18-447
Computer Architecture
Lecture 20: Virtual Memory

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 3/4/2015

Assignment and Exam Reminders

Lab 4: Due March 6 (this Friday!)
o Control flow and branch prediction

Lab 5: Due March 22
o Data cache

HW 4: March 18
Exam: March 20

Advice: Finish the labs early
o You have almost a month for Lab 5
Advice: Manage your time well

Debugging, Testing and Piazza Etiquette

You are supposed to debug your code
You are supposed to develop your own test cases

As in real life

Piazza is not the place to ask debugging questions
o And expect answers to them

And, TAs are not your debuggers
o Ask for help only if you have done due diligence

Late Days
Bonus: 2 more late days for everyone
Even if you run out of late days, please submit your lab

o Showing that you are working and caring counts
o Making it work counts

Agenda for the Rest of 447

The memory hierarchy

Caches, caches, more caches

Virtualizing the memory hierarchy: Virtual Memory
Main memory: DRAM

Main memory control, scheduling

Memory latency tolerance techniques

Non-volatile memory

Multiprocessors

Coherence and consistency
Interconnection networks
Multi-core issues

Readings

Section 5.4 in P&H
Optional: Section 8.8 in Hamacher et al.

Your 213 textbook for brush-up

Memory (Programmer’s View)

Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)

Abstraction: Virtual vs. Physical Memory

Programmer sees virtual memory
o Can assume the memory is “infinite”

Reality: Physical memory size is much smaller than what
the programmer assumes

The system (system software + hardware, cooperatively)
maps virtual memory addresses are to physical memory

o The system automatically manages the physical memory
space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it > A small physical memory can appear as a huge
one to the programmer - Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

Benefits of Automatic Management of Memory

Programmer does not deal with physical addresses

Each process has its own mapping from virtual-> physical
addresses

Enables
o Code and data to be located anywhere in physical memory
(relocation)

o Isolation/separation of code and data of different processes in
physical processes

(protection and isolation)

o Code and data sharing between multiple processes
(sharing)

10

A System with Physical Memory Only

Examples:
o most Cray machines

o early PCs

o nearly all embedded systems Physical

Addresses

CPU

CPU’s load or store addresses used

directly to access memory

11

The Problem

Physical memory is of limited size (cost)

a

a

What if you need more?

Should the programmer be concerned about the size of code/
data blocks fitting physical memory?

Should the programmer manage data movement from disk to
physical memory?

Should the programmer ensure two processes do not use the
same physical memory?

Also, ISA can have an address space greater than the
physical memory size

a

a

E.g., a 64-bit address space with byte addressability
What if you do not have enough physical memory?

Diftficulties of Direct Physical Addressing

Programmer needs to manage physical memory space
o Inconvenient & hard
o Harder when you have multiple processes

Difficult to support code and data relocation

Difficult to support multiple processes
o Protection and isolation between multiple processes
o Sharing of physical memory space

Difficult to support data/code sharing across processes

13

Virtual Memory

Idea: Give the programmer the illusion of a large address
space while having a small physical memory

a So that the programmer does not worry about managing
physical memory

Programmer can assume he/she has “infinite” amount of
physical memory

Hardware and software cooperatively and automatically
manage the physical memory space to provide the illusion

o Illusion is maintained for each independent process

14

Basic Mechanism

Indirection (in addressing)

Address generated by each instruction in a program is a
“virtual address”

o i.e., it is not the physical address used to address main
memory

o called “linear address” in x86

An “address translation” mechanism maps this address to a
“physical address”

o called “real address” in x86

o Address translation mechanism can be implemented in
hardware and software together

15

A System with Virtual Memory (Page based)

Memory

Page Table

Virtual
Addresses 0:

Physical
Addresses

CPU

Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

16

Virtual Pages, Physical Frames

Virtual address space divided into pages
Physical address space divided into frames

A virtual page is mapped to
o A physical frame, if the page is in physical memory
o A location in disk, otherwise

If an accessed virtual page is not in memory, but on disk

o Virtual memory system brings the page into a physical frame
and adjusts the mapping - this is called demand paging

Page table is the table that stores the mapping of virtual
pages to physical frames

17

Physical Memory as a Cache

In other words...

Physical memory is a cache for pages stored on disk

o In fact, it is a fully associative cache in modern systems (a
virtual page can be mapped to any physical frame)

Similar caching issues exist as we have covered earlier:

o Placement: where and how to place/find a page in cache?

o Replacement: what page to remove to make room in cache?
o Granularity of management: large, small, uniform pages?

o Write policy: what do we do about writes? Write back?

18

Supporting Virtual Memory

Virtual memory requires both HW+SW support
o Page Table is in memory

o Can be cached in special hardware structures called Translation
Lookaside Buffers (TLBs)

The hardware component is called the MMU (memory
management unit)

o Includes Page Table Base Register(s), TLBs, page walkers

It is the job of the software to leverage the MMU to
o Populate page tables, decide what to replace in physical memory

o Change the Page Table Register on context switch (to use the
running thread’s page table)

o Handle page faults and ensure correct mapping
19

Some System Software Jobs for VM

Keeping track of which physical frames are free
Allocating free physical frames to virtual pages

Page replacement policy
o When no physical frame is free, what should be swapped out?

Sharing pages between processes
Copy-on-write optimization

Page-flip optimization

20

Page Fault (“A Miss in Physical Memory”)

If a page is not in physical memory but disk
o Page table entry indicates virtual page not in memory
o Access to such a page triggers a page fault exception

o OS trap handler invoked to move data from disk into memory
Other processes can continue executing
OS has full control over placement

Before fault After fault

Memory

Memory

Page Table

Phvsical Page Table

Virtual Phvsical
Addresses| ..» Addresses Physica

Virtual
Addresses

CPU

CPU

Servicing a Page Fault

(1) Processor signals controller (1) Initiate Block Read

o Read block of length P starting
at disk address X and store
starting at memory address Y

Processor

(2) Read occurs
o Direct Memory Access (DMA)
a Under control of I/O controller

(3) Controller signals completion "V'emory I

o Interrupt processor
o OS resumes suspended process

22

Page Table 1s Per Process

Each process has its own virtual address space

o Full address space for each program
o Simplifies memory allocation, sharing, linking and loading.

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

0
VP 1 Address. PP 2
VP 2 Translation
/ PP 7
VP 1
» PP 10

M-1

Physical Address
Space (DRAM)

(e.g., read/only
library code)

23

Address Translation

How to obtain the physical address from a virtual address?

Page size specified by the ISA
o VAX: 512 bytes

o Today: 4KB, 8KB, 2GB, ... (small and large pages mixed
together)

o Trade-offs? (remember cache lectures)

Page Table contains an entry for each virtual page
o Called Page Table Entry (PTE)
o Whatisin a PTE?

24

Address Translation (II)

il
L ven] —}a,
v Wioh Wle,
l - Pl
. . , E\tmp\c. K roge S22
> : " 32-bik vrhael oddress
Trnslotion | B e
I el f PN — 10: bits
{
l

(] _
o s 219 yrivel poges

- ' 19
Leen T Sigs-nen
(o tach prvtcs&)

25

Address Translation (IIT)

Parameters

o P = 2P = page size (bytes).

o N = 2" = Virtual-address limit

o M = 2™ = Physical-address limit

n—1 p p-1

virtual page number page offset

\4

<_address translation

m—1 v p p-1 Y

physical frame number page offset

virtual address

physical address

Page offset bits don’t change as a result of translation

26

Address Translation (IV)

Separate (set of) page table(s) per process
VPN forms index into page table (points to a page table entry)
Page Table Entry (PTE) provides information about page

page table
base register

virtual address
n—1 p p-1

(per process)

. valid access_physical frame number (PFN)

- Vvirtual page number (VPN)

page offset

»

VPN acts as

table index

if valid=0 _

then page
not in memory
(page fault)

m-—1 v p p-1

physical frame number (PFN)

page offset

physical address

27

Address Translation: Page Hit

CPUCchip . @
PTEA R
“TPTE
0, e
Processor VA MMU @
PA
___ @
Data
®

1) Processor sends virtual address to MMU

Cache/
memory

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to L1 cache

5) L1 cache sends data word to processor

28

Address Translation: Page Fault

----------------- » Page fault exception handler

CPU.chip . i ®
' PTEA o
@ — Victim pagéd
. PTE !
. | Processor VA MMU @ Cache/ @ Disk
. | memory
@ . New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim, and if dirty pages it out to disk

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction.

29

What Is in a Page Table Entry (PTE)?

Page table is the “tag store” for the physical memory data store
o A mapping table between virtual memory and physical memory
PTE is the “tag store entry” for a virtual page in memory

o Need a valid bit 2 to indicate validity/presence in physical memory

Need tag bits (PFN) = to support translation

Need a dirty bit to support “write back caching”

Q
o Need bits to support replacement
a
a

Need protection bits to enable access control and protection

Pheysicel frame 172 poce is sloed N

<« PTE

Proedon or ticcess corpl bi)g [Can s precess occess

| Diordy ol3- /’ T veind
[V[o[e] por. [~ PFN
e |
VVahia b4~
(1s e prge Refoere ov- occess b’
pecint W prysd (Wos Tre pege reforenced

recmﬂ,})

Fue puge.? Wb kol
of occe el)

Remember: Cache versus Page Replacement

Physical memory (DRAM) is a cache for disk

o Usually managed by system software via the virtual memory
subsystem

Page replacement is similar to cache replacement
Page table is the “tag store” for physical memory data store

What is the difference?
o Required speed of access to cache vs. physical memory
o Number of blocks in a cache vs. physical memory

o "Tolerable” amount of time to find a replacement candidate
(disk versus memory access latency)

o Role of hardware versus software

31

Page Replacement Algorithms

If physical memory is full (i.e., list of free physical pages is
empty), which physical frame to replace on a page fault?

Is True LRU feasible?
o 4GB memory, 4KB pages, how many possibilities of ordering?

Modern systems use approximations of LRU
o E.g., the CLOCK algorithm

And, more sophisticated algorithms to take onto account

“frequency” of use

o E.g., the ARC algorithm

o Megiddo and Modha, "ARC: A Self-Tuning, Low Overhead
Replacement Cache,” FAST 2003.

32

CLOCK Page Replacement Algorithm

Keep a circular list of physical frames in memory
Keep a pointer (hand) to the last-examined frame in the list

When a page is accessed, set the R bit in the PTE

When a frame needs to be replaced, replace the first frame
that has the reference (R) bit not set, traversing the circular
list starting from the pointer (hand) clockwise

o During traversal, clear the R bits of examined frames

o Set the hand pointer to the next frame in the list

Clock Algorithm
o]
0]
Clear bits whife search for a page.
@ ﬁ @ Stop at first clear (zero) bit.
o]
0]

[0] 33

Aside: Page Size Trade Offs

What is the granularity of management of physical memory?
Large vs. small pages
Tradeoffs have analogies to large vs. small cache blocks

Many different tradeoffs with advantages and disadvantages

a

L 0O O O

(]

Size of the Page Table (tag store)

Reach of the Translation Lookaside Buffer (we will see this later)
Transfer size from disk to memory (waste of bandwidth?)

Waste of space within a page (internal fragmentation)

Waste of space within the entire physical memory (external
fragmentation)

Granularity of access protection

34

Access Protection/Control
via Virtual Memory

Page-Level Access Control (Protection)

Not every process is allowed to access every page

o E.g., may need supervisor level privilege to access system
pages

Idea: Store access control information on a page basis in
the process’s page table

Enforce access control at the same time as translation

- Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)
Access control (protection)

