
18-447

Computer Architecture

Lecture 23: Memory Management

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 3/27/2015

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues (e.g., heterogeneous multi-core)

2

Required Reading (for the Next Few Lectures)

 Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and
Opportunities"
Invited Article in Communications of the Korean Institute of
Information Scientists and Engineers (KIISE), 2015.

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system_kiise15.pdf

3

http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf

Required Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-
refresh_isca12.pdf

4

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

Memory Interference and Scheduling

in Multi-Core Systems

6

Review: A Modern DRAM Controller

(Un)expected Slowdowns in Multi-Core

7

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

Memory Scheduling Techniques

 We covered

 FCFS

 FR-FCFS

 STFM (Stall-Time Fair Memory Access Scheduling)

 PAR-BS (Parallelism-Aware Batch Scheduling)

 ATLAS

 TCM (Thread Cluster Memory Scheduling)

 There are many more …

 See your required reading (Section 7):

 Mutlu et al., “The Main Memory System: Challenges and
Opportunities,” KIISE 2015.

8

Other Ways of

Handling Memory Interference

Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

10

Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

11

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

12

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

13

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

14Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

15

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

16

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order

123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

17

Hardware

System

Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

18

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

19

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

20Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

21Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Performance of Channel Partitioning

22

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

Combining Multiple Interference Control Techniques

 Combined interference control techniques can mitigate
interference much more than a single technique alone can
do

 The key challenge is:

 Deciding what technique to apply when

 Partitioning work appropriately between software and
hardware

23

Fundamental Interference Control Techniques

 Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

24

Source Throttling: A Fairness Substrate

 Key idea: Manage inter-thread interference at the cores
(sources), not at the shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

25

26

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)

2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to change the
memory scheduling algorithm

+ Can be a general way of handling shared resource contention

+ Can reduce overall load/contention in the memory system

 Disadvantages

- Requires interference/slowdown estimations difficult to estimate

- Thresholds can become difficult to optimize throughput loss

27

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

28

Interference-Aware Thread Scheduling

 An example from scheduling in clusters (data centers)

 Clusters can be running virtual machines

29

Virtualized Cluster

30

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

31

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

32

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

• VMs within a host compete for:

– Shared cache capacity

– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

33

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

34

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

35

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea:

– Monitor and detect microarchitecture-level shared
resource interference

– Balance microarchitecture-level resource usage across
cluster to minimize memory interference while
maximizing system performance

36

A-DRM: Architecture-aware DRM

37

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
 Optional Reading

 Wang et al., “A-DRM: Architecture-aware Distributed
Resource Management of Virtualized Clusters,” VEE 2015.

 http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-
distributed-resource-management_vee15.pdf

38

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf

Interference-Aware Thread Scheduling

 Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (no need to modify the hardware
resources)

 Disadvantages and Limitations

-- High overhead to migrate threads between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

39

Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

40

Handling Memory Interference

In Multithreaded Applications

Multithreaded (Parallel) Applications

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables,
semaphores, …

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on
the critical path of execution; some are not

42

Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait threads

causing serialization can be on the critical path

43

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C

Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving to the barrier is on the critical path

44

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}

Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path

45

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread executing the slowest pipeline stage

 Thread that is falling behind the most in reaching a barrier

46

Prioritizing Requests from Limiter Threads

47

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync

or Lock

Thread D

Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B

Thread A

Critical Section 2 Critical Path

Saved

Cycles Limiter Thread: DBCA

Most Contended

Critical Section: 1

Limiter Thread Identification

More on Parallel Application Memory Scheduling

 Optional reading

 Ebrahimi et al., “Parallel Application Memory Scheduling,”
MICRO 2011.

 http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-
scheduling_micro11.pdf

48

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf

More on DRAM Management and

DRAM Controllers

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 State transitions incur latency during which the chip cannot
be accessed

50

DRAM Refresh

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Read and close each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

52

DRAM Refresh: Performance

 Implications of refresh on performance

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

53

Distributed Refresh

 Distributed refresh eliminates long pause times

 How else can we reduce the effect of refresh on
performance/QoS?

 Does distributed refresh reduce refresh impact on energy?

 Can we reduce the number of refreshes?

54

Refresh Today: Auto Refresh

55

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are

periodically refreshed

via the auto-refresh command

Refresh Overhead: Performance

56

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

57

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional Refresh

 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

58

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the
worst-case rate

 Can we exploit this to reduce refresh operations at low cost?

59

Reducing DRAM Refresh Operations

 Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

 (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

 e.g., a bin for 64-128ms, another for 128-256ms, …

 Observation: Only very few rows need to be refreshed very
frequently [64-128ms] Have only a few bins Low HW

overhead to achieve large reductions in refresh operations

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

60

1. Profiling: Profile the retention time of all DRAM rows

 can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time

 use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

 probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

61

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

62

2. Binning

 How to efficiently and scalably store rows into retention
time bins?

 Use Hardware Bloom Filters [Bloom, CACM 1970]

63Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter

 [Bloom, CACM 1970]

 Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

 Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

 Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

 Some elements map to the bits other elements also map to

 Operations: 1) insert, 2) test, 3) remove all elements

64Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

65Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

66

Bloom Filter Operation Example

67

Bloom Filter Operation Example

68

Bloom Filter Operation Example

69

Bloom Filters

70

Bloom Filters: Pros and Cons

 Advantages

+ Enables storage-efficient representation of set membership

+ Insertion and testing for set membership (presence) are fast

+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted

+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

 Disadvantages

-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

71Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Benefits of Bloom Filters as Refresh Rate Bins

 False positives: a row may be declared present in the
Bloom filter even if it was never inserted

 Not a problem: Refresh some rows more frequently than
needed

 No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

 Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

 Efficient: No need to store info on a per-row basis; simple
hardware 1.25 KB for 2 filters for 32 GB DRAM system

72

Use of Bloom Filters in Hardware

 Useful when you can tolerate false positives in set
membership tests

 See the following recent examples for clear descriptions of
how Bloom Filters are used

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

73

3. Refreshing (RAIDR Refresh Controller)

74

3. Refreshing (RAIDR Refresh Controller)

75

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

76

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

77

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

78

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
 System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

 RAIDR hardware cost: 1.25 kB (2 Bloom filters)

 Refresh reduction: 74.6%

 Dynamic DRAM energy reduction: 16%

 Idle DRAM power reduction: 20%

 Performance improvement: 9%

 Benefits increase as DRAM scales in density

79

DRAM Refresh: More Questions

 What else can you do to reduce the impact of refresh?

 What else can you do if you know the retention times of
rows?

 How can you accurately measure the retention time of
DRAM rows?

 Recommended reading:

 Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

80

More Readings on DRAM Refresh

 Liu et al., “An Experimental Study of Data Retention
Behavior in Modern DRAM Devices: Implications for
Retention Time Profiling Mechanisms,” ISCA 2013.

 http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-
characterization_isca13.pdf

 Chang+, “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” HPCA 2014.

 http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-
parallelization_hpca14.pdf

81

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf

