
18-447
Computer Architecture

Lecture 20: Virtual Memory

Prof. Onur Mutlu
Carnegie Mellon University

Spring 2015, 3/4/2015

Assignment and Exam Reminders
n  Lab 4: Due March 6 (this Friday!)

q  Control flow and branch prediction

n  Lab 5: Due March 22
q  Data cache

n  HW 4: March 18
n  Exam: March 20

n  Advice: Finish the labs early
q  You have almost a month for Lab 5

n  Advice: Manage your time well

2

Debugging, Testing and Piazza Etiquette
n  You are supposed to debug your code

n  You are supposed to develop your own test cases

n  As in real life

n  Piazza is not the place to ask debugging questions
q  And expect answers to them

n  And, TAs are not your debuggers
q  Ask for help only if you have done due diligence

3

Late Days
n  Bonus: 2 more late days for everyone

n  Even if you run out of late days, please submit your lab
q  Showing that you are working and caring counts
q  Making it work counts

4

Agenda for the Rest of 447
n  The memory hierarchy
n  Caches, caches, more caches
n  Virtualizing the memory hierarchy: Virtual Memory
n  Main memory: DRAM
n  Main memory control, scheduling
n  Memory latency tolerance techniques
n  Non-volatile memory

n  Multiprocessors
n  Coherence and consistency
n  Interconnection networks
n  Multi-core issues

5

Readings
n  Section 5.4 in P&H
n  Optional: Section 8.8 in Hamacher et al.
n  Your 213 textbook for brush-up

6

Memory (Programmer’s View)

7

Ideal Memory
n  Zero access time (latency)
n  Infinite capacity
n  Zero cost
n  Infinite bandwidth (to support multiple accesses in parallel)

8

Abstraction: Virtual vs. Physical Memory
n  Programmer sees virtual memory

q  Can assume the memory is “infinite”

n  Reality: Physical memory size is much smaller than what
the programmer assumes

n  The system (system software + hardware, cooperatively)
maps virtual memory addresses are to physical memory
q  The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer
-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

9

Benefits of Automatic Management of Memory

n  Programmer does not deal with physical addresses
n  Each process has its own mapping from virtualàphysical

addresses

n  Enables
q  Code and data to be located anywhere in physical memory

(relocation)

q  Isolation/separation of code and data of different processes in
physical processes
(protection and isolation)

q  Code and data sharing between multiple processes
(sharing)

10

11

A System with Physical Memory Only

n  Examples:
q  most Cray machines
q  early PCs
q  nearly all embedded systems

 CPU’s load or store addresses used
 directly to access memory

CPU!

0:!
1:!

N-1:!

Memory!

Physical!
Addresses!

The Problem
n  Physical memory is of limited size (cost)

q  What if you need more?
q  Should the programmer be concerned about the size of code/

data blocks fitting physical memory?
q  Should the programmer manage data movement from disk to

physical memory?
q  Should the programmer ensure two processes do not use the

same physical memory?

n  Also, ISA can have an address space greater than the

physical memory size
q  E.g., a 64-bit address space with byte addressability
q  What if you do not have enough physical memory?

12

Difficulties of Direct Physical Addressing

n  Programmer needs to manage physical memory space
q  Inconvenient & hard
q  Harder when you have multiple processes

n  Difficult to support code and data relocation

n  Difficult to support multiple processes
q  Protection and isolation between multiple processes
q  Sharing of physical memory space

n  Difficult to support data/code sharing across processes

13

Virtual Memory
n  Idea: Give the programmer the illusion of a large address

space while having a small physical memory
q  So that the programmer does not worry about managing

physical memory

n  Programmer can assume he/she has “infinite” amount of
physical memory

n  Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion
q  Illusion is maintained for each independent process

14

Basic Mechanism
n  Indirection (in addressing)

n  Address generated by each instruction in a program is a
“virtual address”
q  i.e., it is not the physical address used to address main

memory
q  called “linear address” in x86

n  An “address translation” mechanism maps this address to a
“physical address”
q  called “real address” in x86
q  Address translation mechanism can be implemented in

hardware and software together

15

16

A System with Virtual Memory (Page based)

n  Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU!