36

Two Functions of Virtual Memory

'\jarl-uod"
Merna

e

J pose offset | VA

Troslateon

T

- T?fotau.7 :
; : . Tenslan
[S ' 2. Access
: . . . 5 2 Cc : 1

e P.A

o

i PRGSO P SRS Y SV R R

37

VM as a Tool for Memory Access Protection

Extend Page Table Entries (PTEs) with permission bits

Check bits on each access and during a page fault
o If violated, generate exception (Access Protection exception)

Page Tables Memory
Read? Write? Physical Addr PP 0
VP 0:] Yes No PP 6
- PP 2
Processi: vP1: Yes || Yes PP 4
vP2{ No || No || xxxxxxx PP 4
PP 6
Redd? Write? Physical Addr PP 8
VP 0:] Yes Yes PP 6
: / PP 10
Process j: vP 1] Yes No PP9
PP 12
VP 2] No No XXXXXXX

38

Access Control Logic

o GCeest allowed?

of1e pogety be.
accessed (o PTE.)

_qype of accass P;,W',E,m
orghened : Aores, E,ﬂ., W

fml)gs_\awd : Spcufred by TSH

VAX - Kerel [K), Evm(g-)
Svpevnsor- (S) ,'Use~(U

Prkechn ‘-u'k; Spccily aﬁt——w
WhdAype of aocess con loc Prode e s pose
8n o whok- prrlese |e~e)

Privilege Levels 1n x36

Protection Rings

Operating
System
Kernel

e

Level 1

Operating System
Services

Level 2

Applications

Figure 5-3. Protection Rings

40

Page Level Protection in x86

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type | Privilege Access Type | Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

41

Some Issues 1n Virtual Memory

Three Major Issues

How large is the page table and how do we store and
access it?

How can we speed up translation & access control check?
When do we do the translation in relation to cache access?

There are many other issues we will not cover in detail
o What happens on a context switch?
o How can you handle multiple page sizes?

a ...

43

Virtual Memory Issue 1

How large is the page table?

Where do we store it?

o In hardware?

o In physical memory? (Where is the PTBR?)
o In virtual memory? (Where is the PTBR?)

How can we store it efficiently without requiring physical
memory that can store all page tables?

o Idea: multi-level page tables

a Only the first-level page table has to be in physical memory

o Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

44

Issue: Page Table Size

64-bit
A

VPN

PO

-+ 52-bit

page

+12-bit

/I =Cr® ll > PA
table 28-bit v 40-bit

= Suppose 64-bit VA and 40-bit PA, how large is the page table?
2°2 entries x ~4 bytes =~ 16x10*° Bytes

and that is for just one process!

and the process many not be using the entire
VM space!

45

Solution: Multi-Level Page Tables

Example from x86 architecture

Linear Address Space

Linear Address

» Dir

Linear Addr.

Table

Offset

Page Directory

_>

v--’

Page Table

Pqg. Dir. Entry \\ =

CR3*

*Physical Address

Pq. Tbl. Entry

X

Page

Physical Addr.

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Page Table Access

How do we access the Page Table?

Page Table Base Register (CR3 in x86)
Page Table Limit Register

If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page - access control
exception

Page Table Base Register is part of a process’s context
o Just like PC, status registers, general purpose registers
o Needs to be loaded when the process is context-switched in

47

More on x86 Page Tables (I): Small Pages

Linear Address
31 22 21 12 11 0
Directory Table Offset
%
/1 12 4-KByte Page
Y10 A10 Page Table —»| Physical Address
Page Directory
—» PTE
20
> PDE with PS=0 [—<
- 20
/32

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

More on x86 Page Tables (I1I): Large Pages

Linear Address
31 22 21 0

Directory Offset

A 22 4-MByte Page

A10 Page Directory

—» Physical Address

— PDE with PS=1 <>
- 18
2

'3

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

49

x86 Page Table Entries

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are "not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31/3029/28]27/2625[2412322/21/20(19/18[17]16[15[14]13[12111/10/9 (87 [6[5]4[3/2]1]0] |

