
18-447

Computer Architecture

Lecture 24: Simulation and

Memory Latency Tolerance

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 3/30/2015

Lab 5 Results

Avg: 84.4

Median: 93.8

Std Dev: 19.2

2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

o

f
St

u
d

e
n

ts

Bins (percentage)

Reminder on Assignments

 Lab 6 due this Friday (April 3)

 C-level simulation of data caches and branch prediction

 Homework 6 will be due April 10

 And, we will have a Midterm II

 The course will continue to move quickly… Keep your pace.

 Talk with the TAs and me if you need any help.

 We cannot do or debug the assignments for you but we can
give you suggestions

 My goal is to enable you learn the material

 You never know when you will use the principles you learn

3

Simulation: The Field of Dreams

Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams

5

Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space
exploration too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

6

Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level
design space exploration

7

Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS)

 Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

 The relative importance of these metrics varies depending
on where you are in the design process

8

Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the
simulator

 You can trade off between the three to achieve design
exploration and decision goals

9

High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
10

Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with eveything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Speed and flexibility reduce

 You can loop back and fix higher-level models
11

This Course

 A good architect is comfortable at all levels of refinement

 Including the extremes

 This course, as a result, gives you a flavor of both:

 High-level, abstract simulation (Labs 6, 7, 8)

 Low-level, RTL simulation (Labs 2, 3, 4, 5)

12

Optional Reading on DRAM Simulation

 Kim et al., “Ramulator: A Fast and Extensible DRAM
Simulator,” IEEE Computer Architecture Letters 2015.

 https://github.com/CMU-SAFARI/ramulator

 http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_si
mulator-ieee-cal15.pdf

13

https://github.com/CMU-SAFARI/ramulator
http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)

14

Upcoming Seminar on DRAM (April 3)

 April 3, Friday, 11am-noon, GHC 8201

 Prof. Moinuddin Qureshi, Georgia Tech

 Lead author of “MLP-Aware Cache Replacement”

 Architecting 3D Memory Systems

 Die stacked 3D DRAM technology can provide low-energy high-
bandwidth memory module by vertically integrating several dies
within the same chip. (…) In this talk, I will discuss how memory
systems can efficiently architect 3D DRAM either as a cache or as
main memory. First, I will show that some of the basic design
decisions typically made for conventional caches (such as
serialization of tag and data access, large associativity, and update
of replacement state) are detrimental to the performance of DRAM
caches, as they exacerbate hit latency. (…) Finally, I will present a
memory organization that allows 3D DRAM to be a part of the OS-
visible memory address space, and yet relieves the OS from data
migration duties. (…)”

15

Required Reading

 Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and
Opportunities"
Invited Article in Communications of the Korean Institute of
Information Scientists and Engineers (KIISE), 2015.

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system_kiise15.pdf

16

http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf

Required Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-
refresh_isca12.pdf

17

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

Readings on Bloom Filters

 Section 3.1 of

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

 Section 3.3 of

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

18

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem

20

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

21

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

22

DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs

 Main memory interference between CPUs, GPUs, HWAs

 Many timing constraints for various memory types

 Many goals at the same time: performance, fairness, QoS,
energy efficiency, …

23

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream

 Reality: It difficult to optimize all these different constraints
while maximizing performance, QoS, energy-efficiency, …

 Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

24

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

25Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

26

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0 < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in
each state

 Continuously update reward values for <state, action> pairs based on
feedback from system

27

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

28

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

29

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

30

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
31

Memory Latency Tolerance

Readings on Memory Latency Tolerance

 Required

 Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

 Srinath et al., “Feedback directed prefetching”, HPCA 2007.

 Optional

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

 Armstrong et al., “Wrong Path Events,” MICRO 2004.

33

Remember: Latency Tolerance

 An out-of-order execution processor tolerates latency of
multi-cycle operations by executing independent
instructions concurrently

 It does so by buffering instructions in reservation stations and
reorder buffer

 Instruction window: Hardware resources needed to buffer all
decoded but not yet retired/committed instructions

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

34

35

Stalls due to Long-Latency Instructions

 When a long-latency instruction is not complete,
it blocks instruction retirement.

 Because we need to maintain precise exceptions

 Incoming instructions fill the instruction window (reorder
buffer, reservation stations).

 Once the window is full, processor cannot place new
instructions into the window.

 This is called a full-window stall.

 A full-window stall prevents the processor from making
progress in the execution of the program.

36

ADD R2 R2, 64

STOR mem[R2] R4

ADD R4 R4, R5

MUL R4 R4, R3

LOAD R3 mem[R2]

ADD R2 R2, 8

BEQ R1, R0, target

LOAD R1 mem[R5]

Full-window Stall Example

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,

executed out of program order,

but cannot be retired.

