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Assignment and Exam Reminders 
n  Lab 4: Due March 6 

q  Control flow and branch prediction 

n  Lab 5: Due March 22 
q  Data cache 

n  HW 4: March 18 
n  Exam: March 20 

n  Finish the labs early 
n  You have almost a month for Lab 5 
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Announcements 
n  Please turn in your feedback form: Very Important 

n  No office hours (for me) today 
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IA-64: A “Complicated” VLIW ISA 

Recommended reading: 
Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000. 



EPIC – Intel IA-64 Architecture 
n  Gets rid of lock-step execution of instructions within a VLIW 

instruction 
n  Idea: More ISA support for static scheduling and parallelization 

q  Specify dependencies within and between VLIW instructions 
(explicitly parallel) 

+ No lock-step execution 
+ Static reordering of stores and loads + dynamic checking 
-- Hardware needs to perform dependency checking (albeit aided by 

software) 
-- Other disadvantages of VLIW still exist 

 
n  Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 

2000. 
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IA-64 Instructions 
n  IA-64 “Bundle” (~EPIC Instruction) 

q  Total of 128 bits 
q  Contains three IA-64 instructions 
q  Template bits in each bundle specify dependencies within a 

bundle 
  

\ 
 
 

n  IA-64 Instruction 
q  Fixed-length 41 bits long 
q  Contains three 7-bit register specifiers 
q  Contains a 6-bit field for specifying one of the 64 one-bit 

predicate registers 
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IA-64 Instruction Bundles and Groups 
n  Groups of instructions can be 

executed safely in parallel 
q  Marked by “stop bits” 

n  Bundles are for packaging 
q  Groups can span multiple bundles 

n  Alleviates recompilation need 
somewhat  
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Template Bits  
n  Specify two things 

q  Stop information: Boundary of independent instructions 
q  Functional unit information: Where should each instruction be routed 
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Three Things That Hinder Static Scheduling 
n  Dynamic events (static unknowns) 
 
n  Branch direction 
n  Load hit miss status 
n  Memory address 

n  Let’s see how IA-64 ISA has support to aid scheduling in 
the presence of statically-unknown load-store addresses 
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Non-Faulting Loads and Exception Propagation in IA-64 

n  Idea: Support unsafe code motion 
 
 
 
 
 
 
 
 
n  ld.s (speculative load) fetches speculatively from memory 

 i.e. any exception due to ld.s is suppressed 
n  If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 

branch is taken (to execute some compensation code) 
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inst 1 
inst 2 
…. 
 

ld r1=[a] 
use=r1 

unsafe 
code  

motion 

…. 

ld.s r1=[a] 
inst 1 
inst 2 
…. 
br 

chk.s r1 
use=r1 

…. ld r1=[a] 

br 



Non-Faulting Loads and Exception Propagation in IA-64 

n  Idea: Support unsafe code motion 
q  Load and its use 

 

 
n  Load data can be speculatively consumed (use) prior to check  
n  “speculation” status is propagated with speculated data 
n  Any instruction that uses a speculative result also becomes speculative 

itself (i.e. suppressed exceptions) 
n  chk.s checks the entire dataflow sequence for exceptions 
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inst 1 
inst 2 
…. 
br 

ld r1=[a] 
use=r1 

unsafe 
code  

motion 

…. 

ld.s r1=[a] 
inst 1  
inst 2 
use=r1 
…. 
br 

chk.s use …. ld r1=[a] 
use=r1 

br 



Aggressive ST-LD Reordering in IA-64 
n  Idea: Reorder LD/STs in the presence of unknown address 

n  ld.a (advanced load) starts the monitoring of any store to the same 
address as the advanced load 

n  If no aliasing has occurred since ld.a, ld.c is a NOP 
n  If aliasing has occurred, ld.c re-loads from memory 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
…. 
st [?] 
…. 
ld.c r1=[x] 
use=r1 

st[?] 



