
18-447

Computer Architecture

Lecture 2: Fundamental Concepts and ISA

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 1/14/2014

Agenda for Today

 Finish up logistics from last lecture

 Why study computer architecture?

 Some fundamental concepts in computer architecture

 ISA

2

Last Lecture Recap

 What it means/takes to be a good (computer) architect

 Roles of a computer architect (look everywhere!)

 Goals of 447 and what you will learn in this course

 Levels of transformation

 Abstraction layers, their benefits, and the benefits of
comfortably crossing them

 Three example problems and solution ideas

 Memory Performance Attacks

 DRAM Refresh

 Row Hammer: DRAM Disturbance Errors

 Hamming Distance and Bloom Filters

 Course Logistics

 Assignments: HW0 (Jan 16), Lab1 (Jan 23), HW1 (Jan 28)
3

Review: Key Takeaway (from 3 Problems)

 Breaking the abstraction layers (between components and
transformation hierarchy levels) and knowing what is
underneath enables you to solve problems and design
better future systems

 Cooperation between multiple components and layers can
enable more effective solutions and systems

4

A Note on Hardware vs. Software

 This course is classified under “Computer Hardware”

 However, you will be much more capable if you master
both hardware and software (and the interface between
them)

 Can develop better software if you understand the underlying
hardware

 Can design better hardware if you understand what software
it will execute

 Can design a better computing system if you understand both

 This course covers the HW/SW interface and
microarchitecture

 We will focus on tradeoffs and how they affect software
5

What Will You Learn

 Computer Architecture: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

 Traditional definition: “The term architecture is used
here to describe the attributes of a system as seen by the
programmer, i.e., the conceptual structure and functional
behavior as distinct from the organization of the dataflow
and controls, the logic design, and the physical
implementation.” Gene Amdahl, IBM Journal of R&D, April
1964

 6

Computer Architecture in Levels of Transformation

 Read: Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proceedings of the IEEE 2001.

7

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

Aside: What Is An Algorithm?

 Step-by-step procedure where each step has three
properties:

 Definite (precisely defined)

 Effectively computable (by a computer)

 Terminates

8

Levels of Transformation, Revisited

9

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 A user-centric view: computer designed for users

 The entire stack should be optimized for user

Logic
 Circuits

Electrons

What Will You Learn?

 Fundamental principles and tradeoffs in designing the
hardware/software interface and major components of a
modern programmable microprocessor

 Focus on state-of-the-art (and some recent research and trends)

 Trade-offs and how to make them

 How to design, implement, and evaluate a functional modern
processor

 Semester-long lab assignments

 A combination of RTL implementation and higher-level simulation

 Focus is functionality first (then, on “how to do even better”)

 How to dig out information, think critically and broadly

 How to work even harder and more efficiently!
10

Course Goals

 Goal 1: To familiarize those interested in computer system

design with both fundamental operation principles and design
tradeoffs of processor, memory, and platform architectures in
today’s systems.

 Strong emphasis on fundamentals, design tradeoffs, key
current/future issues

 Strong emphasis on looking backward, forward, up and down

 Goal 2: To provide the necessary background and experience to

design, implement, and evaluate a modern processor by
performing hands-on RTL and C-level implementation.

 Strong emphasis on functionality, hands-on design &
implementation, and efficiency.

 Strong emphasis on making things work, realizing ideas

 11

Reminder: What Do I Expect From You?

 Required background: 240 (digital logic, RTL implementation,
Verilog), 213 (systems, virtual memory, assembly)

 Learn the material thoroughly

 attend lectures, do the readings, do the homeworks

 Do the work & work hard

 Ask questions, take notes, participate

 Perform the assigned readings

 Come to class on time

 Start early – do not procrastinate

 If you want feedback, come to office hours

 Remember “Chance favors the prepared mind.” (Pasteur)
12

Why Study Computer

Architecture?

13

What is Computer Architecture?

 The science and art of designing, selecting, and
interconnecting hardware components and designing the
hardware/software interface to create a computing system
that meets functional, performance, energy consumption,
cost, and other specific goals.

 We will soon distinguish between the terms architecture,
and microarchitecture.

14

An Enabler: Moore’s Law

15

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

16

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

Recommended Reading

 Moore, “Cramming more components onto integrated
circuits,” Electronics Magazine, 1965.

