18-447

Computer Architecture
Lecture 26: Prefetching &
Emerging Memory Technologies

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 4/3/2015

Lab 5 Honors (Critical Path)

Zhipeng Zhao 4.48ns 1%
Raghav Gupta 4.52ns 1%
Amanda Marano 6.37ns 0.8%
Elena Feldman 7.67ns 0.7%
Prin Oungpasuk 8.55ns 0.5%
Derek Tzeng 9.58ns 0.3%

Abnhijith Kashyap 9.75ns 0.3%

Lab 5 Honors (4-Way Cache Design)

Jared Choi 1.5%

Kais Kudrolli 1.25%
Junhan Zhou 1.25%
Raghav Gupta 1.25%

Pete Ehrett 0.6%
Xiaofan Li 0.1%

Where We Are in Lecture Schedule

= The memory hierarchy

s Caches, caches, more caches

= Virtualizing the memory hierarchy: Virtual Memory
= Main memory: DRAM

= Main memory control, scheduling

= Memory latency tolerance techniques

= Non-volatile memory

= Multiprocessors

= Coherence and consistency

= Interconnection networks

= Multi-core issues (e.g., heterogeneous multi-core)

Required Reading

= Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and
Opportunities”
Invited Article in Communications of the Korean Institute of
Information Scientists and Engineers (KIISE), 2015.

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system Kkiisel5.pdf

http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf

Prefetching

Review: Outline of Pretetching Lecture(s)

Why prefetch? Why could/does it work?
The four questions

o What (to prefetch), when, where, how
Software prefetching

Hardware prefetching algorithms
Execution-based prefetching
Prefetching performance

o Coverage, accuracy, timeliness

o Bandwidth consumption, cache pollution
Prefetcher throttling

Issues in multi-core (if we get to it)

Review: How to Prefetch More Irregular Access Patterns?

Regular patterns: Stride, stream prefetchers do well

More irregular access patterns

o Indirect array accesses

Linked data structures

Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
Random patterns?

Generalized prefetcher for all patterns?

Correlation based prefetchers
Content-directed prefetchers
Precomputation or execution-based prefetchers

Address Correlation Based Prefetching (I)

Consider the following history of cache block addresses
A B CDCEACFFEAABCD,E A B,CD,C

After referencing a particular address (say A or E), are

some addresses more likely to be referenced next

Markov
Model

Address Correlation Based Prefetching (1)

Cache
Block™
Addr

d

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o Ais said to be correlated with B, C, D

Prefetch up to N next addresses to increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) = (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
o Also called “Markov prefetchers”

10

Address Correlation Based Prefetching (11I)

Advantages:
o Can cover arbitrary access patterns

Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

o Can consume a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
11

Content Directed Pretetching (I)

A specialized prefetcher for pointer values

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

o Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (nhever-seen pointers)
-- Indiscriminately prefetches a// pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’ s address - if most-significant few bits match, pointer

12

Content Directed Prefetching (II)

Virtual Address Predictor

'Generate Prefetch

X80022220

L2

DRAM

13

FExecution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)

14

Execution-based Prefetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

15

Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

16

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)

17

Thread-Based Pre-Execution Issues

What, when, where, how

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”

ISCA 2001.
o Many issues in software-based pre-execution discussed

Key (a) Multiple Pointer Chains {b) Non-Affine Array Accesses

=3 Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths

18

An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; 1< trips:){
!l loop over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;
i
arcin = (arc_t *)first_of_sparse_list

»tal—» mark;

!l traverse the list starting with
I the first node just assigned
while (arcin) {

tail = arein—» tail;

arcin = (arc_t *)tail» mark:
i

1++, arcout+=3;

(b) Code with Pre-Execution

register int 1;
repister arc_t *¥arcout;
for(; i< trips;){

!l loop over ‘trips" lists

if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[l inveke a pre-execution starting
[at END_FOR
PreExecute_Start(END_FOR);
arcin = (arc_t *)first_of_sparse_list

» tarl— mark;

/{ traverse the list starting with
[the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
]
/f terminate this pre-execution after
/! prefetching the entire list
PreExecute_Stop();
END_FOR:
/I the target address of the pre-
/I execution
1++, arcout+=3;
1
Il terminate this pre-execution if we
I have passed the end of the for-loap
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 7', starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 1" will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

19

Example ISA Extensions

{'hread_{) = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: 1'hread_{) holds either the identity of
the pre-execution thread or -1 if there is no idle context.
This instruction has effect only if 1t 1s executed by the main

thread.

