
18-447

Computer Architecture

Lecture 26: Prefetching &

Emerging Memory Technologies

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 4/3/2015

Lab 5 Honors (Critical Path)

 Zhipeng Zhao 4.48ns 1%

 Raghav Gupta 4.52ns 1%

 Amanda Marano 6.37ns 0.8%

 Elena Feldman 7.67ns 0.7%

 Prin Oungpasuk 8.55ns 0.5%

 Derek Tzeng 9.58ns 0.3%

 Abhijith Kashyap 9.75ns 0.3%

2

Lab 5 Honors (4-Way Cache Design)

 Jared Choi 1.5%

 Kais Kudrolli 1.25%

 Junhan Zhou 1.25%

 Raghav Gupta 1.25%

 Pete Ehrett 0.6%

 Xiaofan Li 0.1%

3

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)

4

Required Reading

 Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and
Opportunities"
Invited Article in Communications of the Korean Institute of
Information Scientists and Engineers (KIISE), 2015.

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system_kiise15.pdf

5

http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf

Prefetching

Review: Outline of Prefetching Lecture(s)

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling

 Issues in multi-core (if we get to it)

7

Review: How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers

8

Address Correlation Based Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

9

A B C

D E F
1.0

.33 .5

.2

1.0.6
.2

.67

.6

.5

.2

Markov

Model

Address Correlation Based Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch up to N next addresses to increase coverage

 Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B)  (C)

(A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

 Also called “Markov prefetchers”

10

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Address Correlation Based Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses
is infeasible

 Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

 Can consume a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
11

Content Directed Prefetching (I)

 A specialized prefetcher for pointer values

 Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

 Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache
block’s address  if most-significant few bits match, pointer

12

Content Directed Prefetching (II)

13

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220X800

11100x800

Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can
be considered a “thread”

 Speculative thread can be executed
 On a separate processor/core

 On a separate hardware thread context (think fine-grained
multithreading)

 On the same thread context in idle cycles (during cache misses)

14

Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

 Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

15

Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

16

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)

17

Thread-Based Pre-Execution Issues

 What, when, where, how

 Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed

18

An Example

19

Example ISA Extensions

20

Results on a Multithreaded Processor

21

Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

22

Fork Point for Prefetching Thread

23

Pre-execution Thread Construction

24

Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

25

Review: Runahead Execution (Mutlu et al., HPCA 2003)

26

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead as an Execution-based Prefetcher

 Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

 Idea of Runahead: Pre-execute the main program solely for
prefetching data

 Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

 Can you make runahead even better by pruning the
program portion executed in runahead mode?

27

Taking Advantage of Pure Speculation

 Runahead mode is purely speculative

 The goal is to find and generate cache misses that would
otherwise stall execution later on

 How do we achieve this goal most efficiently and with the
highest benefit?

 Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

 How?

28

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)

29

Emerging Memory Technologies

The Main Memory System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

31

Processor

and caches
Main Memory Storage (SSD/HDD)

Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

32

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

33

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row induces
disturbance errors in adjacent rows in most real
DRAM chips [Kim+ ISCA 2014]

OpenedClosed

34

An Example of The Scaling Problem

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0× 107

errors

Up to

2.7× 106

errors

Up to

3.3× 105

errors

35
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Most DRAM Modules Are At Risk

36

All modules from 2012–2013 are vulnerable

First
Appearance

Errors vs. Vintage

Security Implications

37

http://googleprojectzero.blogspot.com/201
5/03/exploiting-dram-rowhammer-bug-to-
gain.html

http://users.ece.cmu.edu/~omutlu/pub/dra
m-row-hammer_isca14.pdf

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Security Implications

38

How Can We Fix the Memory Problem &

Design (Memory) Systems of the Future?

How Do We Solve The Problem?