Younger instructions cannot be executed

because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

 Long-latency cache misses are responsible for

most full-window stalls.

LOAD R3 mem[R2]

37

Cache Misses Responsible for Many Stalls

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

The Memory Latency Problem

 Problem: Memory latency is long

 And, it is not easy to reduce it…

 We will look at methods for reducing DRAM latency in a later
lecture

 Lee et al. “Tiered-Latency DRAM,” HPCA 2013.

 Lee et al., “Adaptive-Latency DRAM,” HPCA 2014.

 And, even if we reduce memory latency, it is still long

 Remember the fundamental capacity-latency tradeoff

 Contention for memory increases latencies

38

How Do We Tolerate Stalls Due to Memory?

 Two major approaches

 Reduce/eliminate stalls

 Tolerate the effect of a stall when it happens

 Four fundamental techniques to achieve these

 Caching

 Prefetching

 Multithreading

 Out-of-order execution

 Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

39

40

Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see today)

Runahead Execution

42

ADD R2 R2, 64

STOR mem[R2] R4

ADD R4 R4, R5

MUL R4 R4, R3

LOAD R3 mem[R2]

ADD R2 R2, 8

BEQ R1, R0, target

LOAD R1 mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,

executed out of program order,

but cannot be retired.

Younger instructions cannot be executed

because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

 Long-latency cache misses are responsible for most
full-window stalls.

LOAD R3 mem[R2]

43

Impact of Long-Latency Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

44

Impact of Long-Latency Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window 2048-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

45

The Problem

 Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

 As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

 Building a large instruction window is a challenging task
if we would like to achieve

 Low power/energy consumption (tag matching logic, ld/st
buffers)

 Short cycle time (access, wakeup/select latencies)

 Low design and verification complexity

Efficient Scaling of Instruction Window Size

 One of the major research issues in out of order execution

 How to achieve the benefits of a large window with a small
one (or in a simpler way)?

 How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?

46

Memory Level Parallelism (MLP)

 Idea: Find and service multiple cache misses in parallel so
that the processor stalls only once for all misses

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, prefetching, runahead

47

time

A
B

C

isolated miss parallel miss

Runahead Execution (I)

 A technique to obtain the memory-level parallelism benefits
of a large instruction window

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

48

Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

 Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

 For both regular and irregular access patterns

 Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

 Hardware prefetcher and branch predictor tables are trained
using future access information.

Runahead Execution Mechanism

 Entry into runahead mode

 Checkpoint architectural register state

 Instruction processing in runahead mode

 Exit from runahead mode

 Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

 It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

 L2-miss dependent instructions are identified and treated
specially.
 They are quickly removed from the instruction window.

 Their results are not trusted.

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead

Miss 1

 Two types of results produced: INV and VALID

 INV = Dependent on an L2 miss

 INV results are marked using INV bits in the register file and
store buffer.

 INV values are not used for prefetching/branch resolution.

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead

Miss 1

 Oldest instruction is examined for pseudo-retirement

 An INV instruction is removed from window immediately.

 A VALID instruction is removed when it completes execution.

 Pseudo-retired instructions free their allocated resources.

 This allows the processing of later instructions.

 Pseudo-retired stores communicate their data to
dependent loads.

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

 A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

 Purpose: Data communication through memory in runahead mode.

 A dependent load reads its data from the runahead cache.

 Does not need to be always correct Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

 INV branches cannot be resolved.

 A mispredicted INV branch causes the processor to stay on the wrong

program path until the end of runahead execution.

 VALID branches are resolved and initiate recovery if mispredicted.

A Runahead Processor Diagram

57

Mutlu+, “Runahead Execution,”

HPCA 2003.

Runahead Execution Pros and Cons

 Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)

+ Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context

+ No need to construct a pre-execution thread

 Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance limited by memory latency

 Implemented in IBM POWER6, Sun “Rock”

58

59

12%

35%

13%

15%

22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

No prefetcher, no runahead

Only prefetcher (baseline)

Only runahead

Prefetcher + runahead

Performance of Runahead Execution

60

Runahead Execution vs. Large Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

128-entry window (baseline)

128-entry window with Runahead
256-entry window

384-entry window
512-entry window

Runahead vs. A (Real) Large Window

 When is one beneficial, when is the other?

 Pros and cons of each

 Which can tolerate FP operation latencies better?

 Which leads to less wasted execution?

61

62

Runahead on In-order vs. Out-of-order

39%

50%28%

14%

20%

17%

73%

73%

15%

20%

47%15%

12%

22%

13%

16%

23%

10%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

in-order baseline

in-order + runahead

out-of-order baseline

out-of-order + runahead

Effect of Runahead in Sun ROCK

 Shailender Chaudhry talk, Aug 2008.

63