PreExecute_Stop(): The thread that executes this instruction
will be self termunated if it 1s a pre-execution thread: no

effect otherwise.

PreExecute_Cancel(l'hread_{[)): Terminate the pre-
execution thread with ['hread_{ [). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

20

Results on a Multithreaded Processor

(a) Execution Time Normalized to the Original Case

® 100 100 100 100 100 100
E . B _QS_‘
=
=
2 /3 . load L2-miss stall
: B o:cen
3 . load L2-hit stall
w50 other stall
E busy
m
E
]
=

0 O PX] PX (8] PX O PX O PX 8] PX O PX

Compress Em3d Equake Mcf Mst Raytrace Twolf

21

Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

1.

2. int ifrom = heap_ tail; misprediction
3. int ito = ifrom/2; .
4. heap_tail++; / cache miss
5. while ((ito >= 1) &&

6. (heap[ifrom]->cost < heap[itc]->cost))
7. struct s heap *temp ptr = heap[ito];
B. heap[itec] = heap[ifrom];

9. heap[ifrom] = temp ptr;

10. ifrom = ito;

11. ito = ifrom/2;

Fork Point for Prefetching Thread

Figare 3. The node to heap function, which serves as
the fork point for the slice that covers add_to _heap.

vold node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+——— fork point

hptr = alloc heap datal();
hptr->cost = cost;

add_to _heap (hptr);

23

Pre-execution Thread Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe

un-optimized slice. Figure 3. Slice consiructed for example problem instructions.
node_to_lﬁap; . 20 inetructs . Much smaller than the original code, the slice contains a loop
- = J_PS b 1nstructilions - - - -
. B a1, 252(gp) # &heap_tail that mimics the loop in the original code.
2 1d1 t2, 0(=1) # ifrom = heap tail ,
1 1dg t5, -76(sl) # &heap[0] slice:
3 cmplt t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl t2, 0xl, t6 # heap tail +4 2 1d1 3, 252(gp) # ito = heap_tail
1 sBaddg t2, t5, t3 # &heaplheap_tail] slice loop:
4 stl t6, 0(sl) # store heap tail 3,11 EIE. $3, 0xl, 53 # ito /= 2
é :Egl :2: 2;1:33:4 i ::;ipigizP—tall] [sB8addqg §3, $6, $16 # Ehea]_:-l;:l_tc:]
3 sra t4, 0x1, t4 # ito = ifrom/2 6 1ldg $18, 0(516) # heap[ito]
5 ble td, return # (ito < 1) 6 lds 5f1, a2(518) %2 heap[ite]->cost
Ioop: & cmptle 5f1,5f17,5f31 & (heap[ito]=>cost
6 sBaddg t2, t5, al # &heap[ifrom] # < cost) PRED
6 sBaddg t4, t5, t7 # &heap[ito] T
11 cmplt t4, 0, t9 # see note br slice loop
10 mowve t4, t2 # ifrom = ito .
6 ldg az, 0(ad) # heap[ifrom] ## Annotations
& ldg a4, 0(t7) # heap[ite] fork: on first instruction of node to heap
11 E.ddl t4l’ tgr ta # see note iive_in: $f1?{cﬂst}r gP
11 sra t9, Ox1l, t4 # ito = ifrom/2 max loop iterations: 4
6 1ld=s sfo, 4(az) # heap[ifrom]->cost
[1d= 5f1, 4(a4) £ heap[iteo]=>cost
6 cmptlt S$f0,5f1,5f0 # (heap[ifrom]->cost
(i fheq 5f0, returm # < heap[ito]->cost)
B stg a2, 0(t7) # heaplito]
9 stg ad, 0(ald) # heap[ifrom]
5 bgt td4, loop #F (ito = 1)
return:
/* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 24

Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

25

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead: :
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles
Miss 1

Miss 2

26

Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?