 Only 3 pages

 A quote:

 “With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65 000 components on a single silicon chip.”

 Another quote:

 “Will it be possible to remove the heat generated by tens of
thousands of components in a single silicon chip?”

 17

What Do We Use These Transistors for?

 Your readings for this week should give you an idea…

 Patt, “Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution,” Proceedings of the
IEEE 2001.

 One of:

 Moscibroda and Mutlu, “Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems,” USENIX Security
2007.

 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,”
ISCA 2012.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

 18

Why Study Computer Architecture?

 Enable better systems: make computers faster, cheaper,
smaller, more reliable, …

 By exploiting advances and changes in underlying technology/circuits

 Enable new applications

 Life-like 3D visualization 20 years ago?

 Virtual reality?

 Personalized genomics? Personalized medicine?

 Enable better solutions to problems
 Software innovation is built into trends and changes in computer architecture

 > 50% performance improvement per year has enabled this innovation

 Understand why computers work the way they do
19

Computer Architecture Today (I)

 Today is a very exciting time to study computer architecture

 Industry is in a large paradigm shift (to multi-core and
beyond) – many different potential system designs possible

 Many difficult problems motivating and caused by the shift

 Power/energy constraints multi-core?

 Complexity of design multi-core?

 Difficulties in technology scaling new technologies?

 Memory wall/gap

 Reliability wall/issues

 Programmability wall/problem

 Huge hunger for data and new data-intensive applications

 No clear, definitive answers to these problems
20

Computer Architecture Today (II)

 These problems affect all parts of the computing stack – if
we do not change the way we design systems

 No clear, definitive answers to these problems
21

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic
 Circuits

Electrons

Many new demands

from the top

(Look Up)

Many new issues

at the bottom

(Look Down)

Fast changing

demands and

personalities

of users

(Look Up)

Computer Architecture Today (III)

 Computing landscape is very different from 10-20 years ago

 Both UP (software and humanity trends) and DOWN
(technologies and their issues), FORWARD and BACKWARD,
and the resulting requirements and constraints

22

General Purpose GPUs

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Every component and its

interfaces, as well as

entire system designs

are being re-examined

Computer Architecture Today (IV)

 You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

 You can invent new paradigms for computation,
communication, and storage

 Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

 Pre-paradigm science: no clear consensus in the field

 Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

 Revolutionary science: underlying assumptions re-examined

23

Computer Architecture Today (IV)

 You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

 You can invent new paradigms for computation,
communication, and storage

 Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

 Pre-paradigm science: no clear consensus in the field

 Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

 Revolutionary science: underlying assumptions re-examined

24

… but, first …

 Let’s understand the fundamentals…

 You can change the world only if you understand it well
enough…

 Especially the past and present dominant paradigms

 And, their advantages and shortcomings – tradeoffs

 And, what remains fundamental across generations

 And, what techniques you can use and develop to solve
problems

25

Fundamental Concepts

26

What is A Computer?

 Three key components

 Computation

 Communication

 Storage (memory)

27

What is A Computer?

 We will cover all three components

28

Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath

The Von Neumann Model/Architecture

 Also called stored program computer (instructions in
memory). Two key properties:

 Stored program

 Instructions stored in a linear memory array

 Memory is unified between instructions and data

 The interpretation of a stored value depends on the control
signals

 Sequential instruction processing

 One instruction processed (fetched, executed, and completed) at a
time

 Program counter (instruction pointer) identifies the current instr.

 Program counter is advanced sequentially except for control transfer
instructions

29

When is a value interpreted as an instruction?

The Von Neumann Model/Architecture

 Recommended reading

 Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

 Patt and Patel book, Chapter 4, “The von Neumann Model”

 Stored program

 Sequential instruction processing

30

The Von Neumann Model (of a Computer)

31

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von Neumann Model (of a Computer)

 Q: Is this the only way that a computer can operate?

 A: No.

 Qualified Answer: But, it has been the dominant way

 i.e., the dominant paradigm for computing

 for N decades

32

The Dataflow Model (of a Computer)

 Von Neumann model: An instruction is fetched and
executed in control flow order

 As specified by the instruction pointer

 Sequential unless explicit control flow instruction

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

 Potentially many instructions can execute at the same time

 Inherently more parallel
33

Von Neumann vs Dataflow

 Consider a Von Neumann program

 What is the significance of the program order?

