
18-447 

Computer Architecture
Lecture 16: Systolic Arrays & Static Scheduling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/23/2015



Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

2



Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

 Static Instruction Scheduling

3



Homework 3.1: Feedback Form

 Due Today!

 I would like your feedback on the course

 Easy to fill in

 Can submit anonymously, if you wish

 Worth 0.25% of your grade (extra credit)

 Need to get checked off after submitting to get your grade 
points

 Can email

 If anonymous, show that you are turning in and have a TA 
check you off

4



A Few Things

 Midterm I Date

 March 18 or 20

 Collaboration on Labs

 All labs individual – no collaboration permitted

 Collaboration on homeworks

 You can collaborate

 But need to submit individual writeups on your own

5



Wednesday Seminar – Noon-1pm GHC 6115

 Data Center Computers: Modern Challenges in CPU Design

 Richard Sites, Google

 Feb 25, noon-1pm, GHC 6115

 Computers used as datacenter servers have usage patterns that differ 
substantially from those of desktop or laptop computers. We discuss four key 
differences in usage and their first-order implications for designing computers 
that are particularly well-suited as servers: data movement, thousands of 
transactions per second, program isolation, and measurement underpinnings.

 Maintaining high-bandwidth data movement requires coordinated design 
decisions throughout the memory system, instruction-issue system, and even 
instruction set. Serving thousands of transactions per second requires 
continuous attention to all sources of delay -- causes of long-latency 
transactions. Unrelated programs running on shared hardware produce delay 
through undesired interference; isolating programs from one another needs 
further hardware help. And finally, when running datacenter servers as a 
business it is vital to be able to observe and hence decrease inefficiencies 
across dozens of layers of software and thousands of interacting servers. There 
are myriad open research problems related to these issues.

6



Isolating Programs from One Another

 Remember matlab vs. gcc?

 We will get back to this again

 In the meantime, if you are curious, take a look at:

 Subramanian et al., “MISE: Providing Performance 
Predictability and Improving Fairness in Shared Main Memory 
Systems,” HPCA 2013.

 Moscibroda and Mutlu, “Memory Performance Attacks: Denial 
of Memory Service in Multi-Core Systems,” USENIX Security 
2007.

7



Recap of Last Lecture

 GPUs

 Programming Model vs. Execution Model Separation

 GPUs: SPMD programming on SIMD/SIMT hardware

 SIMT Advantages vs. Traditional SIMD

 Warps, Fine-grained Multithreading of Warps

 SIMT Memory Access

 Branch Divergence Problem in SIMT

 Dynamic Warp Formation/Merging

 VLIW

 Philosophy: RISC and VLIW

 VLIW vs. SIMD vs. Superscalar

 Tradeoffs and Advantages

 DAE (Decoupled Access/Execute)

 Dynamic and Static Scheduling

8



Systolic Arrays

9



Systolic Arrays: Motivation

 Goal: design an accelerator that has

 Simple, regular design (keep # unique parts small and regular)

 High concurrency  high performance

 Balanced computation and I/O (memory) bandwidth

 Idea: Replace a single processing element (PE) with a regular 
array of PEs and carefully orchestrate flow of data between 
the PEs 

 such that they collectively transform a piece of input data before 
outputting it to memory

 Benefit: Maximizes computation done on a single piece of 
data element brought from memory

10



Systolic Arrays

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

11

Memory: heart

PEs: cells

Memory pulses 

data through 

cells



Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory

 Similar to an assembly line of processing elements 

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular design (keep # unique parts small and regular)

 High concurrency  high performance

 Balanced computation and I/O (memory) bandwidth

12



Systolic Architectures

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 

 Balance computation and memory bandwidth

 Differences from pipelining:

 These are individual PEs

 Array structure can be non-linear and multi-dimensional 

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction)