 Tolerate it: Make DRAM and controllers more intelligent

 New interfaces, functions, architectures: system-DRAM codesign

 Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

 New technologies and system-wide rethinking of memory &
storage

 Embrace it: Design heterogeneous-reliability memories that
map error-tolerant data to less reliable portions

 New usage and execution models

 …

40

Solutions (to memory scaling) require
software/hardware/device cooperation

Trends: Problems with DRAM as Main Memory

 Need for main memory capacity increasing

 DRAM capacity hard to scale

 Main memory energy/power is a key system design concern

 DRAM consumes high power due to leakage and refresh

 DRAM technology scaling is ending

 DRAM capacity, cost, and energy/power hard to scale

41

Solutions to the DRAM Scaling Problem

 Two potential solutions

 Tolerate DRAM (by taking a fresh look at it)

 Enable emerging memory technologies to eliminate/minimize
DRAM

 Do both

 Hybrid memory systems

42

Solution 1: Tolerate DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Reduce energy

 Enable reliability at low cost

 Improve bandwidth and latency

 Reduce waste

 Enable computation close to data

43

Solution 1: Tolerate DRAM
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,”
ISCA 2014.

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

 Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field,” DSN 2015.

 Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

 Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

 Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

44

Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED
2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change
Memories,” ACM TACO 2014.

45

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

 Traditional

 Higher capacity

 Continuous low cost

 High system performance (higher bandwidth, low latency)

 New

 Technology scalability: lower cost, higher capacity, lower energy

 Energy (and power) efficiency

 QoS support and configurability (for consolidation)

47

Requirements from an Ideal Memory System

Emerging, resistive memory technologies (NVM) can help

The Promise of Emerging Technologies

 Likely need to replace/augment DRAM with a technology that is

 Technology scalable

 And at least similarly efficient, high performance, and fault-tolerant

 or can be architected to be so

 Some emerging resistive memory technologies appear promising

 Phase Change Memory (PCM)?

 Spin Torque Transfer Magnetic Memory (STT-MRAM)?

 Memristors?

 And, maybe there are other ones

 Can they be enabled to replace/augment/surpass DRAM?

48

Charge vs. Resistive Memories

 Charge Memory (e.g., DRAM, Flash)

 Write data by capturing charge Q

 Read data by detecting voltage V

 Resistive Memory (e.g., PCM, STT-MRAM, memristors)

 Write data by pulsing current dQ/dt

 Read data by detecting resistance R

49

Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge storage unit
size reduces

50

Emerging Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance

51

What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

52

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance

 Amorphous vs. crystalline

53

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages

 Scales better than DRAM, Flash

 Requires current pulses, which scale linearly with feature size

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Can be denser than DRAM

 Can store multiple bits per cell due to large resistance range

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

 Non-volatile

 Retain data for >10 years at 85C

 No refresh needed, low idle power

54

Phase Change Memory Properties

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

 Derived PCM parameters for F=90nm

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

55

56

Phase Change Memory Properties: Latency

 Latency comparable to, but slower than DRAM

 Read Latency

 50ns: 4x DRAM, 10-3x NAND Flash

 Write Latency

 150ns: 12x DRAM

 Write Bandwidth

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

57

Phase Change Memory Properties

 Dynamic Energy

 40 uA Rd, 150 uA Wr

 2-43x DRAM, 1x NAND Flash

 Endurance

 Writes induce phase change at 650C

 Contacts degrade from thermal expansion/contraction

 108 writes per cell

 10-8x DRAM, 103x NAND Flash

 Cell Size

 9-12F2 using BJT, single-level cells

 1.5x DRAM, 2-3x NAND (will scale with feature size)

58

Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Reliability issues (resistance drift)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system

 Ensure secure and fault-tolerant PCM operation
59

PCM-based Main Memory: Some Questions

 Where to place PCM in the memory hierarchy?

 Hybrid OS controlled PCM-DRAM

 Hybrid OS controlled PCM and hardware-controlled DRAM

 Pure PCM main memory

 How to mitigate shortcomings of PCM?

 How to take advantage of (byte-addressable and fast) non-
volatile main memory?

60

PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09, Meza+

IEEE CAL’12]:

 How to partition/migrate data between PCM and DRAM

61

Hybrid Memory Systems: Challenges

 Partitioning

 Should DRAM be a cache or main memory, or configurable?

 What fraction? How many controllers?

 Data allocation/movement (energy, performance, lifetime)

 Who manages allocation/movement?

 What are good control algorithms?

 How do we prevent degradation of service due to wearout?