0:!
1:!

N-1:!

Memory!

0:!
1:!

P-1:!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

Virtual Pages, Physical Frames
n  Virtual address space divided into pages
n  Physical address space divided into frames

n  A virtual page is mapped to
q  A physical frame, if the page is in physical memory
q  A location in disk, otherwise

n  If an accessed virtual page is not in memory, but on disk
q  Virtual memory system brings the page into a physical frame

and adjusts the mapping à this is called demand paging

n  Page table is the table that stores the mapping of virtual
pages to physical frames

17

Physical Memory as a Cache
n  In other words…

n  Physical memory is a cache for pages stored on disk
q  In fact, it is a fully associative cache in modern systems (a

virtual page can be mapped to any physical frame)

n  Similar caching issues exist as we have covered earlier:
q  Placement: where and how to place/find a page in cache?
q  Replacement: what page to remove to make room in cache?
q  Granularity of management: large, small, uniform pages?
q  Write policy: what do we do about writes? Write back?

18

Supporting Virtual Memory
n  Virtual memory requires both HW+SW support

q  Page Table is in memory
q  Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

n  The hardware component is called the MMU (memory

management unit)
q  Includes Page Table Base Register(s), TLBs, page walkers

n  It is the job of the software to leverage the MMU to
q  Populate page tables, decide what to replace in physical memory
q  Change the Page Table Register on context switch (to use the

running thread’s page table)
q  Handle page faults and ensure correct mapping

19

Some System Software Jobs for VM
n  Keeping track of which physical frames are free

n  Allocating free physical frames to virtual pages

n  Page replacement policy
q  When no physical frame is free, what should be swapped out?

n  Sharing pages between processes

n  Copy-on-write optimization

n  Page-flip optimization

20

Page Fault (“A Miss in Physical Memory”)

n  If a page is not in physical memory but disk
q  Page table entry indicates virtual page not in memory
q  Access to such a page triggers a page fault exception
q  OS trap handler invoked to move data from disk into memory

n  Other processes can continue executing
n  OS has full control over placement

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

Before fault! After fault!

Disk

22

Servicing a Page Fault

n  (1) Processor signals controller
q  Read block of length P starting

at disk address X and store
starting at memory address Y

n  (2) Read occurs
q  Direct Memory Access (DMA)
q  Under control of I/O controller

n  (3) Controller signals completion
q  Interrupt processor
q  OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

Page Table is Per Process
n  Each process has its own virtual address space

q  Full address space for each program
q  Simplifies memory allocation, sharing, linking and loading.

23

Virtual
Address
Space for
Process 1:

Physical Address
Space (DRAM) VP 1

VP 2
PP 2 Address

Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

Address Translation
n  How to obtain the physical address from a virtual address?

n  Page size specified by the ISA
q  VAX: 512 bytes
q  Today: 4KB, 8KB, 2GB, … (small and large pages mixed

together)
q  Trade-offs? (remember cache lectures)

n  Page Table contains an entry for each virtual page
q  Called Page Table Entry (PTE)
q  What is in a PTE?

24

Address Translation (II)

25

26

Address Translation (III)
n  Parameters

q  P = 2p = page size (bytes).
q  N = 2n = Virtual-address limit
q  M = 2m = Physical-address limit

virtual page number page offset virtual address

physical frame number page offset physical address
0 p–1

address translation

p m–1

n–1 0 p–1 p

Page offset bits don’t change as a result of translation

27

Address Translation (IV)

 virtual page number (VPN) page offset

virtual address

physical frame number (PFN) page offset
physical address

0 p–1 p m–1

n–1
0

p–1 p
page table

base register
(per process)

if valid=0
then page
not in memory
(page fault)

valid physical frame number (PFN)

VPN acts as
table index

n  Separate (set of) page table(s) per process
n  VPN forms index into page table (points to a page table entry)
n  Page Table Entry (PTE) provides information about page

access

28

Address Translation: Page Hit

29

Address Translation: Page Fault

What Is in a Page Table Entry (PTE)?