13



Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

 Many image processing tasks

14



Systolic Computation Example: Convolution

 y1 = w1x1 + 
w2x2 + w3x3

 y2 = w1x2 + 
w2x3 + w3x4

 y3 = w1x3 + 
w2x4 + w3x5

15



Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions

16



Systolic Computation Example: Convolution

 One needs to carefully orchestrate when data elements are 
input to the array

 And when output is buffered

 This gets more involved when 

 Array dimensionality increases

 PEs are less predictable in terms of latency

17



Systolic Arrays: Pros and Cons

 Advantage: 

 Specialized (computation needs to fit PE organization/functions) 

 improved efficiency, simple design, high concurrency/

performance

 good to do more with less memory bandwidth requirement

 Downside: 

 Specialized

 not generally applicable because computation needs to fit 

the PE functions/organization

18



 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution

19

More Programmability



Pipeline Parallelism

20



Stages of Pipelined Programs

 Loop iterations are divided into code segments called stages

 Threads execute stages on different cores

21

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C



Pipelined File Compression Example

22



Systolic Array

 Advantages

 Makes multiple uses of each data item  reduced need for 

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer 

support to be a general purpose model

23



Example Systolic Array: The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 

24



The WARP Computer 

25



The WARP Cell

26



Systolic Arrays vs. SIMD

 Food for thought…

27



Agenda Status

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

28



Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

 Static Instruction Scheduling

29



Some More Recommended Readings

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Smith, “Decoupled Access/Execute Compute Architectures,”
ISCA 1982, ACM TOCS 1984. 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000.

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001.

30



Static Instruction Scheduling 

(with a Slight Focus on VLIW)



Agenda

 Static Scheduling

 Key Questions and Fundamentals

 Enabler of Better Static Scheduling: Block Enlargement

 Predicated Execution

 Loop Unrolling

 Trace

 Superblock

 Hyperblock

 Block-structured ISA

32



Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant 
propagation, dead code elimination, redundancy elimination, …

Q3. How do we increase the instruction fetch rate? 

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above

33



How Do We Enable Straight-Line Code?

 Get rid of control flow

 Predicated Execution

 Loop Unrolling

 …

 Optimize frequently executed control flow paths

 Trace

 Superblock

 Hyperblock

 Block-structured ISA

 …

34



D D

Review: Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)

35

(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1 

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Review: Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
36



Some Terminology: Basic vs. Atomic Block

 Basic block: A sequence (block) of instructions with a single 
control flow entry point and a single control flow exit point

 A basic block executes uninterrupted (if no 
exceptions/interrupts)

 Atomic block: A block of instructions where either all 
instructions complete or none complete

 In most modern ISAs, the atomic unit of execution is at the 
granularity of an instruction

 A basic block can be considered atomic (if there are no 
exceptions/interrupts and side effects observable in the middle 
of execution)

 One can reorder instructions freely within an atomic block, 
subject only to true data dependences

37



VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level 
parallelism (if the basic block is small)

 To find multiple instructions to be executed in parallel, the 
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths

 Trace scheduling

 Superblock scheduling 

 Hyperblock scheduling

38



Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:

39

r1  = load A

r1 = ...

r1  = ... r1  = load A

r4 = r1 ... r1  = r2 &  r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1  = r2 &  r3



Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result 
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be 
destroyed

 the movement must not cause new exceptions

40



Trace Scheduling

 Trace: A frequently executed path in the control-flow graph 
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack 
into VLIW instructions. 

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance 
or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed)

41



Trace Scheduling (II)

 There may be conditional branches from the middle of the 
trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace 
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981. 

42



Trace Scheduling Idea

43



Trace Scheduling (III)

44

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

What bookeeping is required when Instr 1

is moved below the side entrance in the trace?



Trace Scheduling (IV)

45

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Instr 3

Instr 4



Trace Scheduling (V)

46

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookeeping is required when Instr 5

moves above the side entrance in the trace?