 What is the significance of the storage locations?

 Which model is more natural to you as a programmer?

34

v <= a + b;
w <= b * 2;
x <= v - w
y <= v + w
z <= x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

35

Data Flow Nodes

36

An Example Data Flow Program

37

OUT

ISA-level Tradeoff: Instruction Pointer

 Do we need an instruction pointer in the ISA?

 Yes: Control-driven, sequential execution

 An instruction is executed when the IP points to it

 IP automatically changes sequentially (except for control flow
instructions)

 No: Data-driven, parallel execution

 An instruction is executed when all its operand values are
available (data flow)

 Tradeoffs: MANY high-level ones

 Ease of programming (for average programmers)?

 Ease of compilation?

 Performance: Extraction of parallelism?

 Hardware complexity?

38

ISA vs. Microarchitecture Level Tradeoff

 A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

 ISA: Specifies how the programmer sees instructions to be
executed

 Programmer sees a sequential, control-flow execution order vs.

 Programmer sees a data-flow execution order

 Microarchitecture: How the underlying implementation
actually executes instructions

 Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

 Programmer should see the order specified by the ISA
39

Let’s Get Back to the Von Neumann Model

 But, if you want to learn more about dataflow…

 Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 A later 447 lecture, 740/742

 If you are really impatient:

 http://www.youtube.com/watch?v=D2uue7izU2c

 http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

40

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

The Von-Neumann Model

 All major instruction set architectures today use this model

 x86, ARM, MIPS, SPARC, Alpha, POWER

 Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different

 Pipelined instruction execution: Intel 80486 uarch

 Multiple instructions at a time: Intel Pentium uarch

 Out-of-order execution: Intel Pentium Pro uarch

 Separate instruction and data caches

 But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

 Difference between ISA and microarchitecture

41

What is Computer Architecture?

 ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

 Traditional (ISA-only) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.” Gene Amdahl, IBM
Journal of R&D, April 1964

 42

ISA vs. Microarchitecture

 ISA

 Agreed upon interface between software
and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know
to write and debug system/user programs

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture
43

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture

 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

 x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs

 Why?
44

ISA

 Instructions
 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory
 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling

 Access Control, Priority/Privilege

 I/O: memory-mapped vs. instr.

 Task/thread Management

 Power and Thermal Management

 Multi-threading support, Multiprocessor support

45

Microarchitecture

 Implementation of the ISA under specific design constraints
and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling?

 Error correction?

46

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Property of ISA vs. Uarch?

 ADD instruction’s opcode

 Number of general purpose registers

 Number of ports to the register file

 Number of cycles to execute the MUL instruction

 Whether or not the machine employs pipelined instruction
execution

 Remember

 Microarchitecture: Implementation of the ISA under specific
design constraints and goals

48

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Considerations

 Cost

 Performance

 Maximum power consumption

 Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Design point determined by the “Problem” space
(application space), the intended users/market

49

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space

 Dream, and they will appear…

50

Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

 Why art?

 51

Why Is It (Somewhat) Art?

52

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 We do not (fully) know the future (applications, users, market)

Logic
 Circuits

Electrons

New demands

from the top

(Look Up)

New issues and

capabilities

at the bottom

(Look Down)

New demands and

personalities of users

(Look Up)

Why Is It (Somewhat) Art?

53

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 And, the future is not constant (it changes)!

Logic
 Circuits

Electrons

Changing demands

at the top

(Look Up and Forward)

Changing issues and

capabilities

at the bottom

(Look Down and Forward)

Changing demands and

personalities of users

(Look Up and Forward)

Analog from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a power plant boiler room be later used as a
classroom?

54

Macro-Architecture: Boiler Room

55

How Can We Adapt to the Future

 This is part of the task of a good computer architect

 Many options (bag of tricks)

 Keen insight and good design

 Good use of fundamentals and principles

 Efficient design

 Heterogeneity

 Reconfigurability

 …

 Good use of the underlying technology

 …

56

Readings for Next Time

 P&H, Chapter 4, Sections 4.1-4.4

 P&P, revised Appendix C – LC3b datapath and
microprogrammed operation

 P&P Chapter 5: LC-3 ISA

 P&P, revised Appendix A – LC3b ISA

57

