
18-447
Computer Architecture

Lecture 19: High-Performance Caches

Prof. Onur Mutlu
Carnegie Mellon University

Spring 2015, 3/2/2015

Assignment and Exam Reminders
n  Lab 4: Due March 6 (this Friday!)

q  Control flow and branch prediction

n  Lab 5: Due March 22
q  Data cache

n  HW 4: March 18
n  Exam: March 20

n  Advice: Finish the labs early
q  You have almost a month for Lab 5

n  Advice: Manage your time well

2

Lab 3 Grade Distribution

0

2

4

6

8

10

12

14

16

N
um

be
r

of
 S

tu
de

nt
s

3

n  Average 63.17
n  Median 69
n  Stddev 37.19
n  Max 100
n  Min 34

Lab 3 Extra Credits
n  Stay tuned!

4

Agenda for the Rest of 447
n  The memory hierarchy
n  Caches, caches, more caches
n  Virtualizing the memory hierarchy
n  Main memory: DRAM
n  Main memory control, scheduling
n  Memory latency tolerance techniques
n  Non-volatile memory

n  Multiprocessors
n  Coherence and consistency
n  Interconnection networks
n  Multi-core issues

5

Readings for Today and Next Lecture
n  Memory Hierarchy and Caches

Required
n  Cache chapters from P&H: 5.1-5.3
n  Memory/cache chapters from Hamacher+: 8.1-8.7

Required + Review:
n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE

Trans. On Electronic Computers, 1965.
n  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

6

How to Improve Cache Performance
n  Three fundamental goals

n  Reducing miss rate
q  Caveat: reducing miss rate can reduce performance if more

costly-to-refetch blocks are evicted

n  Reducing miss latency or miss cost

n  Reducing hit latency or hit cost

7

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

8

Cheap Ways of Reducing Conflict Misses
n  Instead of building highly-associative caches:

n  Victim Caches
n  Hashed/randomized Index Functions
n  Pseudo Associativity
n  Skewed Associative Caches
n  …

9

Victim Cache: Reducing Conflict Misses

n  Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

n  Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

10

Direct
Mapped
Cache

Next Level
Cache

Victim
cache

Hashing and Pseudo-Associativity
n  Hashing: Use better “randomizing” index functions

+ can reduce conflict misses
n  by distributing the accessed memory blocks more evenly to sets
n  Example of conflicting accesses: strided access pattern where

stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

n  Pseudo-associativity (Poor Man’s associative cache)
q  Serial lookup: On a miss, use a different index function and

access cache again
q  Given a direct-mapped array with K cache blocks

n  Implement K/N sets
n  Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

11

Skewed Associative Caches
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,”

ISCA 1993.

12

Skewed Associative Caches (I)
n  Basic 2-way associative cache structure

13

Way 0 Way 1

Tag Index Byte in Block

Same index function
for each way

=? =?

Skewed Associative Caches (II)
n  Skewed associative caches

q  Each bank has a different index function

14

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)
n  Idea: Reduce conflict misses by using different index

functions for each cache way

n  Benefit: indices are more randomized (memory blocks are

better distributed across sets)
q  Less likely two blocks have same index

n  Reduced conflict misses

n  Cost: additional latency of hash function

n  Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

15

Software Approaches for Higher Hit Rate
n  Restructuring data access patterns
n  Restructuring data layout

n  Loop interchange
n  Data structure separation/merging
n  Blocking
n  …

16

Restructuring Data Access Patterns (I)
n  Idea: Restructure data layout or data access patterns
n  Example: If column-major

q  x[i+1,j] follows x[i,j] in memory
q  x[i,j+1] is far away from x[i,j]

n  This is called loop interchange
n  Other optimizations can also increase hit rate

q  Loop fusion, array merging, …
n  What if multiple arrays? Unknown array size at compile time?

17

Poor code
for i = 1, rows
 for j = 1, columns
 sum = sum + x[i,j]

Better code
for j = 1, columns
 for i = 1, rows
 sum = sum + x[i,j]

Restructuring Data Access Patterns (II)
n  Blocking

q  Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

q  Avoids cache conflicts between different chunks of
computation

q  Essentially: Divide the working set so that each piece fits in
the cache

n  But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

18

Restructuring Data Layout (I)
n  Pointer based traversal

(e.g., of a linked list)
n  Assume a huge linked

list (1M nodes) and
unique keys

n  Why does the code on
the left have poor cache
hit rate?
q  “Other fields” occupy

most of the cache line
even though rarely
accessed!

19

struct Node {
 struct Node* node;
 int key;
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access other fields of node
 }
 node = nodeànext;
}

Restructuring Data Layout (II)
n  Idea: separate frequently-

used fields of a data
structure and pack them
into a separate data
structure

n  Who should do this?
q  Programmer
q  Compiler

n  Profiling vs. dynamic

q  Hardware?
q  Who can determine what

is frequently used?