30

n  Page table is the “tag store” for the physical memory data store
q  A mapping table between virtual memory and physical memory

n  PTE is the “tag store entry” for a virtual page in memory
q  Need a valid bit à to indicate validity/presence in physical memory
q  Need tag bits (PFN) à to support translation
q  Need bits to support replacement
q  Need a dirty bit to support “write back caching”
q  Need protection bits to enable access control and protection

Remember: Cache versus Page Replacement
n  Physical memory (DRAM) is a cache for disk

q  Usually managed by system software via the virtual memory
subsystem

n  Page replacement is similar to cache replacement
n  Page table is the “tag store” for physical memory data store

n  What is the difference?

q  Required speed of access to cache vs. physical memory
q  Number of blocks in a cache vs. physical memory
q  “Tolerable” amount of time to find a replacement candidate

(disk versus memory access latency)
q  Role of hardware versus software

31

Page Replacement Algorithms
n  If physical memory is full (i.e., list of free physical pages is

empty), which physical frame to replace on a page fault?

n  Is True LRU feasible?
q  4GB memory, 4KB pages, how many possibilities of ordering?

n  Modern systems use approximations of LRU
q  E.g., the CLOCK algorithm

n  And, more sophisticated algorithms to take onto account
“frequency” of use
q  E.g., the ARC algorithm
q  Megiddo and Modha, “ARC: A Self-Tuning, Low Overhead

Replacement Cache,” FAST 2003.

32

CLOCK Page Replacement Algorithm
n  Keep a circular list of physical frames in memory
n  Keep a pointer (hand) to the last-examined frame in the list
n  When a page is accessed, set the R bit in the PTE
n  When a frame needs to be replaced, replace the first frame

that has the reference (R) bit not set, traversing the circular
list starting from the pointer (hand) clockwise
q  During traversal, clear the R bits of examined frames
q  Set the hand pointer to the next frame in the list

33

Aside: Page Size Trade Offs
n  What is the granularity of management of physical memory?
n  Large vs. small pages
n  Tradeoffs have analogies to large vs. small cache blocks

n  Many different tradeoffs with advantages and disadvantages
q  Size of the Page Table (tag store)
q  Reach of the Translation Lookaside Buffer (we will see this later)
q  Transfer size from disk to memory (waste of bandwidth?)
q  Waste of space within a page (internal fragmentation)
q  Waste of space within the entire physical memory (external

fragmentation)
q  Granularity of access protection
q  …

34

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)
n  Not every process is allowed to access every page

q  E.g., may need supervisor level privilege to access system
pages

n  Idea: Store access control information on a page basis in
the process’s page table

n  Enforce access control at the same time as translation

à Virtual memory system serves two functions today
 Address translation (for illusion of large physical memory)
 Access control (protection)

36

Two Functions of Virtual Memory

37

VM as a Tool for Memory Access Protection

38

Page Tables!

Process i:!

Physical Addr!Read?! Write?!
 PP 6!Yes! No!

 PP 4!Yes! Yes!

XXXXXXX! No! No!

VP 0:!

VP 1:!

VP 2:!
•"•"•

•"•"•

•"•"•

Process j:!

PP 0"

Memory!

Physical Addr!Read?! Write?!
 PP 6!Yes! Yes!

 PP 9!Yes! No!

XXXXXXX! No! No!
•"•"•

•"•"•

•"•"•

VP 0:!

VP 1:!

VP 2:!