27

Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
28

Where We Are in Lecture Schedule

= The memory hierarchy

s Caches, caches, more caches

= Virtualizing the memory hierarchy: Virtual Memory
= Main memory: DRAM

= Main memory control, scheduling

= Memory latency tolerance techniques

= Non-volatile memory

= Multiprocessors

= Coherence and consistency

= Interconnection networks

= Multi-core issues (e.g., heterogeneous multi-core)

29

Emerging Memory Technologies

The Main Memory System

Processor
and caches

Main Memory

_

Storage (SSD/HDD)

J

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain

performance growth and technology scaling benefits

31

Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

32

The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

.

CAP

-

h SENSE

DRAM capacity, cost, and energy/power hard to scale

33

An Example of The Scaling Problem

= Row of Cells = Wordline

= Victim Row —
Hammere« i’z ::

= Victim Row —

= Row —

Repeatedly opening and closing a row induces
disturbance errors in adjacent rows in most real
DRAM chips [Kim+ ISCA 2014]

34

Most DRAM Modules Are At Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10® 3.3x10°
errors errors errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014. 35

Errors vs. Vintage

e A Modules = B Modules ¢ C Modules

100

Errors per 10° Cells
— —_ o it —
s R [- [< [<=
—_ () [O8) IS W

[
S
[e)

-

2008 2009 2010 2011 2012 2013 2014
Module Vintage

All modules from 2012-2013 are vulnerable

36

Security Implications

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an daccess to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

http://users.ece.cmu.edu/~omutlu/pub/dra

P roj ect Ze ro m-row-hammer _isca14.pdf

News and updates from the Project Zero team at Google

http://googleprojectzero.blogspot.com/201
5/03/exploiting-dram-rowhammer-bug-to-
gain.html

Exploiting the DRAM rowhammer bug to gain kernel privileges

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Security Implications

DRAM RowHammer
VuIn"abiIity

&

=z &
o i € €

mrems KR = %

IR

. ™~
. '
= _=-’& *i“-!.m 4o
et WIS
t

)
Ay 4
-
x4
"

'._(
A :
X ic!ﬂ"ﬁ”"*"c"-‘

3

r

w

‘ .I.-:;ik
=7
B

¥

How Can We Fix the Memory Problem &
Design (Memory) Systems of the Futurer?

How Do We Solve The Problem?

Tolerate it: Make DRAM and controllers more intelligent
o New interfaces, functions, architectures: system-DRAM codesign

Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

o New technologies and system-wide rethinking of memory &
storage

Embrace it: Design heterogeneous-reliability memories that
map error-tolerant data to less reliable portions

o New usage and execution models

Solutions (to memory scaling) require
software/hardware/device cooperation

Trends: Problems with DRAM as Main Memory

= Need for main memory capacity increasing
o DRAM capacity hard to scale

= Main memory energy/power is a key system design concern
o DRAM consumes high power due to leakage and refresh

= DRAM technology scaling is ending
o DRAM capacity, cost, and energy/power hard to scale

41

Solutions to the DRAM Scaling Problem

Two potential solutions
o Tolerate DRAM (by taking a fresh look at it)

o Enable emerging memory technologies to eliminate/minimize
DRAM

Do both
o Hybrid memory systems

42

Solution 1: Tolerate DRAM

= Overcome DRAM shortcomings with
a System-DRAM co-design
o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

= Key issues to tackle
o Reduce energy
o Enable reliability at low cost
o Improve bandwidth and latency
o Reduce waste
o Enable computation close to data

Solution 1: Tolerate DRAM

Liu+, “"RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,"” ISCA 2012.