Aggressive ST-LD Reordering in IA-64 
n  Idea: Reorder LD/STs in the presence of unknown address 

q  Load and its use 
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inst 1 
inst 2 
…. 
st [?] 
…. 
ld r1=[x] 
use=r1 

potential 
aliasing 

ld.a r1=[x] 
inst 1 
inst 2 
use=r1  
…. 
st [?] 
…. 
chk.a X 
…. 

st[?] 

ld r1=[a] 
use=r1 



What We Covered So Far in 447 
n  ISA à Single-cycle Microarchitectures 

n  Multi-cycle and Microprogrammed Microarchitectures 
 

n  Pipelining 

n  Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

n  Out-of-Order Execution 

n  Issues in OoO Execution: Load-Store Handling, … 

n  Alternative Approaches to Instruction Level Parallelism 
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Approaches to (Instruction-Level) Concurrency 

n  Pipelining 
n  Out-of-order execution 
n  Dataflow (at the ISA level) 
n  SIMD Processing (Vector and array processors, GPUs) 
n  VLIW 
n  Decoupled Access Execute 
n  Systolic Arrays 

n  Static Instruction Scheduling 
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Agenda for the Rest of 447  
n  The memory hierarchy 
n  Caches, caches, more caches (high locality, high bandwidth) 
n  Virtualizing the memory hierarchy 
n  Main memory: DRAM 
n  Main memory control, scheduling 
n  Memory latency tolerance techniques 
n  Non-volatile memory 

n  Multiprocessors 
n  Coherence and consistency 
n  Interconnection networks 
n  Multi-core issues 
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Readings for Today and Next Lecture 
n  Memory Hierarchy and Caches 
 
n  Cache chapters from P&H: 5.1-5.3  
n  Memory/cache chapters from Hamacher+: 8.1-8.7  
n  An early cache paper by Maurice Wilkes 

q  Wilkes, “Slave Memories and Dynamic Storage Allocation,” 
IEEE Trans. On Electronic Computers, 1965.  
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Memory (Programmer’s View)  
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Abstraction: Virtual vs. Physical Memory 
n  Programmer sees virtual memory 

q  Can assume the memory is “infinite” 

n  Reality: Physical memory size is much smaller than what 
the programmer assumes 

n  The system (system software + hardware, cooperatively) 
maps virtual memory addresses are to physical memory 
q  The system automatically manages the physical memory 

space transparently to the programmer 
 

+ Programmer does not need to know the physical size of memory 
nor manage it à A small physical memory can appear as a huge 
one to the programmer à Life is easier for the programmer 
-- More complex system software and architecture 
 

A classic example of the programmer/(micro)architect tradeoff 
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(Physical) Memory System 
n  You need a larger level of storage to manage a small 

amount of physical memory automatically 
à Physical memory has a backing store: disk 

n  We will first start with the physical memory system 

n  For now, ignore the virtualàphysical indirection 
q  As you have been doing in labs 

n  We will get back to it when the needs of virtual memory 
start complicating the design of physical memory… 
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Idealism 
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Instruction 
Supply 

Pipeline 
(Instruction 
execution) 
 

Data 
Supply 

- Zero-cycle latency  
  
- Infinite capacity 
  
- Zero cost 
 
- Perfect control flow 
 

-  No pipeline stalls  

- Perfect data flow  
  (reg/memory dependencies) 
 
-  Zero-cycle interconnect 
  (operand communication) 
 
-  Enough functional units 

-  Zero latency compute 

-  Zero-cycle latency 
 
-  Infinite capacity 
 
- Infinite bandwidth  

-  Zero cost 

 



The Memory Hierarchy 

 
 
 
 
 



Memory in a Modern System 
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Ideal Memory 
n  Zero access time (latency) 
n  Infinite capacity 
n  Zero cost 
n  Infinite bandwidth (to support multiple accesses in parallel) 
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The Problem 
n  Ideal memory’s requirements oppose each other 

n  Bigger is slower 
q  Bigger à Takes longer to determine the location 

n  Faster is more expensive 
q  Memory technology: SRAM vs. DRAM vs. Disk vs. Tape 

n  Higher bandwidth is more expensive 
q  Need more banks, more ports, higher frequency, or faster 

technology 
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Memory Technology: DRAM 
n  Dynamic random access memory 
n  Capacitor charge state indicates stored value 

q  Whether the capacitor is charged or discharged indicates 
storage of 1 or 0 

q  1 capacitor 
q  1 access transistor 

n  Capacitor leaks through the RC path 
q  DRAM cell loses charge over time 
q  DRAM cell needs to be refreshed 
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n  Static random access memory 
n  Two cross coupled inverters store a single bit 

q  Feedback path enables the stored value to persist in the “cell” 
q  4 transistors for storage 
q  2 transistors for access 

Memory Technology: SRAM 
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Memory Bank Organization and Operation 
n  Read access sequence: 

 1. Decode row address 
& drive word-lines 
  

      2. Selected bits drive 
bit-lines 
     • Entire row read 

       
      3. Amplify row data 
       
      4. Decode column 

address & select subset 
of row 

         • Send to output 
       
      5. Precharge bit-lines 
        • For next access 
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SRAM (Static Random Access Memory) 
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bit-cell array 
 

