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Announcements

 My office hours moved to 3:40-4:40pm today
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Reminder on Assignments

 Lab 6 due this Friday (April 3)

 C-level simulation of data caches and branch prediction

 Homework 6 will be due April 10

 Tentative Midterm II date: April 22

 The course will continue to move quickly… Keep your pace.

 Talk with the TAs and me if you need any help.

 We cannot do or debug the assignments for you but we can 
give you suggestions

 My goal is to enable you learn the material

 You never know when you will use the principles you learn
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Lab Late Days

 3 more late days you can use on Lab 6 & 7

 Lab 8 will have special treatment
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Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches 

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)
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Upcoming Seminar on DRAM (April 3)

 April 3, Friday, 11am-noon, GHC 8201

 Prof. Moinuddin Qureshi, Georgia Tech

 Lead author of “MLP-Aware Cache Replacement”

 Architecting 3D Memory Systems

 Die stacked 3D DRAM technology can provide low-energy high-
bandwidth memory module by vertically integrating several dies 
within the same chip. (…) In this talk, I will discuss how memory 
systems can efficiently architect 3D DRAM either as a cache or as 
main memory. First, I will show that some of the basic design 
decisions typically made for conventional caches (such as 
serialization of tag and data access, large associativity, and update 
of replacement state) are detrimental to the performance of DRAM 
caches, as they exacerbate hit latency. (…) Finally, I will present a 
memory organization that allows 3D DRAM to be a part of the OS-
visible memory address space, and yet relieves the OS from data 
migration duties. (…)”
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Required Reading 

 Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and 
Opportunities"
Invited Article in Communications of the Korean Institute of 
Information Scientists and Engineers (KIISE), 2015. 

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system_kiise15.pdf
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http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf


Tolerating Memory Latency
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Cache Misses Responsible for Many Stalls
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Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an 

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see today)



Runahead Execution (I)

 A technique to obtain the memory-level parallelism benefits 
of a large instruction window

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Runahead Enhancements



Readings

 Required

 Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

 Recommended

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

 Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

 Energy Inefficiency

 A large number of instructions are speculatively executed

 Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

 Ineffectiveness for pointer-intensive applications

 Runahead cannot parallelize dependent L2 cache misses

 Address-Value Delta (AVD) Prediction [MICRO’05]

 Irresolvable branch mispredictions in runahead mode

 Cannot recover from a mispredicted L2-miss dependent branch

 Wrong Path Events [MICRO’04]



 Runahead execution cannot parallelize dependent misses

 wasted opportunity to improve performance

 wasted energy (useless pre-execution)

 Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV



Parallelizing Dependent Cache Misses

 Idea: Enable the parallelization of dependent L2 cache 
misses in runahead mode with a low-cost mechanism

 How: Predict the values of L2-miss address (pointer) 
loads

 Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

 as opposed to data load

 Read:

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.



Parallelizing Dependent Cache Misses
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AVD Prediction [MICRO’05]

 Address-value delta (AVD) of a load instruction defined as:

AVD = Effective Address of Load – Data Value of Load

 For some address loads, AVD is stable

 An AVD predictor keeps track of the AVDs of address loads

 When a load is an L2 miss in runahead mode, AVD 
predictor is consulted

 If the predictor returns a stable (confident) AVD for that 
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD



Why Do Stable AVDs Occur?

 Regularity in the way data structures are 

 allocated in memory AND

 traversed

 Two types of loads can have stable AVDs

 Traversal address loads

 Produce addresses consumed by address loads

 Leaf address loads

 Produce addresses consumed by data loads



Traversal Address Loads

Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the 

pointer to next node:

node = nodenext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k

A+2k A+3k -k

Stable AVDStriding 

data value

AVD = Effective Addr – Data Value



Leaf Address Loads

Sorted dictionary in parser:           

Nodes point to strings (words)        

String and node allocated consecutively            

A+k

A
C+k

C

B+k

B

D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word. 

A leaf address load loads the pointer to 

the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k

F+k F k

lookup (node, input) {     // ...                               

ptr_str = nodestring;
m = check_match(ptr_str, input);             

// …                                                       

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node



AVD Prediction 23

Identifying Address Loads in Hardware

 Insight: 

 If the AVD is too large, the value that is loaded is likely not an 
address

 Only keep track of loads that satisfy:

-MaxAVD ≤ AVD ≤ +MaxAVD

 This identification mechanism eliminates many loads from 
consideration for prediction

 No need to value- predict the loads that will not generate 
addresses

 Enables the predictor to be small
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Prefetching



Outline of Prefetching Lecture(s)

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling 

 Issues in multi-core (if we get to it)
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Prefetching

 Idea: Fetch the data before it is needed (i.e. pre-fetch) by 
the program

 Why? 

 Memory latency is high. If we can prefetch accurately and 
early enough we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?

 Involves predicting which address will be needed in the 
future

 Works if programs have predictable miss address patterns
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Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply 
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction
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Basics

 In modern systems, prefetching is usually done in cache 
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by 

 hardware

 compiler

 programmer
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How a HW Prefetcher Fits in the Memory System
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Prefetching: The Four Questions

 What

 What addresses to prefetch

 When

 When to initiate a prefetch request

 Where

 Where to place the prefetched data

 How

 Software, hardware, execution-based, cooperative
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Challenges in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate 
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch

 Predict based on past access patterns

 Use the compiler’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
32



Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from 
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the 
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the 
processor’s access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)
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Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
34



Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L2, memory to L1. Advantages/disadvantages?

 L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched 
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the 
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?
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Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory 
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only 

 L2 misses only 

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth 
intensive, more ports into the prefetcher?)
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Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Hardware monitors processor accesses

 Memorizes or finds patterns/strides

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware
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Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into 
appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the 
program
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X86 PREFETCH Instruction
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Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

40

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?



Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access? 

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch 
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles 
of main memory latency  reduced accuracy
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Hardware Prefetching (I)

 Idea: Specialized hardware observes load/store access 
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases
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Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next 
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower 
addresses?

- Also prefetch “previous” N cache lines?
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Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to 
reduce data access penalty,” SC 1991.

 Idea: 

 Record the distance between the memory addresses referenced by 
a load instruction (i.e. stride of the load) as well as the last address 
referenced by the load

 Next time the same load instruction is fetched,                     
prefetch last address + stride
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Instruction Based Stride Prefetching

 What is the problem with this?

 How far can the prefetcher get ahead of the demand access stream? 

 Initiating the prefetch when the load is fetched the next time can be 
too late 

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table (decouple frontend of 
the processor from backend)

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

45
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Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address 
based stride prefetching where N = 1

46
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Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of 
sequentially prefetched cache lines 

 On a load miss check the head of all 
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache 

with data 

 if not, allocate a new stream buffer to the new 
miss address (may have to recycle a stream 
buffer following LRU policy)

 Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
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Stream Buffer Design
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Stream Buffer Design
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Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without 
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance
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Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream 

 Prefetch degree: how many prefetches per demand access
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Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive Prefetcher (large prefetch distance & degree)

 Well ahead of the load access stream 

 Hides memory access latency better 

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative Prefetcher (small prefetch distance & degree)

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely
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Prefetcher Performance (IV)
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Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

 Idea: 

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past 
performance

 Change the location prefetches are inserted in cache based on 
past performance

55

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease



Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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11%13%



How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers
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