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Assignment and Exam Reminders 
n  Lab 4: Due March 6 

q  Control flow and branch prediction 

n  Lab 5: Due March 22 
q  Data cache 

n  HW 4: March 18 
n  Exam: March 20 

n  Advice: Finish the labs early 
q  You have almost a month for Lab 5 

n  Advice: Manage your time well 
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Agenda for the Rest of 447  
n  The memory hierarchy 
n  Caches, caches, more caches (high locality, high bandwidth) 
n  Virtualizing the memory hierarchy 
n  Main memory: DRAM 
n  Main memory control, scheduling 
n  Memory latency tolerance techniques 
n  Non-volatile memory 

n  Multiprocessors 
n  Coherence and consistency 
n  Interconnection networks 
n  Multi-core issues 
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Readings for Today and Next Lecture 
n  Memory Hierarchy and Caches 
 
Required 
n  Cache chapters from P&H: 5.1-5.3  
n  Memory/cache chapters from Hamacher+: 8.1-8.7  

Required + Review: 
n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 

Trans. On Electronic Computers, 1965.  
n  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 

ISCA 2006. 
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Review: Caching Basics 
n  Caches are structures that exploit locality of reference in 

memory 
q  Temporal locality 
q  Spatial locality 

n  They can be constructed in many ways 
q  Can exploit either temporal or spatial locality or both 
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Review: Caching Basics 
n  Block (line): Unit of storage in the cache 

q  Memory is logically divided into cache blocks that map to 
locations in the cache 

n  When data referenced 
q  HIT: If in cache, use cached data instead of accessing memory 
q  MISS: If not in cache, bring block into cache 

n  Maybe have to kick something else out to do it 
 

n  Some important cache design decisions 
q  Placement: where and how to place/find a block in cache? 
q  Replacement: what data to remove to make room in cache? 
q  Granularity of management: large, small, uniform blocks? 
q  Write policy: what do we do about writes? 
q  Instructions/data: Do we treat them separately? 
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Cache Abstraction and Metrics 

n  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses) 
n  Average memory access time (AMAT) 

 = ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 
n  Aside: Can reducing AMAT reduce performance? 
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A Basic Hardware Cache Design 
n  We will start with a basic hardware cache design 

n  Then, we will examine a multitude of ideas to make it 
better 
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Blocks and Addressing the Cache 
n  Memory is logically divided into fixed-size blocks 

n  Each block maps to a location in the cache, determined by 
the index bits in the address 
q  used to index into the tag and data stores  

n  Cache access:  
1) index into the tag and data stores with index bits in address  
2) check valid bit in tag store 
3) compare tag bits in address with the stored tag in tag store 

n  If a block is in the cache (cache hit), the stored tag should be 
valid and match the tag of the block 
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Direct-Mapped Cache: Placement and Access 

n  Assume byte-addressable memory:           
256 bytes, 8-byte blocks à 32 blocks 

n  Assume cache: 64 bytes, 8 blocks 
q  Direct-mapped: A block can go to only one location 

q  Addresses with same index contend for the same location 
n  Cause conflict misses 
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Direct-Mapped Caches 
n  Direct-mapped cache: Two blocks in memory that map to 

the same index in the cache cannot be present in the cache 
at the same time 
q  One index à one entry 

n  Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index  
q  Assume addresses A and B have the same index bits but 

different tag bits 
q  A, B, A, B, A, B, A, B, … à conflict in the cache index 
q  All accesses are conflict misses 
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n  Addresses 0 and 8 always conflict in direct mapped cache 
n  Instead of having one column of 8, have 2 columns of 4 blocks 

Set Associativity 
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Higher Associativity 
n  4-way 

 
 
 
 
 
 
 

+ Likelihood of conflict misses even lower 
-- More tag comparators and wider data mux; larger tags 
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Full Associativity 
n  Fully associative cache 

q  A block can be placed in any cache location 
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Associativity (and Tradeoffs) 
n  Degree of associativity: How many blocks can map to the 

same index (or set)? 