2n row x 2m-col 
 

(n≈m to minimize 
overall latency) 

sense amp and mux 
2m diff pairs 

2n n 

m 

1 

row select 

bi
tli

ne
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 Read Sequence 
1. address decode 
2. drive row select 
3. selected bit-cells drive bitlines 
   (entire row is read together) 

4. differential sensing and column select 
     (data is ready) 
5. precharge all bitlines 
     (for next read or write) 

   
 Access latency dominated by steps 2 and 3 
 Cycling time dominated by steps 2, 3 and 5 

-  step 2 proportional to 2m 

-  step 3 and 5 proportional to 2n 



DRAM (Dynamic Random Access Memory) 
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2n row x 2m-col 
 

(n≈m to minimize 
overall latency) 
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2m 
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RAS 

CAS 
A DRAM die comprises  
of multiple such arrays 

Bits stored as charges on node 
capacitance (non-restorative) 

-  bit cell loses charge when read 
-  bit cell loses charge over time 

Read Sequence 
1~3 same as SRAM 
4. a “flip-flopping” sense amp 

amplifies and regenerates the 
bitline, data bit is mux’ed out 

5. precharge all bitlines 
 

Destructive reads 
Charge loss over time 
Refresh: A DRAM controller must 
periodically read each row within 
the allowed refresh time (10s of 
ms) such that charge is restored 
 



DRAM vs. SRAM 
n  DRAM 

q  Slower access (capacitor) 
q  Higher density (1T 1C cell) 
q  Lower cost 
q  Requires refresh (power, performance, circuitry) 
q  Manufacturing requires putting capacitor and logic together 

n  SRAM 
q  Faster access (no capacitor) 
q  Lower density (6T cell) 
q  Higher cost 
q  No need for refresh 
q  Manufacturing compatible with logic process (no capacitor) 
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The Problem 
n  Bigger is slower 

q  SRAM, 512 Bytes, sub-nanosec 
q  SRAM,  KByte~MByte, ~nanosec 
q  DRAM, Gigabyte, ~50 nanosec 
q  Hard Disk, Terabyte, ~10 millisec 

n  Faster is more expensive (dollars and chip area) 
q  SRAM, < 10$ per Megabyte 
q  DRAM, < 1$ per Megabyte 
q  Hard Disk < 1$ per Gigabyte 
q  These sample values scale with time 

n  Other technologies have their place as well  
q  Flash memory, PC-RAM, MRAM, RRAM (not mature yet) 
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Why Memory Hierarchy? 
n  We want both fast and large 

n  But we cannot achieve both with a single level of memory 

n  Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s) 
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The Memory Hierarchy 
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Memory Hierarchy 
n  Fundamental tradeoff 

q  Fast memory: small 
q  Large memory: slow 

n  Idea: Memory hierarchy 

n  Latency, cost, size,  
    bandwidth 
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Locality 
n  One’s recent past is a very good predictor of his/her near 

future. 

n  Temporal Locality:  If you just did something, it is very 
likely that you will do the same thing again soon 
q  since you are here today, there is a good chance you will be 

here again and again regularly   

n  Spatial Locality:  If you did something, it is very likely you 
will do something similar/related (in space) 
q  every time I find you in this room, you are probably sitting 

close to the same people 
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Memory Locality 
n  A “typical” program has a lot of locality in memory 

references 
q   typical programs are composed of “loops” 

n  Temporal: A program tends to reference the same memory 
location many times and all within a small window of time 

n  Spatial: A program tends to reference a cluster of memory 
locations at a time  
q  most notable examples:  

n  1. instruction memory references  
n  2. array/data structure references 
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Caching Basics: Exploit Temporal Locality 
n  Idea: Store recently accessed data in automatically 

managed fast memory (called cache) 
n  Anticipation: the data will be accessed again soon 

n  Temporal locality principle 
q  Recently accessed data will be again accessed in the near 

future 
q  This is what Maurice Wilkes had in mind: 