Address of page direc'cory1 Ignored Ignored] CR3

PDE:
4MB

page

PDE

1] page
table

PDE:
not
present

PTE:
4KB

page

PTE:
Ignored 0] not
present

Bits 39:32
of
address®

Bits 31:22 of address Reserved
of 2MB page frame (must be 0)

|t

Ignored| G

- >0

|_;

o

>
OMNTUV| OMNTD|] ©OMND
—S V| AS7V| 4=
N~C| n=~C
S~ | T~

Address of page table Ignored |Q(g|A
n

o

Ignored

=~=
I—I

Address of 4KB page frame Ignored|G|A|D|A|C

- ST
n~c

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging =0

x860 PTE (4KB page)

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0(P)

Present; must be 1 to map a 4-KByte page

1 (R/W)

Read/write; if O, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (UIS)

User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT)

Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD)

Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A)

Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D)

Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT)

If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8(G)

Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119

Ignored

31:12

Physical address of the 4-KByte page referenced by this entry

51

x380 Page Directory Entry (PDE)

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if O, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

52

Four-level Paging in x86

Linear Address
47 39 38 3029 2120 12 1 0
PML4 Directory Ptr Directory Table Offset

‘I . /| /9 //g
/9 f” 4-KByte Page
Physical Addr

PTE

Page-Directory- -| PDE with PS=0 i
Pointer Table 40 Page Table

Page-Directory

L »PDPTE 40

—» PML4E

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Four-level Paging and Extended Physical Address Space in x86

A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and

IA32_ EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use

of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:

54

Virtual Memory Issue 11

How fast is the address translation?
o How can we make it fast?

Idea: Use a hardware structure that caches PTEs -
Translation lookaside buffer

What should be done on a TLB miss?
o What TLB entry to replace?

o Who handles the TLB miss? HW vs. SW?

What should be done on a page fault?

o What virtual page to replace from physical memory?
o Who handles the page fault? HW vs. SW?

55

Speeding up Translation with a TLL.B

Essentially a cache of recent address translations
o Avoids going to the page table on every reference

Index = lower bits of VPN Virtual address
(virtual page #) VN

-r - Page offset

Tag = unused bits of VPN + Tag l
process ID A
Data = a page-table entry
Status = valid, dirty ndex |
. . Page
The usual cache design choices | offset
Physical page no.
(placement, replacement policy, (Physioal address Y)

multi-level, etc.) apply here too.

56

Handling TLLB Misses

The TLB is small; it cannot hold all PTEs

o Some translations will inevitably miss in the TLB

o Must access memory to find the appropriate PTE
Called walking the page directory/table
Large performance penalty

Who handles TLB misses? Hardware or software?

Handling TLLB Misses (1)

Approach #1. Hardware-Managed (e.g., x86)
o The hardware does the page walk

o The hardware fetches the PTE and inserts it into the TLB
If the TLB is full, the entry replaces another entry
o Done transparently to system software

Approach #2. Software-Managed (e.g., MIPS)

o The hardware raises an exception

o The operating system does the page walk

o The operating system fetches the PTE

o The operating system inserts/evicts entries in the TLB

Handling TL.B Misses (I1I)

= Hardware-Managed TLB
a Pro: No exception on TLB miss. Instruction just stalls
a Pro: Independent instructions may continue
o Pro: No extra instructions/data brought into caches.
a

Con: Page directory/table organization is etched into the
system: OS has little flexibility in deciding these

= Software-Managed TLB
a Pro: The OS can define page table oganization
a Pro: More sophisticated TLB replacement policies are possible

o Con: Need to generate an exception - performance overhead
due to pipeline flush, exception handler execution, extra
instructions brought to caches

Virtual Memory Issue 111

When do we do the address translation?
o Before or after accessing the L1 cache?

60

Virtual Memory and Cache Interaction

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

a Virtual versus physical cache
What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address - same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

62

Homonyms and Synonyms

Homonym: Same VA can map to two different PAs
o Why?
VA is in different processes

Synonym: Different VAs can map to the same PA
o Why?

Different pages can share the same physical frame within or
aCross processes

Reasons: shared libraries, shared data, copy-on-write pages
within the same process, ...