PP 2"

PP 4"

PP 6"

PP 8"
PP 10"

PP 12"
•"•"•

n  Extend Page Table Entries (PTEs) with permission bits
n  Check bits on each access and during a page fault

q  If violated, generate exception (Access Protection exception)

Access Control Logic

39

Privilege Levels in x86

40

Page Level Protection in x86

41

Some Issues in Virtual Memory

Three Major Issues
n  How large is the page table and how do we store and

access it?

n  How can we speed up translation & access control check?

n  When do we do the translation in relation to cache access?

n  There are many other issues we will not cover in detail
q  What happens on a context switch?
q  How can you handle multiple page sizes?
q  …

43

Virtual Memory Issue I
n  How large is the page table?

n  Where do we store it?
q  In hardware?
q  In physical memory? (Where is the PTBR?)
q  In virtual memory? (Where is the PTBR?)

n  How can we store it efficiently without requiring physical
memory that can store all page tables?
q  Idea: multi-level page tables
q  Only the first-level page table has to be in physical memory
q  Remaining levels are in virtual memory (but get cached in

physical memory when accessed)

44

Issue: Page Table Size

	

n  Suppose	
 64-­‐bit	
 VA	
 and	
 40-­‐bit	
 PA,	
 how	
 large	
 is	
 the	
 page	
 table?	
 	
 	
 	
 	

252	
 entries	
 x	
 ~4	
 bytes	
 ≈	
 16x1015	
 Bytes 	
 	
 	

	
 	
 	
 	
 and	
 that	
 is	
 for	
 just	
 one	
 process!	

	
 	
 	
 	
 and	
 the	
 process	
 many	
 not	
 be	
 using	
 the	
 enHre	

	
 	
 	
 	
 VM	
 space!	

45

VPN	
 PO	

page	

table	

concat	
 PA	

64-­‐bit	

12-­‐bit	
 52-­‐bit	

28-­‐bit	
 40-­‐bit	

Solution: Multi-Level Page Tables

46

Example from x86 architecture

Page Table Access
n  How do we access the Page Table?

n  Page Table Base Register (CR3 in x86)
n  Page Table Limit Register

n  If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page à access control
exception

n  Page Table Base Register is part of a process’s context
q  Just like PC, status registers, general purpose registers
q  Needs to be loaded when the process is context-switched in

47

More on x86 Page Tables (I): Small Pages

48

More on x86 Page Tables (II): Large Pages

49

x86 Page Table Entries

50

x86 PTE (4KB page)

51

x86 Page Directory Entry (PDE)

52

Four-level Paging in x86

53

Four-level Paging and Extended Physical Address Space in x86

54

Virtual Memory Issue II
n  How fast is the address translation?

q  How can we make it fast?

n  Idea: Use a hardware structure that caches PTEs à
Translation lookaside buffer

n  What should be done on a TLB miss?
q  What TLB entry to replace?
q  Who handles the TLB miss? HW vs. SW?

n  What should be done on a page fault?
q  What virtual page to replace from physical memory?
q  Who handles the page fault? HW vs. SW?

55

56

Speeding up Translation with a TLB
n  Essentially a cache of recent address translations

q  Avoids going to the page table on every reference

n  Index = lower bits of VPN
 (virtual page #)
n  Tag = unused bits of VPN +
 process ID
n  Data = a page-table entry
n  Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.

Handling TLB Misses
n  The TLB is small; it cannot hold all PTEs

q  Some translations will inevitably miss in the TLB
q  Must access memory to find the appropriate PTE

n  Called walking the page directory/table
n  Large performance penalty

n  Who handles TLB misses? Hardware or software?