n  Higher associativity 
++ Higher hit rate 
-- Slower cache access time (hit latency and data access latency) 
-- More expensive hardware (more comparators) 
 

n  Diminishing returns from higher 
associativity 
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Issues in Set-Associative Caches 
n  Think of each block in a set having a “priority” 

q  Indicating how important it is to keep the block in the cache 

n  Key issue: How do you determine/adjust block priorities? 
n  There are three key decisions in a set: 

q  Insertion, promotion, eviction (replacement) 

n  Insertion: What happens to priorities on a cache fill? 
q  Where to insert the incoming block, whether or not to insert the block 

n  Promotion: What happens to priorities on a cache hit? 
q  Whether and how to change block priority 

n  Eviction/replacement: What happens to priorities on a cache 
miss? 
q  Which block to evict and how to adjust priorities 
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Eviction/Replacement Policy 
n  Which block in the set to replace on a cache miss? 

q  Any invalid block first 
q  If all are valid, consult the replacement policy 

n  Random 
n  FIFO 
n  Least recently used (how to implement?) 
n  Not most recently used 
n  Least frequently used? 
n  Least costly to re-fetch? 

q  Why would memory accesses have different cost? 

n  Hybrid replacement policies 
n  Optimal replacement policy?  
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Implementing LRU 
n  Idea: Evict the least recently accessed block 
n  Problem: Need to keep track of access ordering of blocks 

n  Question: 2-way set associative cache: 
q  What do you need to implement LRU perfectly? 

n  Question: 4-way set associative cache:  
q  What do you need to implement LRU perfectly? 
q  How many different orderings possible for the 4 blocks in the 

set?  
q  How many bits needed to encode the LRU order of a block? 
q  What is the logic needed to determine the LRU victim? 
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Approximations of LRU 
n  Most modern processors do not implement “true LRU” (also 

called “perfect LRU”) in highly-associative caches 

n  Why? 
q  True LRU is complex 
q  LRU is an approximation to predict locality anyway (i.e., not 

the best possible cache management policy) 

n  Examples: 
q  Not MRU (not most recently used) 
q  Hierarchical LRU: divide the 4-way set into 2-way “groups”, 

track the MRU group and the MRU way in each group 
q  Victim-NextVictim Replacement: Only keep track of the victim 

and the next victim 
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Hierarchical LRU (not MRU) 
n  Divide a set into multiple groups 
n  Keep track of only the MRU group 
n  Keep track of only the MRU block in each group 

n  On replacement, select victim as: 
q  A not-MRU block in one of the not-MRU groups (randomly pick 

one of such blocks/groups) 
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Hierarchical LRU (not MRU) Example 
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Hierarchical LRU (not MRU) Example 

22 



Hierarchical LRU (not MRU): Questions 
n  16-way cache 
n  2 8-way groups 

n  What is an access pattern that performs worse than true 
LRU? 

n  What is an access pattern that performs better than true 
LRU? 
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Victim/Next-Victim Policy 
n  Only 2 blocks’ status tracked in each set:  

q  victim (V), next victim (NV) 
q  all other blocks denoted as (O) – Ordinary block 

n  On a cache miss 
q  Replace V 
q  Demote NV to V 
q  Randomly pick an O block as NV 

n  On a cache hit to V 
q  Demote NV to V 
q  Randomly pick an O block as NV 
q  Turn V to O 
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Victim/Next-Victim Policy (II) 
n  On a cache hit to NV 

q  Randomly pick an O block as NV 
q  Turn NV to O 

n  On a cache hit to O 
q  Do nothing 
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Victim/Next-Victim Example 
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Cache Replacement Policy: LRU or Random 
n  LRU vs. Random: Which one is better? 