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “"An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
Seshadri+, “"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

Khan+, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study,” SIGMETRICS 2014.

Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,’
ISCA 2014.

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field,” DSN 2015.

Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

(4

Avoid DRAM:

Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
o Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

o Seshadri+, “"The Dirty-Block Index,” ISCA 2014.

o Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

O

44

Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory
o Expected to scale to 9nm (2022 [ITRS])
o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
a Can they be enabled to replace/augment/surpass DRAM?

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA'09, CACM'10, Micro’10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED
2013.

Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change
Memories,” ACM TACO 2014.

45

Hybrid Memory Systems

-

\2

DRAM

MCtrl

PCM

Ctrl

J

_

~

Phase Change Memory (or Tech. X)

J

Hardware/software manage data allocation and movement

to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

Requirements from an Ideal Memory System

= Traditional

a Higher capacity
a Continuous low cost

o High system performance (higher bandwidth, low latency)

= New

o Technology scalability: lower cost, higher capacity, lower energy
o Energy (and power) efficiency

a QoS support and configurability (for consolidation)

Emerging, resistive memory technologies (NVM) can help

47

The Promise ot Emerging Technologies

Likely need to replace/augment DRAM with a technology that is
o Technology scalable

o And at least similarly efficient, high performance, and fault-tolerant
or can be architected to be so

Some emerging resistive memory technologies appear promising
o Phase Change Memory (PCM)?

o Spin Torque Transfer Magnetic Memory (STT-MRAM)?

o Memristors?

o And, maybe there are other ones
o Can they be enabled to replace/augment/surpass DRAM?

48

Charge vs. Resistive Memories

Charge Memory (e.g., DRAM, Flash)
o Write data by capturing charge Q
o Read data by detecting voltage V

Resistive Memory (e.g., PCM, STT-MRAM, memristors)
o Write data by pulsing current dQ/dt
o Read data by detecting resistance R

49

Limits ot Charge Memory

Difficult charge placement and control
a Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge storage unit
Size reduces

GATE '}

=3 | FLOATING GATE
SOURCE |-+ «|- DRAIN CAP —— :
]

50

Emerging Resistive Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

51

What 1s Phase Change Memory?

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) |

T DTS

CHALCOGENIDE ! :
I

I

I

I

!

STORAGE :

I
I
HEATER Seop--

WORDLINE K

\'4

METAL (access)

ACCESS DEV

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly

52

How Does PCM Work?

= Write: change phase via current injection , | RESET
o SET: sustained current to heat cell above Teryst 5 | [
o RESET: cell heated above Tmelt and quenched E Trnen
. . . (=8
= Read: detect phase via material resistance £ f_ T
o Amorphous vs. crystalline =)| et
g
Time [ns]

Large
Current

Small
Current

}

Memory
Element

_l

SET (cryst) Access RESET (amorph)
Low resistance Device High resistance

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 53

Opportunity: PCM Advantages

Scales better than DRAM, Flash

o Requires current pulses, which scale linearly with feature size
o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM
o Can store multiple bits per cell due to large resistance range
o Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

Non-volatile
o Retain data for >10 years at 85C

No refresh needed, low idle power

54

Phase Change Memory Properties

Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

55

Table 1. Technology survey.

Published prototype

Parameter* Horri® Ahn'® Bedeschi'® Oh'* Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Yoar 2003 2004 2004 2005 2006 2006 2006 2008 2008 =
Process, F{nm) - 120 180 120 a0 - 100 a o a0
Amay size (Mbyles) &4 g &4 . - 256 256 512 =
Matarial GST,N-d GST, Nd GST GET GST GS,Nd GST GST GST GST, Nd
Cell size (pm") - 0.2a0 0.2a0 - Q07 G0rm® 0166 QoaT 0047 0,065 o