Handling TLB Misses (II)
n  Approach #1. Hardware-Managed (e.g., x86)

q  The hardware does the page walk
q  The hardware fetches the PTE and inserts it into the TLB

n  If the TLB is full, the entry replaces another entry

q  Done transparently to system software

n  Approach #2. Software-Managed (e.g., MIPS)
q  The hardware raises an exception
q  The operating system does the page walk
q  The operating system fetches the PTE
q  The operating system inserts/evicts entries in the TLB

Handling TLB Misses (III)
n  Hardware-Managed TLB

q  Pro: No exception on TLB miss. Instruction just stalls
q  Pro: Independent instructions may continue
q  Pro: No extra instructions/data brought into caches.
q  Con: Page directory/table organization is etched into the

system: OS has little flexibility in deciding these

n  Software-Managed TLB
q  Pro: The OS can define page table oganization
q  Pro: More sophisticated TLB replacement policies are possible
q  Con: Need to generate an exception à performance overhead

due to pipeline flush, exception handler execution, extra
instructions brought to caches

Virtual Memory Issue III
n  When do we do the address translation?

q  Before or after accessing the L1 cache?

60

Virtual Memory and Cache Interaction

Address Translation and Caching
n  When do we do the address translation?

q  Before or after accessing the L1 cache?

n  In other words, is the cache virtually addressed or
physically addressed?
q  Virtual versus physical cache

n  What are the issues with a virtually addressed cache?

n  Synonym problem:
q  Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

62

Homonyms and Synonyms
n  Homonym: Same VA can map to two different PAs

q  Why?
n  VA is in different processes

n  Synonym: Different VAs can map to the same PA
q  Why?

n  Different pages can share the same physical frame within or
across processes

n  Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

n  Do homonyms and synonyms create problems when we
have a cache?
q  Is the cache virtually or physically addressed?

63

Cache-VM Interaction

64

CPU	

TLB	

cache	

lower	

hier.	

physical	
 cache	

CPU	

cache	

tlb	

lower	

hier.	

virtual	
 (L1)	
 cache	

VA	

PA	

CPU	

cache	
 tlb	

lower	

hier.	

virtual-­‐physical	
 cache	

VA	

PA	

VA	

PA	

Physical Cache

65

Virtual Cache

66

Virtual-Physical Cache

67

Virtually-Indexed Physically-Tagged
 n  If	
 C≤(page_size	
 ×	
 associaHvity),	
 the	
 cache	
 index	
 bits	
 come	
 only	

from	
 page	
 offset	
 (same	
 in	
 VA	
 and	
 PA)	

n  If	
 both	
 cache	
 and	
 TLB	
 are	
 on	
 chip	

q  index	
 both	
 arrays	
 concurrently	
 using	
 VA	
 bits	

q  check	
 cache	
 tag	
 (physical)	
 against	
 TLB	
 output	
 at	
 the	
 end	

68

VPN	
 Page	
 Offset	

TLB	

PPN	

Index	
 BiB	

physical	

cache	

tag	
 data	
 =	

cache	
 hit?	
 TLB	
 hit?	

Virtually-Indexed Physically-Tagged
 n  If	
 C>(page_size	
 ×	
 associaHvity),	
 the	
 cache	
 index	
 bits	
 include	
 VPN	

⇒	
 Synonyms	
 can	
 cause	
 problems	

q  The	
 same	
 physical	
 address	
 can	
 exist	
 in	
 two	
 locaHons	

n  SoluHons?	

69

VPN	
 Page	
 Offset	

TLB	

PPN	

Index	
 BiB	

physical	

cache	

tag	
 data	
 =	

cache	
 hit?	
 TLB	
 hit?	

	

	

a	

Some Solutions to the Synonym Problem
n  Limit cache size to (page size times associativity)

q  get index from page offset

n  On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
q  Used in Alpha 21264, MIPS R10K

n  Restrict page placement in OS
q  make sure index(VA) = index(PA)
q  Called page coloring
q  Used in many SPARC processors

70

An Exercise
n  Problem 5 from

q  Past midterm exam Problem 5, Spring 2009
q  http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?

media=wiki:midterm:midterm_s09.pdf

71

An Exercise (I)

72

73

An Exercise (II)

74

An Exercise (Concluded)

75

Solutions to the Exercise
n  http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?

media=wiki:midterm:midterm_s09_solution.pdf

n  And, more exercises are in past exams and in your
homeworks…

76

Review: Solutions to the Synonym Problem
n  Limit cache size to (page size times associativity)

q  get index from page offset

n  On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
q  Used in Alpha 21264, MIPS R10K

n  Restrict page placement in OS
q  make sure index(VA) = index(PA)
q  Called page coloring
q  Used in many SPARC processors

77

Some Questions to Ponder
n  At what cache level should we worry about the synonym

and homonym problems?

n  What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

n  What are the potential benefits and downsides of page
coloring?

