
18-447
Computer Architecture

Lecture 17: Memory Hierarchy and Caches

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 2/25/2015

Assignment and Exam Reminders
n  Lab 4: Due March 6

q  Control flow and branch prediction

n  Lab 5: Due March 22
q  Data cache

n  HW 4: March 18
n  Exam: March 20

n  Finish the labs early
n  You have almost a month for Lab 5

2

Announcements
n  Please turn in your feedback form: Very Important

n  No office hours (for me) today

3

IA-64: A “Complicated” VLIW ISA

Recommended reading:
Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000.

EPIC – Intel IA-64 Architecture
n  Gets rid of lock-step execution of instructions within a VLIW

instruction
n  Idea: More ISA support for static scheduling and parallelization

q  Specify dependencies within and between VLIW instructions
(explicitly parallel)

+ No lock-step execution
+ Static reordering of stores and loads + dynamic checking
-- Hardware needs to perform dependency checking (albeit aided by

software)
-- Other disadvantages of VLIW still exist

n  Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct

2000.

5

IA-64 Instructions
n  IA-64 “Bundle” (~EPIC Instruction)

q  Total of 128 bits
q  Contains three IA-64 instructions
q  Template bits in each bundle specify dependencies within a

bundle

\

n  IA-64 Instruction
q  Fixed-length 41 bits long
q  Contains three 7-bit register specifiers
q  Contains a 6-bit field for specifying one of the 64 one-bit

predicate registers

6

IA-64 Instruction Bundles and Groups
n  Groups of instructions can be

executed safely in parallel
q  Marked by “stop bits”

n  Bundles are for packaging
q  Groups can span multiple bundles

n  Alleviates recompilation need
somewhat

7

Template Bits
n  Specify two things

q  Stop information: Boundary of independent instructions
q  Functional unit information: Where should each instruction be routed

8

Three Things That Hinder Static Scheduling
n  Dynamic events (static unknowns)

n  Branch direction
n  Load hit miss status
n  Memory address

n  Let’s see how IA-64 ISA has support to aid scheduling in
the presence of statically-unknown load-store addresses

9

Non-Faulting Loads and Exception Propagation in IA-64

n  Idea: Support unsafe code motion

n  ld.s (speculative load) fetches speculatively from memory

 i.e. any exception due to ld.s is suppressed
n  If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a

branch is taken (to execute some compensation code)

 10

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code

motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br

Non-Faulting Loads and Exception Propagation in IA-64

n  Idea: Support unsafe code motion
q  Load and its use

n  Load data can be speculatively consumed (use) prior to check
n  “speculation” status is propagated with speculated data
n  Any instruction that uses a speculative result also becomes speculative

itself (i.e. suppressed exceptions)
n  chk.s checks the entire dataflow sequence for exceptions

11

inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code

motion

….

ld.s r1=[a]
inst 1
inst 2
use=r1
….
br

chk.s use …. ld r1=[a]
use=r1

br

Aggressive ST-LD Reordering in IA-64
n  Idea: Reorder LD/STs in the presence of unknown address

n  ld.a (advanced load) starts the monitoring of any store to the same
address as the advanced load

n  If no aliasing has occurred since ld.a, ld.c is a NOP
n  If aliasing has occurred, ld.c re-loads from memory

12

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]

Aggressive ST-LD Reordering in IA-64
n  Idea: Reorder LD/STs in the presence of unknown address

q  Load and its use

13

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a X
….

st[?]