q  Example: 4-way cache, cyclic references to A, B, C, D, E  
n  0% hit rate with LRU policy 

n  Set thrashing: When the “program working set” in a set is 
larger than set associativity 
q  Random replacement policy is better when thrashing occurs 

n  In practice: 
q  Depends on workload 
q  Average hit rate of LRU and Random are similar 

n  Best of both Worlds: Hybrid of LRU and Random 
q  How to choose between the two? Set sampling 

n  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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What Is the Optimal Replacement Policy? 
n  Belady’s OPT 

q  Replace the block that is going to be referenced furthest in the 
future by the program 

q  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966. 

q  How do we implement this? Simulate? 

n  Is this optimal for minimizing miss rate? 
n  Is this optimal for minimizing execution time? 

q  No. Cache miss latency/cost varies from block to block! 
q  Two reasons: Remote vs. local caches and miss overlapping 
q  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“ 

ISCA 2006. 
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Aside: Cache versus Page Replacement 
n  Physical memory (DRAM) is a cache for disk 

q  Usually managed by system software via the virtual memory 
subsystem 

n  Page replacement is similar to cache replacement 
n  Page table is the “tag store” for physical memory data store 
 
n  What is the difference? 

q  Required speed of access to cache vs. physical memory 
q  Number of blocks in a cache vs. physical memory 
q  “Tolerable” amount of time to find a replacement candidate 

(disk versus memory access latency) 
q  Role of hardware versus software 
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What’s In A Tag Store Entry? 
n  Valid bit 
n  Tag 
n  Replacement policy bits 

n  Dirty bit? 
q  Write back vs. write through caches 
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Handling Writes (I) 
n  When do we write the modified data in a cache to the next level? 

n  Write through: At the time the write happens 
n  Write back: When the block is evicted 

q  Write-back 
+ Can consolidate multiple writes to the same block before eviction 

q  Potentially saves bandwidth between cache levels + saves energy 

    -- Need a bit in the tag store indicating the block is “dirty/modified” 

q  Write-through 
+ Simpler 
+ All levels are up to date. Consistency: Simpler cache coherence because 

no need to check lower-level caches 
-- More bandwidth intensive; no coalescing of writes 
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Handling Writes (II) 
n  Do we allocate a cache block on a write miss? 

q  Allocate on write miss: Yes 
q  No-allocate on write miss: No 

n  Allocate on write miss 
+ Can consolidate writes instead of writing each of them 

individually to next level 
+ Simpler because write misses can be treated the same way as 

read misses 
-- Requires (?) transfer of the whole cache block 

n  No-allocate 
+ Conserves cache space if locality of writes is low (potentially 

better cache hit rate) 
32 



Handling Writes (III) 
n  What if the processor writes to an entire block over a small 

amount of time? 

n  Is there any need to bring the block into the cache from 
memory in the first place? 

n  Ditto for a portion of the block, i.e., subblock 
q  E.g., 4 bytes out of 64 bytes 
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Sectored Caches 
n  Idea: Divide a block into subblocks (or sectors) 

q  Have separate valid and dirty bits for each sector 
q  When is this useful? (Think writes…) 

++ No need to transfer the entire cache block into the cache 
      (A write simply validates and updates a subblock)    

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully) 
      (How many subblocks do you transfer on a read?) 
 

-- More complex design 
-- May not exploit spatial locality fully when used for reads 
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Instruction vs. Data Caches 
n  Separate or Unified? 

n  Unified: 
+ Dynamic sharing of cache space: no overprovisioning that 

might happen with static partitioning (i.e., split I and D 
caches) 

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either) 

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access? 