00a7
Cell size, F? - 201 a = 12.0 - 166 12.0 58 9.0 to

12.0
Access devica - - BT FET BT - FET BT Dioda BT
Read time (ns) - 70 A8 a8 - - &2 - 55 45
Hend Gt (pA] - - 40 - - - - - - 40
Read valtage (V) - an 10 18 15 - 18 - 18 1.0
Hend powes (aW) - - 40 - - - - - - 40
Hend smangy (pJ) . . 3 . - . - - - 30
Sat fime (na) 100 150 150 180 . 80 300 — 400 150
Sat current (A) 200 - 300 200 - 55 - - - 150
Sat voltage (V) - - 20 = . 125 = — - 1.2
Sat power (W) - - 300 - = 344 - - - a0
Sat enangy (pJ) - - A5 - - 28 - - - 135
Reset time (ns) 50 10 40 10 - &0 50 - 50 40
Reset curent (uA) 600 &00 600 &00 400 a0 800 300 600 300
Resat valtage (V) - - 27 - 15 15 - 16 - 1.6
Reset power (uW) ** - 1620 - = 804 = — - 480
Resotemargy (pJ) ** - 648 - - 48 - - - 192
Wrile endurance 107 10 1#° e 108 1ot - 10° 10° 109

(ML)

* BJT: bipolar junction vmansistor; FET: field-effect transistor; GST: GeaShaTes; MLC: muliilevel cells; MN-d: nitrogen doped.

** This information i not available in the publication cired.

N

Phase Change Memory Properties: Latency

= Latency comparable to, but slower than DRAM

MAIN MEMORY SYSTEM HIGH PERFORMANCE DISK SYSTEM
L1 CACHE LAST LEVEL CACHE : : .
SRAM EDRAM . DRAM PCM | | FLASH HARD DRIVE '
| | L |
— A A ;
5 23 E5 2 E'; E11 213 o 21 21'3 221 EE‘

--

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

= Read Latenc
= Write Latenc

a 150ns:
= Write Bandwidth

o 5-10 MB/s:{0.1x DRAM, 1x NAND Flash

57

Phase Change Memory Properties

Dynamic Energy
o 40 uA Rd, 150 uA Wr

ol 2-43x DRAM, 1x NAND Flash

Endurance
o Writes induce phase change at 650C
o Contacts degrade from thermal expansion/contraction

o 108 writes per cell
o 108x DRAM, 103x NAND Flash

Cell Size
o 9-12F2 using BIJT, single-level cells

o] 1.5x DRAM, 2-3x NAND| (will scale with feature size)

58

Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling
a Non volatility
a Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
o Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
o Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system
o Ensure secure and fault-tolerant PCM operation

59

PCM-based Main Memory: Some Questions

Where to place PCM in the memory hierarchy?
o Hybrid OS controlled PCM-DRAM

a Hybrid OS controlled PCM and hardware-controlled DRAM
o Pure PCM main memory

How to mitigate shortcomings of PCM?

How to take advantage of (byte-addressable and fast) non-
volatile main memory?

60

PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IEipdicinglicn
- - | - - | - -
- - | - -G | G- -GD

= Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09, Meza+
IEEE CAL12]:

o How to partition/migrate data between PCM and DRAM

Hybrid Memory Systems: Challenges

Partitioning
o Should DRAM be a cache or main memory, or configurable?
o What fraction? How many controllers?

Data allocation/movement (energy, performance, lifetime)
2 Who manages allocation/movement?

o What are good control algorithms?

o How do we prevent degradation of service due to wearout?

Design of cache hierarchy, memory controllers, OS
o Mitigate PCM shortcomings, exploit PCM advantages

Design of PCM/DRAM chips and modules
o Rethink the design of PCM/DRAM with new requirements

62

PCM-based Main Memory (II)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
TR iclRs
Q-G C--C | ©@- D
G- G-« | C©- "«

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

03

Aside: STT-RAM Basics

Magnetic Tunnel Junction (MTJ)

o Reference layer: Fixed

o Free layer: Parallel or anti-parallel
Cell

o Access transistor, bit/sense lines
Read and Write

o Read: Apply a small voltage across

bitline and senseline; read the current.
o Write: Push large current through MTJ.