ld r1=[a]
use=r1

What We Covered So Far in 447
n  ISA à Single-cycle Microarchitectures

n  Multi-cycle and Microprogrammed Microarchitectures

n  Pipelining

n  Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n  Out-of-Order Execution

n  Issues in OoO Execution: Load-Store Handling, …

n  Alternative Approaches to Instruction Level Parallelism

14

Approaches to (Instruction-Level) Concurrency

n  Pipelining
n  Out-of-order execution
n  Dataflow (at the ISA level)
n  SIMD Processing (Vector and array processors, GPUs)
n  VLIW
n  Decoupled Access Execute
n  Systolic Arrays

n  Static Instruction Scheduling

15

Agenda for the Rest of 447
n  The memory hierarchy
n  Caches, caches, more caches (high locality, high bandwidth)
n  Virtualizing the memory hierarchy
n  Main memory: DRAM
n  Main memory control, scheduling
n  Memory latency tolerance techniques
n  Non-volatile memory

n  Multiprocessors
n  Coherence and consistency
n  Interconnection networks
n  Multi-core issues

16

Readings for Today and Next Lecture
n  Memory Hierarchy and Caches

n  Cache chapters from P&H: 5.1-5.3
n  Memory/cache chapters from Hamacher+: 8.1-8.7
n  An early cache paper by Maurice Wilkes

q  Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

17

Memory (Programmer’s View)

18

Abstraction: Virtual vs. Physical Memory
n  Programmer sees virtual memory

q  Can assume the memory is “infinite”

n  Reality: Physical memory size is much smaller than what
the programmer assumes

n  The system (system software + hardware, cooperatively)
maps virtual memory addresses are to physical memory
q  The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer
-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

19

(Physical) Memory System
n  You need a larger level of storage to manage a small

amount of physical memory automatically
à Physical memory has a backing store: disk

n  We will first start with the physical memory system

n  For now, ignore the virtualàphysical indirection
q  As you have been doing in labs

n  We will get back to it when the needs of virtual memory
start complicating the design of physical memory…

20

Idealism

21

Instruction
Supply

Pipeline
(Instruction
execution)

Data
Supply

- Zero-cycle latency

- Infinite capacity

- Zero cost

- Perfect control flow

-  No pipeline stalls

- Perfect data flow
 (reg/memory dependencies)

-  Zero-cycle interconnect
 (operand communication)

-  Enough functional units

-  Zero latency compute

-  Zero-cycle latency

-  Infinite capacity

- Infinite bandwidth

-  Zero cost

The Memory Hierarchy

Memory in a Modern System

23

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
n  Zero access time (latency)
n  Infinite capacity
n  Zero cost
n  Infinite bandwidth (to support multiple accesses in parallel)

24

The Problem
n  Ideal memory’s requirements oppose each other

n  Bigger is slower
q  Bigger à Takes longer to determine the location

n  Faster is more expensive
q  Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

n  Higher bandwidth is more expensive
q  Need more banks, more ports, higher frequency, or faster

technology

25

Memory Technology: DRAM
n  Dynamic random access memory
n  Capacitor charge state indicates stored value

q  Whether the capacitor is charged or discharged indicates
storage of 1 or 0

q  1 capacitor
q  1 access transistor

n  Capacitor leaks through the RC path
q  DRAM cell loses charge over time
q  DRAM cell needs to be refreshed

26

row enable

_b
itl

in
e

n  Static random access memory
n  Two cross coupled inverters store a single bit

q  Feedback path enables the stored value to persist in the “cell”
q  4 transistors for storage
q  2 transistors for access

Memory Technology: SRAM

27

row select

bi
tli

ne

_b
itl

in
e

Memory Bank Organization and Operation
n  Read access sequence:

 1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines
 • Entire row read

 3. Amplify row data

 4. Decode column

address & select subset
of row

 • Send to output

 5. Precharge bit-lines
 • For next access

28

SRAM (Static Random Access Memory)

29

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m diff pairs

2n n

m

1

row select

bi
tli

ne

_b
itl

in
e

n+m

 Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines
 (entire row is read together)

4. differential sensing and column select
 (data is ready)
5. precharge all bitlines
 (for next read or write)

 Access latency dominated by steps 2 and 3
 Cycling time dominated by steps 2, 3 and 5