20

struct Node {
 struct Node* node;
 int key;
 struct Node-data* node-data;
}

struct Node-data {
 char [256] name;
 char [256] school;
}

while (node) {
 if (nodeàkey == input-key) {
 // access nodeànode-data
 }
 node = nodeànext;
}

Improving Basic Cache Performance
n  Reducing miss rate

q  More associativity
q  Alternatives/enhancements to associativity

n  Victim caches, hashing, pseudo-associativity, skewed associativity
q  Better replacement/insertion policies
q  Software approaches

n  Reducing miss latency/cost
q  Multi-level caches
q  Critical word first
q  Subblocking/sectoring
q  Better replacement/insertion policies
q  Non-blocking caches (multiple cache misses in parallel)
q  Multiple accesses per cycle
q  Software approaches

21

Miss Latency/Cost
n  What is miss latency or miss cost affected by?

q  Where does the miss get serviced from?
n  Local vs. remote memory
n  What level of cache in the hierarchy?
n  Row hit versus row miss
n  Queueing delays in the memory controller and the interconnect
n  …

q  How much does the miss stall the processor?
n  Is it overlapped with other latencies?
n  Is the data immediately needed?
n  …

22

23

Memory Level Parallelism (MLP)

q  Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

q  Several techniques to improve MLP (e.g., out-of-order execution)

q  MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

q  Traditional cache replacement policies try to reduce miss
count

q  Implicit assumption: Reducing miss count reduces memory-

related stall time

q  Misses with varying cost/MLP breaks this assumption!

q  Eliminating an isolated miss helps performance more than

eliminating a parallel miss
q  Eliminating a higher-latency miss could help performance

more than eliminating a lower-latency miss

24

25

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1.  Minimizes miss count (Belady’s OPT)
2.  Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

26

P3 P2 P1 P4

H H H H M H H H M Hit/Miss
Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall
Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M
Time stall Misses=6

Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement
n  How do we incorporate MLP into replacement decisions?

n  Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.
q  Required reading for this week

27

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses
n  Question: If the processor can generate multiple cache

accesses, can the later accesses be handled while a
previous miss is outstanding?

n  Goal: Enable cache access when there is a pending miss

n  Goal: Enable multiple misses in parallel
q  Memory-level parallelism (MLP)

n  Solution: Non-blocking or lockup-free caches
q  Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache

Organization," ISCA 1981.

29

Handling Multiple Outstanding Accesses
n  Idea: Keep track of the status/data of misses that are being

handled in Miss Status Handling Registers (MSHRs)

q  A cache access checks MSHRs to see if a miss to the same
block is already pending.
n  If pending, a new request is not generated
n  If pending and the needed data available, data forwarded to later

load

q  Requires buffering of outstanding miss requests

30

Miss Status Handling Register
n  Also called “miss buffer”
n  Keeps track of

q  Outstanding cache misses
q  Pending load/store accesses that refer to the missing cache

block

n  Fields of a single MSHR entry
q  Valid bit
q  Cache block address (to match incoming accesses)
q  Control/status bits (prefetch, issued to memory, which

subblocks have arrived, etc)
q  Data for each subblock
q  For each pending load/store

n  Valid, type, data size, byte in block, destination register or store
buffer entry address

31

Miss Status Handling Register Entry

32

MSHR Operation
n  On a cache miss:

q  Search MSHRs for a pending access to the same block
n  Found: Allocate a load/store entry in the same MSHR entry
n  Not found: Allocate a new MSHR
n  No free entry: stall

n  When a subblock returns from the next level in memory
q  Check which loads/stores waiting for it

n  Forward data to the load/store unit
n  Deallocate load/store entry in the MSHR entry

q  Write subblock in cache or MSHR
q  If last subblock, dellaocate MSHR (after writing the block in

cache)

33

Non-Blocking Cache Implementation
n  When to access the MSHRs?

q  In parallel with the cache?
q  After cache access is complete?

n  MSHRs need not be on the critical path of hit requests
q  Which one below is the common case?

n  Cache miss, MSHR hit
n  Cache hit

34

Enabling High Bandwidth Memories

Multiple Instructions per Cycle
n  Can generate multiple cache/memory accesses per cycle
n  How do we ensure the cache/memory can handle multiple

accesses in the same clock cycle?

n  Solutions:
q  true multi-porting
q  virtual multi-porting (time sharing a port)
q  multiple cache copies
q  banking (interleaving)

36

Handling Multiple Accesses per Cycle (I)
n  True multiporting

q  Each memory cell has multiple read or write ports
+ Truly concurrent accesses (no conflicts on read accesses)
-- Expensive in terms of latency, power, area
q  What about read and write to the same location at the same

time?
n  Peripheral logic needs to handle this

37

Peripheral Logic for True Multiporting

38

Peripheral Logic for True Multiporting

39

Handling Multiple Accesses per Cycle (II)
n  Virtual multiporting

q  Time-share a single port
q  Each access needs to be (significantly) shorter than clock cycle
q  Used in Alpha 21264
q  Is this scalable?