Direction of current determines new
orientation of the free layer.

Kultursay et al., "Evaluating STT-RAM as an

Energy-Efficient Main Memory Alternative,” ISPASS Bit Line

2013

SAFARI

Logical 0
Reference Layer)

Free Layer —)

Logical 1
Reference Layer)

Free Layer ==

Word Line

T

Access
Transistor

Sense Line

Aside: STT MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling
a Non volatility
a Low idle power (no refresh)

= Cons
o Higher write latency
a Higher write energy
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MT)J)

SAFARI

65

An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density Latency
> 9-12F% using BJT > 950ns Rd, 150ns Wr
> 1.5x DRAM > 4x,12x DRAM
Endurance Energy
> 40pA Rd, 150uA Wr

> 1E-08x DRAM > 2x,43x DRAM

66

Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :; 2048Bx1 Buffer FPCM Endurance :;: 2048Bx1 Buffer
0.2
34 Delay
33 B EnergyMem 018
2.8 0.16
26
= 0.14
25
o 0.12
o 2 »
16/ L
T 1.4 0.08
E iz
= 4l 0.06
0.8}
06 004
0.4 0.02
0.2
0

=

cg is mg rad oce art agu swi o avg cg 5 mg rad oce art eqgu s'm avg

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 20009.
67

Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes = better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array J { data array J
sense amplifiers o (N)
(buffer) sense amplifiers
p _/
¢ I/O i

latches
(buffer)

¢ He}

68

Results: Architected PCM as Main Memory

1.2x delay, 1.0x energy, 5.6-year average lifetime
Scaling improves energy, endurance, density

FCM Perfarmance :: 512Bx4 Buffer

. . . 16
Il Celay
1 g/ Il EnergyMem

FCM Endurance :: 512Bxd4 Buffer
1.8

W DifiLine (64B)

1.4 12

14 B DiffWord (4B) |
2

10
0 0 -I

cg s mg rad oce art egu sw o avg

Mormalized to DRAM
[} [=] -
far! oo — T

Years

=
=

o
i

cg s mg rad oce art equ SWI avg

Caveat 1: Worst-case lifetime is much shorter (no guarantees)

Caveat 2: Intensive applications see large performance and energy hits
Caveat 3: Optimistic PCM parameters?

09

Hybrid Memory Systems

CPU

DRA PCM

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

SAFARI

One Option: DRAM as a Cache for PCM

PCM is main memory; DRAM caches memory rows/blocks
o Benefits: Reduced latency on DRAM cache hit; write filtering
Memory controller hardware manages the DRAM cache

o Benefit: Eliminates system software overhead

Three issues:

o What data should be placed in DRAM versus kept in PCM?
o What is the granularity of data movement?

o How to design a huge (DRAM) cache at low cost?

Two solutions:
[o Locality-aware data placement [Yoon+ , IcCD 2012] |
a Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

SAFARI 71

DRAM vs. PCM: An Observation

= Row buffers are the same in DRAM and PCM
= Row buffer hit latency same in DRAM and PCM
= Row buffer miss latency small in DRAM, large in PCM

CPU

Row buffer
DRAM Cache

PCM Main Memory
I I

N ns row hit N ns row hit
Fast row miss Slow row miss

= Accessing the row buffer in PCM is fast
= What incurs high latency is the PCM array access - avoid this

SAFARI

72

Row-Locality-Aware Data Placement

Idea: Cache in DRAM only those rows that

o Frequently cause row buffer conflicts - because row-conflict latency
is smaller in DRAM

o Are reused many times = to reduce cache pollution and bandwidth
waste

Simplified rule of thumb:
o Streaming accesses: Better to place in PCM
o Other accesses (with some reuse): Better to place in DRAM

Yoon et al., "Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.