 Design of cache hierarchy, memory controllers, OS

 Mitigate PCM shortcomings, exploit PCM advantages

 Design of PCM/DRAM chips and modules

 Rethink the design of PCM/DRAM with new requirements

62

PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

 How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

63

Aside: STT-RAM Basics

 Magnetic Tunnel Junction (MTJ)

 Reference layer: Fixed

 Free layer: Parallel or anti-parallel

 Cell

 Access transistor, bit/sense lines

 Read and Write

 Read: Apply a small voltage across
bitline and senseline; read the current.

 Write: Push large current through MTJ.
Direction of current determines new
orientation of the free layer.

 Kultursay et al., “Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative,” ISPASS
2013

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

Aside: STT MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

65

An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm

66

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

67

Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at

cache block or word

granularity

 Reduces unnecessary wear

68

DRAM PCM

Results: Architected PCM as Main Memory

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
69

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a huge (DRAM) cache at low cost?

 Two solutions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

71

DRAM vs. PCM: An Observation

 Row buffers are the same in DRAM and PCM

 Row buffer hit latency same in DRAM and PCM

 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast

 What incurs high latency is the PCM array access  avoid this

72

CPU
DRA
MCtrl

PCM
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

Row-Locality-Aware Data Placement

 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts  because row-conflict latency

is smaller in DRAM

 Are reused many times  to reduce cache pollution and bandwidth

waste

 Simplified rule of thumb:

 Streaming accesses: Better to place in PCM

 Other accesses (with some reuse): Better to place in DRAM

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.

73

Row-Locality-Aware Data Placement: Results

74

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
o

rm
a

li
ze

d
 W

ei
g
h

te
d

 S
p

ee
d

u
p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10% 14%17%

Memory energy-efficiency and fairness also
improve correspondingly

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt

Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d
 S

p
ee

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 M

a
x

.
S

lo
w

d
o
w

n

Hybrid vs. All-PCM/DRAM

75

31% better performance than all PCM,
within 29% of all DRAM performance

31%

29%

Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering

76

Coordinated Memory and Storage with NVM (I)

 The traditional two-level storage model is a bottleneck with NVM
 Volatile data in memory  a load/store interface

 Persistent data in storage  a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

77

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well

78

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion,

translation, location overhead for persistent data

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

79

The Persistent Memory Manager (PMM)

80

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

Performance Benefits of a Single-Level Store

81
Results for PostMark

~5X

~24X

Energy Benefits of a Single-Level Store

82
Results for PostMark

~5X

~16X

Enabling and Exploiting NVM: Issues

 Many issues and ideas from
technology layer to algorithms layer

 Enabling NVM and hybrid memory

 How to tolerate errors?

 How to enable secure operation?

 How to tolerate performance and
power shortcomings?

 How to minimize cost?

 Exploiting emerging tecnologies

 How to exploit non-volatility?

 How to minimize energy consumption?

 How to exploit NVM on chip?
83

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User

Three Principles for (Memory) Scaling

 Better cooperation between devices and the system

 Expose more information about devices to upper layers

 More flexible interfaces

 Better-than-worst-case design

 Do not optimize for the worst case

 Worst case should not determine the common case

 Heterogeneity in design (specialization, asymmetry)

 Enables a more efficient design (No one size fits all)

 These principles are related and sometimes coupled

84

Security Challenges of Emerging Technologies

1. Limited endurance  Wearout attacks

2. Non-volatility  Data persists in memory after powerdown

 Easy retrieval of privileged or private information

3. Multiple bits per cell  Information leakage (via side channel)

85

Securing Emerging Memory Technologies

1. Limited endurance  Wearout attacks

Better architecting of memory chips to absorb writes

Hybrid memory system management

Online wearout attack detection

2. Non-volatility  Data persists in memory after powerdown

 Easy retrieval of privileged or private information

Efficient encryption/decryption of whole main memory

Hybrid memory system management

3. Multiple bits per cell  Information leakage (via side channel)

System design to hide side channel information
86

Summary of Emerging Memory Technologies

 Key trends affecting main memory

 End of DRAM scaling (cost, capacity, efficiency)

 Need for high capacity

 Need for energy efficiency

 Emerging NVM technologies can help

 PCM or STT-MRAM more scalable than DRAM and non-volatile

 But, they have shortcomings: latency, active energy, endurance

 We need to enable promising NVM technologies by
overcoming their shortcomings

 Many exciting opportunities to reinvent main memory at all
layers of computing stack

87

