallel
algorithm to wimpy serial
algorithm = unfair

Cache/memory effects
More processors -

more cache or memory -
fewer misses in cache/mem

4

Superlinear ‘

P Typical
Success

Sublinear

r—# H# Processors

24

Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
25

Utilization of a Multiprocessor

MUIWWW\-&MC’S;
U‘Hlfzﬂ—m_ - P muvdh Prec«SSM§ Oqoabs'\ﬂ'ﬁ we USe-
—P —
X =T i
. Tp X1 XX = 10 vpovhens (i "m:r.%un)
X | '
= 10
e 15

(= _Orewn prwme.
P x Up

26

Redmdma.,: ' H—wu mmudh exiva wr'k, due t¢ mdwﬂ%&v\f)

R_ e S OPs- w A p.prvc.bu&— - 10

besk

Op.s wirh, 1 pvec.
R is alwoys = 1

EHf”W Hanw muvon ~esouree Wt uSe Covered v how

rAeCh BSVTC e Con el Gty W

£ e AR [Fymsve 1 gufor Ty b vmivs)
Tbcs\— <h,¢r'\s{1p PP"“R"’tP)NM)

- ey,
K. /7\

Amdahl’s L.aw and
Caveats of Parallelism

Caveats of Parallelism (I)

Specdwp T

: =
: P8k prucss:n.)

w*\y +re (‘ch-,? (dmmﬁkmi /W""&)

_Z;,:: = I - (=o)Tq
P

bse] Sl St 4
L—3 pon- prrattelrzeble oo+

poralld (2ol por-)fenohius
0f-Fhe Smge-orucescec
precyzen

Amdahl’s Law

\5,062(1\/[0 — _Z/f — | /{ —
't
P proc. TP | ip(:' +- (7 "04‘3
il o7 1 ‘@\& bdrhercck fo pedled

Specose

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

30

Amdahl’s Law Implication 1

B T -
<= .asS
a(_:.q

Amdah) 'S

L_onn
i Nusivated

Addmg mue vnd moe
processos grres Jess @ Jess

boefd if oL L

31

Amdahl’s Law Implication 2

. : p‘h Thre bercfA (WP)
+ / : | IS sroll) gL 1
'

32

Caveats of Parallelism (1)

Amdahl’ s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
33

Sequential Bottleneck

=—N=10

—N=100

N=1000

e —
INELEEE N I e e]

™ 0.36

(parallel fraction)

34

Why the Sequential Bottleneck?

Parallel machines have the
sequential bottleneck

2 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

<

There are other causes as well:

o Single thread prepares data and
spawns parallel tasks (usually
sequential)

35

Another Example of Sequential Bottleneck

LEGEND
e A,E: Amdahl’s serial part
InitPriorityQueue(PQ); : B: Parallel Portion

. C1,C2: Critical Sections
SpawnThreads(); D: Outside critical sectign

ForEach Thread:

while (problem not solved)

Lock (X)
SubProblem = PQ.remove()
Unlock(X);

Solve(SubProblem);

lf(problem solved) break;

NewSubProblems = Partition(SubProblem);
Lock(X)

PQ.insert(NewSubProble
Unlock(X) (rﬂ'

N J

PrintSqution()@

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
37

Bottlenecks in Parallel Portion: Another View

Threads in a multi-threaded application can be inter-
dependent

o As opposed to threads from different applications

Such threads can synchronize with each other

o Locks, barriers, pipeline stages, condition variables,
semaphores, ...

Some threads can be on the critical path of execution due
to synchronization; some threads are not

Even within a thread, some “code segments” may be on
the critical path of execution; some are not

38

Remember: Critical Sections

Enforce mutually exclusive access to shared data

Only one thread can be executing it at a time

Contended critical sections make threads wait = threads
causing serialization can be on the critical path

Each thread:

loop {

Compute

lock(A)
Update shared data|

unlock(A)

N

C

T1[
T2 [

39

Remember: Barriers

Synchronization point
Threads have to wait until all threads reach the barrier
Last thread arriving to the barrier is on the critical path

Each thread: ldle barrier
loop1 {
 ompute T
} T2 ¢ ;
barrier
loop2 { | I ! timE

Compute

}

40

Remember: Stages of Pipelined Programs

loop {

Loop iterations are statically divided into code segments called stages
Threads execute stages on different cores
Thread executing the slowest stage is on the critical path

Computel | A

Compute2 | B

Compute3| C

}

41

Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
42