40

Cache
Copy 1

Handling Multiple Accesses per Cycle (III)
n  Multiple cache copies

q  Stores update both caches
q  Loads proceed in parallel

n  Used in Alpha 21164

n  Scalability?
q  Store operations form a

bottleneck
q  Area proportional to “ports”

41

Port 1
Load

Store

Port 1
Data

Cache
Copy 2 Port 2

Load

Port 2
Data

Handling Multiple Accesses per Cycle (III)
n  Banking (Interleaving)

q  Bits in address determines which bank an address maps to
n  Address space partitioned into separate banks
n  Which bits to use for “bank address”?

+ No increase in data store area
-- Cannot satisfy multiple accesses
 to the same bank
-- Crossbar interconnect in input/output

n  Bank conflicts
q  Two accesses are to the same bank
q  How can these be reduced?

n  Hardware? Software?

42

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving
n  Interleaving (banking)

q  Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q  Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q  Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n  Each bank is smaller than the entire memory storage
n  Accesses to different banks can be overlapped

q  A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

43

Further Readings on Caching and MLP
n  Required: Qureshi et al., “A Case for MLP-Aware Cache

Replacement,” ISCA 2006.

n  Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas
Session, 1998.

n  Mutlu et al., “Runahead Execution: An Effective Alternative
to Large Instruction Windows,” IEEE Micro 2003.

44

Multi-Core Issues in Caching

Caches in Multi-Core Systems
n  Cache efficiency becomes even more important in a multi-

core/multi-threaded system
q  Memory bandwidth is at premium
q  Cache space is a limited resource

n  How do we design the caches in a multi-core system?

n  Many decisions
q  Shared vs. private caches
q  How to maximize performance of the entire system?
q  How to provide QoS to different threads in a shared cache?
q  Should cache management algorithms be aware of threads?
q  How should space be allocated to threads in a shared cache?

46

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

47

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Resource Sharing Concept and Advantages
n  Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q  Example resources: functional units, pipeline, caches, buses,

memory
n  Why?

+ Resource sharing improves utilization/efficiency à throughput
q  When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q  For example, shared data kept in the same cache in
multithreaded processors

+ Compatible with the shared memory model

48

Resource Sharing Disadvantages
n  Resource sharing results in contention for resources

q  When the resource is not idle, another thread cannot use it
q  If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
 - Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

 - Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
 - Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
49

Private vs. Shared Caches
n  Private cache: Cache belongs to one core (a shared block can be in

multiple caches)
n  Shared cache: Cache is shared by multiple cores

50

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Shared Caches Between Cores
n  Advantages:

q  High effective capacity
q  Dynamic partitioning of available cache space

n  No fragmentation due to static partitioning
q  Easier to maintain coherence (a cache block is in a single location)
q  Shared data and locks do not ping pong between caches

n  Disadvantages
q  Slower access
q  Cores incur conflict misses due to other cores’ accesses

n  Misses due to inter-core interference
n  Some cores can destroy the hit rate of other cores

q  Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

51

Shared Caches: How to Share?
n  Free-for-all sharing

q  Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

q  Not thread/application aware
q  An incoming block evicts a block regardless of which threads

the blocks belong to

n  Problems
q  Inefficient utilization of cache: LRU is not the best policy
q  A cache-unfriendly application can destroy the performance of

a cache friendly application
q  Not all applications benefit equally from the same amount of

cache: free-for-all might prioritize those that do not benefit
q  Reduced performance, reduced fairness

52

Example: Utility Based Shared Cache Partitioning
n  Goal: Maximize system throughput
n  Observation: Not all threads/applications benefit equally from

caching à simple LRU replacement not good for system
throughput

n  Idea: Allocate more cache space to applications that obtain the
most benefit from more space

n  The high-level idea can be applied to other shared resources as
well.

n  Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

n  Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

53

The Multi-Core System: A Shared Resource View

54

Shared
Storage

Need for QoS and Shared Resource Mgmt.
n  Why is unpredictable performance (or lack of QoS) bad?

n  Makes programmer’s life difficult
q  An optimized program can get low performance (and

performance varies widely depending on co-runners)

n  Causes discomfort to user
q  An important program can starve
q  Examples from shared software resources

n  Makes system management difficult
q  How do we enforce a Service Level Agreement when hardware

resources are sharing is uncontrollable?

55

Resource Sharing vs. Partitioning
n  Sharing improves throughput

q  Better utilization of space

n  Partitioning provides performance isolation (predictable
performance)
q  Dedicated space

n  Can we get the benefits of both?

n  Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable
q  No wasted resource + QoS mechanisms for threads

56

Shared Hardware Resources
n  Memory subsystem (in both multithreaded and multi-core

systems)
q  Non-private caches
q  Interconnects
q  Memory controllers, buses, banks

n  I/O subsystem (in both multithreaded and multi-core
systems)
q  I/O, DMA controllers
q  Ethernet controllers

n  Processor (in multithreaded systems)
q  Pipeline resources
q  L1 caches

57