-  step 2 proportional to 2m

-  step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

30

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m

2n n

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

-  bit cell loses charge when read
-  bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads
Charge loss over time
Refresh: A DRAM controller must
periodically read each row within
the allowed refresh time (10s of
ms) such that charge is restored

DRAM vs. SRAM
n  DRAM

q  Slower access (capacitor)
q  Higher density (1T 1C cell)
q  Lower cost
q  Requires refresh (power, performance, circuitry)
q  Manufacturing requires putting capacitor and logic together

n  SRAM
q  Faster access (no capacitor)
q  Lower density (6T cell)
q  Higher cost
q  No need for refresh
q  Manufacturing compatible with logic process (no capacitor)

31

The Problem
n  Bigger is slower

q  SRAM, 512 Bytes, sub-nanosec
q  SRAM, KByte~MByte, ~nanosec
q  DRAM, Gigabyte, ~50 nanosec
q  Hard Disk, Terabyte, ~10 millisec

n  Faster is more expensive (dollars and chip area)
q  SRAM, < 10$ per Megabyte
q  DRAM, < 1$ per Megabyte
q  Hard Disk < 1$ per Gigabyte
q  These sample values scale with time

n  Other technologies have their place as well
q  Flash memory, PC-RAM, MRAM, RRAM (not mature yet)

32

Why Memory Hierarchy?
n  We want both fast and large

n  But we cannot achieve both with a single level of memory

n  Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

33

The Memory Hierarchy

34

fast	

small	

big	
 but	
 slow	

move	
 what	
 you	
 use	
 here	

backup	

everything	

here	

With	
 good	
 locality	
 of	

reference,	
 memory	

appears	
 as	
 fast	
 as	

and	
 as	
 large	
 as	
 	
 	

fa
st
er
	
 p
er
	
 b
yt
e	

ch
ea
pe

r	
 p
er
	
 b
yt
e	

Memory Hierarchy
n  Fundamental tradeoff

q  Fast memory: small
q  Large memory: slow

n  Idea: Memory hierarchy

n  Latency, cost, size,
 bandwidth

35

CPU
Main

Memory
(DRAM)

RF

Cache

Hard Disk

Locality
n  One’s recent past is a very good predictor of his/her near

future.

n  Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon
q  since you are here today, there is a good chance you will be

here again and again regularly

n  Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)
q  every time I find you in this room, you are probably sitting

close to the same people

36

Memory Locality
n  A “typical” program has a lot of locality in memory

references
q  typical programs are composed of “loops”

n  Temporal: A program tends to reference the same memory
location many times and all within a small window of time

n  Spatial: A program tends to reference a cluster of memory
locations at a time
q  most notable examples:

n  1. instruction memory references
n  2. array/data structure references

37

Caching Basics: Exploit Temporal Locality
n  Idea: Store recently accessed data in automatically

managed fast memory (called cache)
n  Anticipation: the data will be accessed again soon

n  Temporal locality principle
q  Recently accessed data will be again accessed in the near

future
q  This is what Maurice Wilkes had in mind:

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

n  “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

38

Caching Basics: Exploit Spatial Locality
n  Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
q  Logically divide memory into equal size blocks
q  Fetch to cache the accessed block in its entirety

n  Anticipation: nearby data will be accessed soon

n  Spatial locality principle
q  Nearby data in memory will be accessed in the near future

n  E.g., sequential instruction access, array traversal

q  This is what IBM 360/85 implemented
n  16 Kbyte cache with 64 byte blocks
n  Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

39

The Bookshelf Analogy
n  Book in your hand
n  Desk
n  Bookshelf
n  Boxes at home
n  Boxes in storage

n  Recently-used books tend to stay on desk
q  Comp Arch books, books for classes you are currently taking
q  Until the desk gets full

n  Adjacent books in the shelf needed around the same time
q  If I have organized/categorized my books well in the shelf