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 

n  “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.” 
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Caching Basics: Exploit Spatial Locality 
n  Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory 
q  Logically divide memory into equal size blocks 
q  Fetch to cache the accessed block in its entirety 

n  Anticipation: nearby data will be accessed soon 

n  Spatial locality principle 
q  Nearby data in memory will be accessed in the near future 

n  E.g., sequential instruction access, array traversal 

q  This is what IBM 360/85 implemented 
n  16 Kbyte cache with 64 byte blocks 
n  Liptay, “Structural aspects of the System/360 Model 85 II: the 

cache,” IBM Systems Journal, 1968. 
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The Bookshelf Analogy 
n  Book in your hand 
n  Desk 
n  Bookshelf 
n  Boxes at home 
n  Boxes in storage 

n  Recently-used books tend to stay on desk 
q  Comp Arch books, books for classes you are currently taking 
q  Until the desk gets full 

n  Adjacent books in the shelf needed around the same time 
q  If I have organized/categorized my books well in the shelf 
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Caching in a Pipelined Design 
n  The cache needs to be tightly integrated into the pipeline  

q  Ideally, access in 1-cycle so that dependent operations do not 
stall 

n  High frequency pipeline à Cannot make the cache large 
q  But, we want a large cache AND a pipelined design 

n  Idea: Cache hierarchy 
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A Note on Manual vs. Automatic Management 

n  Manual: Programmer manages data movement across levels 
-- too painful for programmers on substantial programs 
q  “core” vs “drum” memory in the 50’s 
q  still done in some embedded processors (on-chip scratch pad 

SRAM in lieu of a cache) 

n  Automatic: Hardware manages data movement across levels, 
transparently to the programmer 
++ programmer’s life is easier 
q  the average programmer doesn’t need to know about it 

n  You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?) 
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Automatic Management in Memory Hierarchy 

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” 
IEEE Trans. On Electronic Computers, 1965. 

n  “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.” 
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A Modern Memory Hierarchy 
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Hierarchical Latency Analysis 
n  For a given memory hierarchy level i it has a technology-intrinsic 

access time of ti, The perceived access time Ti is longer than ti 
n  Except for the outer-most hierarchy, when looking for a given 

address there is  
q  a chance (hit-rate hi) you “hit” and access time is ti 
q  a chance (miss-rate mi) you “miss” and access time ti +Ti+1  

q  hi + mi = 1 
n  Thus 

  Ti = hi·ti  + mi·(ti + Ti+1) 

  Ti = ti  + mi ·Ti+1       
 
 

hi and mi are defined to be the hit-rate 
and miss-rate of just the references that missed at Li-1   
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Hierarchy Design Considerations 
n  Recursive latency equation   

   Ti = ti  + mi ·Ti+1    
n  The goal: achieve desired T1 within allowed cost 
n  Ti ≈ ti is desirable 

n  Keep mi low 
q  increasing capacity Ci lowers mi, but beware of increasing ti 
q  lower mi by smarter management (replacement::anticipate what you 

don’t need, prefetching::anticipate what you will need) 

n  Keep Ti+1 low 
q  faster lower hierarchies, but beware of increasing cost 
q  introduce intermediate hierarchies as a compromise  
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n  90nm P4, 3.6 GHz 
n  L1 D-cache 

q  C1 = 16K   
q  t1 = 4 cyc int / 9 cycle fp  

n  L2 D-cache 
q  C2 =1024 KB  
q  t2 = 18 cyc int / 18 cyc fp 

n  Main memory 
q  t3 = ~ 50ns or 180 cyc 

n  Notice 
q  best case latency is not 1   
q  worst case access latencies are into 500+ cycles 

if m1=0.1, m2=0.1 
    T1=7.6, T2=36 

if m1=0.01, m2=0.01 
    T1=4.2, T2=19.8 

 if m1=0.05, m2=0.01 
    T1=5.00, T2=19.8 

if m1=0.01, m2=0.50 
    T1=5.08, T2=108 

Intel Pentium 4 Example 



Cache Basics and Operation 

 
 
 
 
 



Cache 
n  Generically, any structure that “memoizes” frequently used 

results to avoid repeating the long-latency operations 
required to reproduce the results from scratch, e.g. a web 
cache 

n  Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM 
q  memoize in SRAM the most frequently accessed DRAM 

memory locations to avoid repeatedly paying for the DRAM 
access latency 
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Caching Basics 
n  Block (line): Unit of storage in the cache 

q  Memory is logically divided into cache blocks that map to 
locations in the cache 

n  When data referenced 
q  HIT: If in cache, use cached data instead of accessing memory 
q  MISS: If not in cache, bring block into cache 

n  Maybe have to kick something else out to do it 
 

n  Some important cache design decisions 
q  Placement: where and how to place/find a block in cache? 
q  Replacement: what data to remove to make room in cache? 
q  Granularity of management: large, small, uniform blocks? 
q  Write policy: what do we do about writes? 
q  Instructions/data: Do we treat them separately? 
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Cache Abstraction and Metrics 

n  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses) 
n  Average memory access time (AMAT) 

 = ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 
n  Aside: Can reducing AMAT reduce performance? 
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