 

n  First level caches are almost always split  
q  Mainly for the last reason above 

n  Second and higher levels are almost always unified 
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Multi-level Caching in a Pipelined Design 
n  First-level caches (instruction and data) 

q  Decisions very much affected by cycle time 
q  Small, lower associativity 
q  Tag store and data store accessed in parallel 

n  Second-level caches 
q  Decisions need to balance hit rate and access latency 
q  Usually large and highly associative; latency not as important 
q  Tag store and data store accessed serially 

n  Serial vs. Parallel access of levels 
q  Serial: Second level cache accessed only if first-level misses 
q  Second level does not see the same accesses as the first 

n  First level acts as a filter (filters some temporal and spatial locality) 
n  Management policies are therefore different 
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Cache Performance 

 
 
 
 



Cache Parameters vs. Miss/Hit Rate 
n  Cache size 

n  Block size 

n  Associativity 

n  Replacement policy 
n  Insertion/Placement policy 
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Cache Size 
n  Cache size: total data (not including tag) capacity 

q   bigger can exploit temporal locality better 
q   not ALWAYS better 

n  Too large a cache adversely affects hit and miss latency 
q   smaller is faster => bigger is slower 
q   access time may degrade critical path 

n  Too small a cache 
q   doesn’t exploit temporal locality well 
q   useful data replaced often 

n  Working set: the whole set of data                                                    
the executing application references  
q  Within a time interval  
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Block Size 
n  Block size is the data that is associated with an address tag  

q   not necessarily the unit of transfer between hierarchies 
n  Sub-blocking: A block divided into multiple pieces (each with V bit) 

q  Can improve “write” performance 

n  Too small blocks 
q   don’t exploit spatial locality well 
q   have larger tag overhead 

n  Too large blocks 
q  too few total # of blocks à less 

temporal locality exploitation 
q  waste of cache space and bandwidth/energy  
    if spatial locality is not high 
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Large Blocks: Critical-Word and Subblocking 
n  Large cache blocks can take a long time to fill into the cache 

q  fill cache line critical word first  
q  restart cache access before complete fill 

 
n  Large cache blocks can waste bus bandwidth  

q  divide a block into subblocks 
q  associate separate valid bits for each subblock 
q  When is this useful? 

41 

tag       subblock v       subblock v      subblock v d d d 



Associativity 
n  How many blocks can map to the same index (or set)? 

n  Larger associativity 
q  lower miss rate, less variation among programs 
q  diminishing returns, higher hit latency 

n  Smaller associativity 
q  lower cost 
q  lower hit latency 

n  Especially important for L1 caches 

n  Power of 2 associativity required? 
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Classification of Cache Misses 
n  Compulsory miss  

q  first reference to an address (block) always results in a miss 
q  subsequent references should hit unless the cache block is 

displaced for the reasons below 

n  Capacity miss  
q  cache is too small to hold everything needed 
q  defined as the misses that would occur even in a fully-associative 

cache (with optimal replacement) of the same capacity           
   

n  Conflict miss  
q  defined as any miss that is neither a compulsory nor a capacity 

miss   
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How to Reduce Each Miss Type 
n  Compulsory 

q  Caching cannot help 
q  Prefetching 

n  Conflict 
q  More associativity 
q  Other ways to get more associativity without making the 

cache associative 
n  Victim cache 
n  Hashing 
n  Software hints? 

n  Capacity 
q  Utilize cache space better: keep blocks that will be referenced 
q  Software management: divide working set such that each 
“phase” fits in cache 
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Improving Cache “Performance” 
n  Remember  

q  Average memory access time (AMAT) 
= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 

n  Reducing miss rate 
q  Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted 
 

n  Reducing miss latency/cost 

n  Reducing hit latency/cost 
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Improving Basic Cache Performance 
n  Reducing miss rate 

q  More associativity 
q  Alternatives/enhancements to associativity  

n  Victim caches, hashing, pseudo-associativity, skewed associativity 
q  Better replacement/insertion policies 
q  Software approaches 

n  Reducing miss latency/cost 
q  Multi-level caches 
q  Critical word first 
q  Subblocking/sectoring 
q  Better replacement/insertion policies 
q  Non-blocking caches (multiple cache misses in parallel) 
q  Multiple accesses per cycle 
q  Software approaches 
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