78

Fast Forward: Virtual Memory – DRAM Interaction

n  Operating System influences where an address maps to in
DRAM

n  Operating system can control which bank/channel/rank a
virtual page is mapped to.

n  It can perform page coloring to minimize bank conflicts
n  Or to minimize inter-application interference

79

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits) Physical Frame number (19 bits)

Page offset (12 bits) Virtual Page number (52 bits) VA

PA
PA

We did not cover the following slides.
They are for your benefit.

Protection and Translation
without Virtual Memory

Aside: Protection w/o Virtual Memory
n  Question: Do we need virtual memory for protection?

n  Answer: No

n  Other ways of providing memory protection
q  Base and bound registers
q  Segmentation

n  None of these are as elegant as page-based access control
q  They run into complexities as we need more protection

capabilites

82

Very Quick Overview: Base and Bound
In a multi-tasking system
 Each process is given a non-overlapping, contiguous physical memory region, everything

belonging to a process must fit in that region
 When a process is swapped in, OS sets base to the start of the process’s memory region

and bound to the end of the region
 HW translation and protection check (on each memory reference)

 PA = EA + base, provided (PA < bound), else violations
 ⇒ Each process sees a private and uniform address space (0 .. max)

83

physical mem.

active process’s
region

another process’s
region

Base

Bound

Bound can also be
formulated as a range

privileged control
registers

Very Quick Overview: Base and Bound (II)
n  Limitations of the base and bound scheme

q  large contiguous space is hard to come by after the system
runs for a while---free space may be fragmented

q  how do two processes share some memory regions but not
others?

84

Segmented Address Space

85

n  segment == a base and bound pair
n  segmented addressing gives each process multiple segments

q  initially, separate code and data segments
 - 2 sets of base-and-bound reg’s for inst and data fetch
 - allowed sharing code segments

q  became more and more elaborate: code, data, stack, etc.

SEG # EA

segment
table

+,< base
&

bound

PA
&

okay?

segment tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

Segmented Address Translation
n  EA: segment number (SN) and a segment offset (SO)

q  SN may be specified explicitly or implied (code vs. data)
q  segment size limited by the range of SO
q  segments can have different sizes, not all SOs are meaningful

n  Segment translation and protection table
q  maps SN to corresponding base and bound
q  separate mapping for each process
q  must be a privileged structure

86

SN	
 SO	

segment	

table	

	

	

	

+,<	
 base	
 bound	
 PA,	

okay?	

Segmentation as a Way to Extend Address Space

n  How to extend an old ISA to support larger addresses for
new applications while remaining compatible with old
applications?

87

SN	
 SO	

	

	

	

	

“large”	
 base	
 large	

EA	

small	
 EA	

Issues with Segmentation
n  Segmented addressing creates fragmentation problems:

q  a system may have plenty of unallocated memory locations
q  they are useless if they do not form a contiguous region of a

sufficient size

n  Page-based virtual memory solves these issues
q  By ensuring the address space is divided into fixed size

“pages”
q  And virtual address space of each process is contiguous
q  The key is the use of indirection to give each process the

illusion of a contiguous address space

88

Page-based Address Space
n  In a Paged Memory System:
n  PA space is divided into fixed size “segments” (e.g., 4kbyte),

 more commonly known as “page frames”
n  VA is interpreted as page number and page offset

89

Page No. Page Offset

page
table

+ Frame no
&

okay?

PA

page tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