Trace Scheduling (VI)

47

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

Instr 5



Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to 
ensure correctness on all paths (see C below)

48

A

B

C

D

E

X

Y

D

B

E

A

C

A’ B’ C’ Y

XB ’’D ’’E ’’

O riginal
trace

Scheduled
trace

XB

C

D Y

C orrec tness

C ’’’



Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe

49



Data Precedence Graph

50

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2

2

2 2

2

2 2

4 4

222

2



List Scheduling

 Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Ready = data ready and can be scheduled

 Choose one ready instruction I from ready list with the 
highest priority

 Possibly using tie-breaking heuristics 

 Insert I into schedule 

 Making sure resource constraints are satisfied

 Add those instructions whose precedence constraints are 
now satisfied into the ready list 

51



Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Combination of above

52



VLIW List Scheduling

 Assign Priorities

 Compute Data Ready List (DRL) - all operations whose predecessors 
have been scheduled.

 Select from DRL in priority order while checking resource constraints

 Add newly ready operations to DRL and repeat for next instruction

53

1

5

4

3

2

2

5

3

7

2

3

3

8

2

12

2

9

3

13

1

10

1

11

1

6

4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}



Trace Scheduling Example (I)

54

beq  r1 , $0

fdiv  f1 , f2 , f3

fa dd  f4 , f1 , f5

ld   r2 ,  0(r3)

add r2 , r2 , 4

ld   r2 ,  4(r3)

add  r3 , r3 , 4

beq  r2 , $0

f sub  f2 , f2 , f6
f sub  f2 , f3 , f7

st .d   f2 , 0( r8)

add  r8 , r8 , 4

990

990

800

800

10

10

200

200

fd iv  f1 ,  f2 ,  f3

fadd   f4 ,  f1 ,  f5

beq  r1,  $0

ld   r2, 0(r3)

add  r2, r2, 4

beq  r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3, 4

add  r8, r8, 4

B 1

B2 B 3

B4

B5 B 6

B 7

r2 and f2

f2 not

9 stalls

1  stall

1  stall

B 3

B 6

not live 

live out

out



Trace Scheduling Example (II)

55

fd iv   f1 ,  f2 ,  f3

fadd   f4 ,  f1 ,  f5

beq   r1,  $0

ld   r2 , 0(r3)

add  r2, r2 , 4

beq   r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3 , 4

add  r8, r8 , 4

0 stall

0  stall

B 3

B 6

1 stall

fd iv   f1 ,  f2 ,  f3

fadd   f4 ,  f1 ,  f5

beq   r1,  $0

ld   r2 , 0(r3)

add  r2, r2 , 4

beq   r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3 , 4

add  r8, r8 , 4
B 3

B 6

fadd f4 , f1 , f5

Split

fadd f4 , f1 , f5

com p. code



Trace Scheduling Example (III)

56

fd iv  f1 ,  f2 ,  f3

fadd   f4 ,  f1 ,  f5

beq  r1,  $0

ld   r2, 0(r3)

add  r2, r2, 4

beq  r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3, 4

add  r8, r8, 4
B 3 B 6

fadd   f4 ,  f1 ,  f5

Split

add  r3, r3, 4

add  r8, r8, 4

Join  com p. code

fadd   f4 ,  f1 ,  f5

com p. code



Trace Scheduling Example (IV)

57

fd iv  f1 ,  f2 ,  f3

fadd   f4 ,  f1 ,  f5

beq  r1,  $0

ld   r2, 0(r3)

add  r2, r2, 4

beq  r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3, 4

add  r8, r8, 4

B 3
fadd   f4 ,  f1 ,  f5

fadd   f4 ,  f1 ,  f5

Split

add  r2, r2, 4

beq  r2, $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

add  r3, r3, 4

add  r8, r8, 4

B 6

add  r3, r3, 4

add  r8, r8, 4

Join  com p. code

C opied   

com p. code

split

instructions



Trace Scheduling Example (V)