Do homonyms and synonyms create problems when we
have a cache?

o Is the cache virtually or physically addressed?
63

Cache-VM Interaction

CPU

lower
hier.

CPU

CPU

cache

lower
hier.

04

Physical Cache

PTPT core (Physrea coehe)

VA

Ph

A prysad

adrt s
onhc.nht,

65

Virtual Cache

(\ovival Coe)

Pone o!ful—] VA

M éad M“q

A

uohul

S

: _

dotn
sht

>

-

r

:

hi-?

66

Virtual-Physical Cache

VTP radke. ..

puag of frd-

Tk

Vs

Pty oifed—

Whet con e e phuygrecl colebess be mn He

Coske 7

67

Virtually-Indexed Physically-Tagged

If C<(page_size x associativity), the cache index bits come only
from page offset (same in VA and PA)

If both cache and TLB are on chip

0 index both arrays concurrently using VA bits
o check cache tag (physical) against TLB output at the end

VPN Page Offset
! : Index BiB

TLB physical
cache

PPN ‘@' tag data

TLB hit? cache hit? 68

Virtually-Indexed Physically-Tagged

= If C>(page size x associativity), the cache index bits include VPN
=> Synonyms can cause problems

o The same physical address can exist in two locations

= Solutions?

VPN Page Offset
; ' iindex iBiB
(S iy
a
TLB physical
cache
|
v v

PPN ‘@* tag data

TLB hit? cache hit?

Some Solutions to the Synonym Problem

Limit cache size to (page size times associativity)
o get index from page offset

On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

o Used in Alpha 21264, MIPS R10K

Restrict page placement in OS

o make sure index(VA) = index(PA)
o Called page coloring

o Used in many SPARC processors

70

An Exercise

= Problem 5 from
o Past midterm exam Problem 5, Spring 2009

o http://www.ece.cmu.edu/~ece/740/f11/lib/exe/fetch.php?
media=wiki:midterm:midterm_s09.pdf

71

An Exercise (I)

We have a byte-addressable toy computer that has a physical address space of 512 bytes. The computer
uses a simple, one-level virtual memory system. The page table is always in physical memory. The page
size is specified as 8 bytes and the virtual address space is 2 KB.

Part A.

i. (1 point)
How many bits of each virtual address is the virtual page number?

ii. (1 point)
How many bits of each physical address is the physical frame number?

72

We would like to add a 128-byte wrife-through cache to enhance the performance of this computer.
However, we would like the cache access and address translation to be performed simultaneously. In
other words. we would like to index our cache using a virtual address, but do the tag comparison using the
physical addresses (virtually-indexed physically-tagged). The cache we would like to add is direct-
mapped. and has a block size of 2 bytes. The replacement policy is LRU. Answer the following questions:

iii. (1 point)
How many bits of a virtual address are used to determine which byte in a block is accessed?

iv. (2 point)
How many bits of a virtual address are used to index into the cache? Which bits exactly?

v. (1 point)
How many bits of the virtual page number are used to index into the cache?

vi. (S points)
What is the size of the tag store in bits? Show your work.

Part B.

Suppose we have two processes sharing our toy computer. These processes share some portion of the
physical memory. Some of the virtual page-physical frame mappings of each process are given below:

PROCESS 0 PROCESS 1
Virtual Page | Physical Frame Virtual Page | Physical Frame
Page 0 Frame 0 Page 0 Frame 4
Page 3 Frame 7 Page 1 Frame 5
Page 7 Frame 1 Page 7 Frame 3
Page 15 Frame 3 Page 11 Frame 2

vii. (2 points)
Give a complete physical address whose data can exist in two different locations in the cache.

viii. (3 points)

Give the indexes of those two different locations in the cache.

An Exercise (Concluded)

ix. (5 points)

We do not want the same physical address stored in two different locations in the 128-byte cache. We can
prevent this by increasing the associativity of our virtually-indexed physically-tagged cache. What is the
minimum associativity required?

X. (4 points)
Assume we would like to use a direct-mapped cache. Describe a solution that ensures that the same
physical address is never stored in two different locations in the 128-byte cache.