40

Caching in a Pipelined Design
n  The cache needs to be tightly integrated into the pipeline

q  Ideally, access in 1-cycle so that dependent operations do not
stall

n  High frequency pipeline à Cannot make the cache large
q  But, we want a large cache AND a pipelined design

n  Idea: Cache hierarchy

41

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

A Note on Manual vs. Automatic Management

n  Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q  “core” vs “drum” memory in the 50’s
q  still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)

n  Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q  the average programmer doesn’t need to know about it

n  You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

42

Automatic Management in Memory Hierarchy

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n  “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

43

A Modern Memory Hierarchy

44

Register	
 File	

32	
 words,	
 sub-­‐nsec	

	

	

L1	
 cache	

~32	
 KB,	
 ~nsec	

	

	

L2	
 cache	

512	
 KB	
 ~	
 1MB,	
 many	
 nsec	

	

	

L3	
 cache,	
 	

.....	

	

	

Main	
 memory	
 (DRAM),	
 	

GB,	
 ~100	
 nsec	

	

	

Swap	
 Disk	

100	
 GB,	
 ~10	
 msec	

manual/compiler	

register	
 spilling	

automaOc	

demand	
 	

paging	

AutomaOc	

HW	
 cache	

management	

Memory	

AbstracOon	

Hierarchical Latency Analysis
n  For a given memory hierarchy level i it has a technology-intrinsic

access time of ti, The perceived access time Ti is longer than ti
n  Except for the outer-most hierarchy, when looking for a given

address there is
q  a chance (hit-rate hi) you “hit” and access time is ti
q  a chance (miss-rate mi) you “miss” and access time ti +Ti+1

q  hi + mi = 1
n  Thus

 Ti = hi·ti + mi·(ti + Ti+1)

 Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate
and miss-rate of just the references that missed at Li-1

45

Hierarchy Design Considerations
n  Recursive latency equation

 Ti = ti + mi ·Ti+1
n  The goal: achieve desired T1 within allowed cost
n  Ti ≈ ti is desirable

n  Keep mi low
q  increasing capacity Ci lowers mi, but beware of increasing ti
q  lower mi by smarter management (replacement::anticipate what you

don’t need, prefetching::anticipate what you will need)

n  Keep Ti+1 low
q  faster lower hierarchies, but beware of increasing cost
q  introduce intermediate hierarchies as a compromise

46

n  90nm P4, 3.6 GHz
n  L1 D-cache

q  C1 = 16K
q  t1 = 4 cyc int / 9 cycle fp

n  L2 D-cache
q  C2 =1024 KB
q  t2 = 18 cyc int / 18 cyc fp

n  Main memory
q  t3 = ~ 50ns or 180 cyc

n  Notice
q  best case latency is not 1
q  worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
 T1=7.6, T2=36

if m1=0.01, m2=0.01
 T1=4.2, T2=19.8

 if m1=0.05, m2=0.01
 T1=5.00, T2=19.8

if m1=0.01, m2=0.50
 T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache
n  Generically, any structure that “memoizes” frequently used

results to avoid repeating the long-latency operations
required to reproduce the results from scratch, e.g. a web
cache

n  Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM
q  memoize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the DRAM
access latency

49

Caching Basics
n  Block (line): Unit of storage in the cache

q  Memory is logically divided into cache blocks that map to
locations in the cache

n  When data referenced
q  HIT: If in cache, use cached data instead of accessing memory
q  MISS: If not in cache, bring block into cache

n  Maybe have to kick something else out to do it

n  Some important cache design decisions
q  Placement: where and how to place/find a block in cache?
q  Replacement: what data to remove to make room in cache?
q  Granularity of management: large, small, uniform blocks?
q  Write policy: what do we do about writes?
q  Instructions/data: Do we treat them separately?

50

Cache Abstraction and Metrics

n  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
n  Average memory access time (AMAT)

 = (hit-rate * hit-latency) + (miss-rate * miss-latency)
n  Aside: Can reducing AMAT reduce performance?

51

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

Hit/miss? Data