58

fd iv   f1 ,  f2 ,  f3

beq  r1 ,  $0

ld   r2 , 0(r3)

add  r2 , r2 , 4

beq  r2 , $0

fsub  f2 ,  f2 ,  f6

st.d   f2 , 0(r8)

fadd  f4 , f1 , f5

add  r3 , r3 , 4

add  r8 , r8 , 4

fadd  f4 , f1 , f5

ld   r2 ,  4(r3)

fadd  f4 , f1 , f5

fsub  f2 , f3 , f7

add  r2 , r2 , 4

beq  r2 , $0

fsub  f2 , f2 , f6

st.d   f2 , 0(r8)

add  r3 , r3 , 4

add  r8 , r8 , 4

add  r3 , r3 , 4

add  r8 , r8 , 4

B 3

B 6



Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer 

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent 

-- What if dynamic path deviates from trace? 

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions

59



Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

60
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.



Superblock Example

61

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

(using Tail Duplication)

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3,r2,3

Could you have done this with a trace?



Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased 
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits

62



Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased 
branches and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal 
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduling block 

size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution 

63



Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 
Hyperblock,” MICRO 1992.

64

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10



Hyperblock Formation (II)

65

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation



Hyperblock Formation (III)

66

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches



Aside: Test of Time

 Mahlke et al., “Effective Compiler Support for Predicated 
Execution Using the Hyperblock,” MICRO 1992.

 MICRO Test of Time Award

 http://www.cs.cmu.edu/~yixinluo/new_home/2014-Micro-
ToT.html

67

http://www.cs.cmu.edu/~yixinluo/new_home/2014-Micro-ToT.html


Can We Do Better?

 Hyperblock still has disadvantages

 Profile dependent (Optimizes for a single path)

 Requires fix-up code

 And, it requires predication support

 Can we do even better?

 Solution: Single-entry, single-exit enlarged blocks

 Block-structured ISA: atomic enlarged blocks

68



Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  

69Melvin and Patt, “Enhancing Instruction Scheduling with a Block-Structured ISA,” IJPP 1995.



Block Structured ISA (II)

 Advantages

+ Large atomic blocks 

 Aggressive compiler optimizations (e.g. reordering) can be enabled 

within atomic blocks (no side entries or exits)

 Larger units can be fetched from I-cache  wide fetch

+ Can dynamically predict which optimized atomic block is 
executed using a “branch predictor” 

 can optimize multiple “hot” paths

+ No compensation (fix-up) code

 Disadvantages

-- “Fault operations” can lead wasted work (atomicity)

-- Code bloat (multiple copies of the same basic block exists in 
the binary and possibly in I-cache)

-- Need to predict which enlarged block comes next
70



Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

71



Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 Only one path optimized (hardware has no choice to pick 
dynamically)

 BS-ISA blocks

 Single-entry, single exit

 Atomic

 Need to roll back to the beginning of the block on fault

 Multiple paths optimized (hardware has a choice to pick)

72



Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
73



Summary: Larger Code Blocks



Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path

75



We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



IA-64: A “Complicated” VLIW ISA

Recommended reading:

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000.



EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW 
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions 
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by 
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 
2000.

78



IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a 
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit 
predicate registers

79



IA-64 Instruction Bundles and Groups

 Groups of instructions can be 
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need 
somewhat 

80



Template Bits 

 Specify two things

 Stop information: Boundary of independent instructions

 Functional unit information: Where should each instruction be routed

81



Non-Faulting Loads and Exception Propagation

 ld.s (speculative load) fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 
branch is taken (to execute some compensation code)

82

inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br



Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative 
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions

83

inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1 

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br



Aggressive ST-LD Reordering in IA-64

 ld.a (advanced load) starts the monitoring of any store to the same 
address as the advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory

84

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]



Aggressive ST-LD Reordering in IA-64

85

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1