75

Solutions to the Exercise

s http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?
media=wiki:midterm:midterm s09 solution.pdf

= And, more exercises are in past exams and in your
homeworks...

76

Review: Solutions to the Synonym Problem

Limit cache size to (page size times associativity)
o get index from page offset

On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

o Used in Alpha 21264, MIPS R10K

Restrict page placement in OS

o make sure index(VA) = index(PA)
o Called page coloring

o Used in many SPARC processors

77

Some Questions to Ponder

At what cache level should we worry about the synonym
and homonym problems?

What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

What are the potential benefits and downsides of page
coloring?

78

Fast Forward: Virtual Memory — DRAM Interaction

= Operating System influences where an address maps to in

Virtual Page number (52 bits) | Page offset (12 bits) | VA
I Physical Frame number (19 bits) I Page offset (12 bits) I PA
| Row (14 bits) | Bank (3 bits) Column (11 bits) | Byte in bus (3 bits) | PA

= Operating system can control which bank/channel/rank a

virtual page is mapped to.

= It can perform page coloring to minimize bank conflicts
= Or to minimize inter-application interference

79

We did not cover the following slides.
They are for your benefit.

Protection and Translation
without Virtual Memory

Aside: Protection w/o Virtual Memory

Question: Do we need virtual memory for protection?
Answer: No

Other ways of providing memory protection

o Base and bound registers
o Segmentation

None of these are as elegant as page-based access control

o They run into complexities as we need more protection
capabilites

82

Very Quick Overview: Base and Bound

In @ multi-tasking system

Each process is given a non-overlapping, contiguous physical memory region, everything
belonging to a process must fit in that region

When a process is swapped in, OS sets base to the start of the process’s memory region
and bound to the end of the region

HW translation and protection check (on each memory reference)
PA = EA + base, provided (PA < bound), else violations
=> Each process sees a private and uniform address space (0 .. max)

Base
Bound

privileged control
reqgisters

Bound can also be
physical mem. formulated as a range

83

Very Quick Overview: Base and Bound (1)

Limitations of the base and bound scheme

o large contiguous space is hard to come by after the system
runs for a while---free space may be fragmented

o how do two processes share some memory regions but not
others?

84

Segmented Address Space

= segment == a base and bound pair

= segmented addressing gives each process multiple segments
o initially, separate code and data segments
- 2 sets of base-and-bound reg’s for inst and data fetch
- allowed sharing code segments
o became more and more elaborate: code, data, stack, etc.

SEG #

segment tables
must be 1.
privileged data
structures and 2.
private/unique to
each process

segment
table

85

Segmented Address Translation

EA: segment number (SN) and a segment offset (S0)

o SN may be specified explicitly or implied (code vs. data)

o segment size limited by the range of SO

o segments can have different sizes, not all SOs are meaningful
Segment translation and protection table

o maps SN to corresponding base and bound

o separate mapping for each process

o must be a privileged structure

SN SO

segment
table
* base | bound " +,<

PA,
okay?

86

Segmentation as a Way to Extend Address Space

How to extend an old ISA to support larger addresses for
new applications while remaining compatible with old
applications?

SN SO small EA

\:/\ , large
N

EA

*[“large” base

Issues with Segmentation

Segmented addressing creates fragmentation problems:
o a system may have plenty of unallocated memory locations

o they are useless if they do not form a contiguous region of a
sufficient size

Page-based virtual memory solves these issues

o By ensuring the address space is divided into fixed size
“pageS"

o And virtual address space of each process is contiguous

a The key is the use of indirection to give each process the
illusion of a contiguous address space

88

Page-based Address Space

= In a Paged Memory System:

= PA space is divided into fixed size “segments” (e.qg., 4kbyte),

more commonly known as “page frames”
= VA s interpreted as page number and page offset

Page No. Page Offset
page tables
must be 1. v
privileged data / \
structures and 2. page > +
private/unique to table Frarge no u

each process

okay?

-PA

89