SAFARI 3

Row-Locality-Aware Data Placement: Results

EFREQ ®FREQ-Dyn ©RBLA ERBLA-Dyn
1.4

=
N

9 9
~ (@)} 0 0] -
—
| | | |

o
N
|

Normalized Weighted Speedup

O i
Memory energy-efficiency and fairness also
improve correspondingly

SAFARI 74

Hybrid vs. All-PCM/DRAM

m16GB PCM ®RBLA-Dyn ©O16GB DRAM

2 1.2
518 - -
216 0% | | S
H14 - E
S ' % 0.8 -
212 31y o <

: - So06
I [®)
(¢B]

31% better performance than all PCM,
within 29% of all DRAM performance

i P N

Naormalized Weigh
o
o

o
N
|

o
|

75

Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 76

Coordinated Memory and Storage with NVM (I)

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores
___ Two-Level Store

Load/Store fopen, fread, fwrite, ...

Processor
and caches

e R

........
........
........

R g “ » a S e_ Ch a ng e)
Main Memory StorageotSD/HDD)

SAFARI 77

Coordinated Memory and Storage with NVM (1I)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager
Processor
and caches

Load/Store Feedback

Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 78
SAFARI Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

79

The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData[n] = value; // value is persistent

O 00 1 ON DN & Wi =~

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

| DRAM |(Fiash |[Nvm |[HOD |

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Performance Benefits ot a Single-lLevel Store

M User CPU [User Memory B Syscall CPU @ Syscall I/O
1.0

~24X
£ 0.8 \
I—
5 \
§ 0.6
113
L 04
N
C_Es \
s 0.2
= ~5X
0

HDD 2-level NVM 2-level Persistent Memory

SAFARI Results for PostMark 81

Energy Benefits of a Single-l.evel Store

M User CPU [J SyscallCPU m DRAM [NVM @ HDD

\

o
o)

O
oy

—
~

Fraction of Total Energy

o
N

HDD 2-level NVM 2-level Persistent Memory

SAFARI Results for PostMark 82

Enabling and Exploiting NVM: Issues

= Many issues and ideas from
technology layer to algorithms layer

Problems
= Enabling NVM and hybrid memory ~ |odorthms
o How to tolerate errors? ere ’
o How to enable secure operation? \ /
o How to tolerate performance and Runtime System
(VM, OS, MM)

power shortcomings?
o How to minimize cost?

ISA

= Exploiting emerging tecnologies
o How to exploit non-volatility?
o How to minimize energy consumption?
o How to exploit NVM on chip?

83

Three Principles for (Memory) Scaling

Better cooperation between devices and the system
o Expose more information about devices to upper layers
o More flexible interfaces

Better-than-worst-case design
o Do not optimize for the worst case
o Worst case should not determine the common case

Heterogeneity in design (specialization, asymmetry)
o Enables a more efficient design (No one size fits all)

These principles are related and sometimes coupled

34

Security Challenges ot Emerging Technologies

1. Limited endurance - Wearout attacks

2. Non-volatility = Data persists in memory after powerdown
- Easy retrieval of privileged or private information

3. Multiple bits per cell > Information leakage (via side channel)

85

Securing Emerging Memory Technologies

1. Limited endurance - Wearout attacks
Better architecting of memory chips to absorb writes
Hybrid memory system management
Online wearout attack detection

2. Non-volatility = Data persists in memory after powerdown
- Easy retrieval of privileged or private information
Efficient encryption/decryption of whole main memory
Hybrid memory system management

3. Multiple bits per cell > Information leakage (via side channel)

System design to hide side channel information
86

Summary of Emerging Memory Technologies

Key trends affecting main memory

o End of DRAM scaling (cost, capacity, efficiency)
o Need for high capacity

o Need for energy efficiency

Emerging NVM technologies can help
o PCM or STT-MRAM more scalable than DRAM and non-volatile
o But, they have shortcomings: latency, active energy, endurance

We need to enable promising NVM technologies by
overcoming their shortcomings

Many exciting opportunities to reinvent main memory at all
layers of computing stack

87

