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Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism
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Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays
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Homework 3.1: Feedback Form

 Due Monday Feb 23

 I would like your feedback on the course

 Easy to fill in

 Can submit anonymously, if you wish

 Worth 0.25% of your grade (extra credit)

 Need to get checked off after submitting to get your grade 
points

 Can email

 If anonymous, show that you are turning in and have a TA 
check you off
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A Couple of Things

 Midterm I Date

 March 4?

 March 18?

 Collaboration on Labs

 All labs individual – no collaboration permitted

 Collaboration on homeworks

 You can collaborate

 But need to submit individual writeups on your own
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Readings for Today

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008.
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Recap of Last Lecture

 SIMD Processing

 Flynn’s taxonomy: SISD, SIMD, MISD, MIMD

 VLIW vs. SIMD

 Array vs. Vector Processors

 Vector Processors in Depth

 Vector Registers, Stride, Masks, Length

 Memory Banking

 Vectorizable Code

 Scalar vs. Vector Code Execution

 Vector Chaining

 Vector Stripmining

 Gather/Scatter Operations

 Minimizing Bank Conflicts

 Automatic Code Vectorization

 SIMD Operations in Modern ISAs: Example from MMX
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Review: Code Parallelization/Vectorization
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



Recap: Vector/SIMD Processing Summary

 Vector/SIMD machines are good at exploiting regular data-
level parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector 
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Remember Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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GPUs are SIMD Engines Underneath

 The instruction pipeline operates like a SIMD pipeline (e.g., 
an array processor)

 However, the programming is done using threads, NOT 
SIMD instructions

 To understand this, let’s go back to our parallelizable code 
example

 But, before that, let’s distinguish between 

 Programming Model (Software)

vs.

 Execution Model (Hardware)

10



Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses 
the code

 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the 
code underneath

 E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming 
Model

 E.g., von Neumann model implemented by an OoO processor

 E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code  Can be executed on a:

 Pipelined processor

 Out-of-order execution processor

 Independent instructions executed 
when ready

 Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

 In other words, the loop is dynamically 
unrolled by the hardware

 Superscalar or VLIW processor

 Can fetch and execute multiple 
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A  V1

VLD     B  V2

VADD     V1 + V2  V3

VST     V3  C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

15

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine

 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)

 Each thread executes the same code but operates a different 
piece of data

 Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

 A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware

 A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently (on any type of scalar pipeline)  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
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Multithreading of Warps 
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

 Assume a warp consists of 32 threads

 If you have 32K iterations  1K warps

 Warps can be interleaved on the same pipeline  Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline



High-Level View of a GPU
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Latency Hiding via Warp-Level FGMT

 Warp: A set of threads that 
execute the same instruction 
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in 
pipeline at a time (No 
interlocking)

 Interleave warp execution to 
hide latencies

 Register values of all threads stay 
in register file

 FGMT enables long latency 
tolerance

 Millions of pixels 
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Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)
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32-thread warp executing ADD A[tid],B[tid]  C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
 Example machine has 32 threads per warp and 8 lanes

 Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



 Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp  4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3



Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim



Sample GPU Program (Less Simplified)

30Slide credit: Hyesoon Kim



Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread 

 Lock step: a vector instruction needs to finish before another can start

 Programming model is SIMD (no extra threads)  SW needs to know 

vector length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD

 SW does not need to know vector length

 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar  vector instructions can be formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD 
hardware
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SPMD
 Single procedure/program, multiple data 

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on 
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same 
program

 Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

 Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD hardware

32



SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD 
instructions  each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions 

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing
33



Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions

 Threads can execute different control flow paths
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Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT

 A GPU uses a SIMD 
pipeline to save area 
on control logic.

 Groups scalar threads 
into warps

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths.
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional execution. 

Recall the Vector Mask and Masked Vector Operations?



Branch Divergence Handling (I)

 Idea: Dynamic predicated (conditional) execution
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- G 1111TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111TOS
E D 0110
E C 1001TOS

- E 1111
E D 0110TOS
- E 1111

A D G A

Time

CB E

- B 1111TOS - E 1111TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001TOS

- E 1111

Slide credit: Tor Aamodt



Branch Divergence Handling (II)
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A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Active Mask

D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

B;

} else {

C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt



Remember: Each Thread Is Independent

 Two Major SIMT Advantages: 

 Can treat each thread separately  i.e., can execute each thread 
independently on any type of scalar pipeline  MIMD processing

 Can group threads into warps flexibly  i.e., can group threads 
that are supposed to truly execute the same instruction 

dynamically obtain and maximize benefits of SIMD processing

 If we have many threads

 We can find individual threads that are at the same PC

 And, group them together into a single warp dynamically

 This reduces “divergence”  improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation 
of full new warps

39

Warp X

Warp Y

Warp Z



Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.

40

Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 

flexibly to any lane?



When You Group Threads Dynamically …

 What happens to memory accesses?

 Simple, strided (predictable) memory access patterns within 
a warp can become complex, randomized (unpredictable) 
with dynamic regrouping of threads

 Can reduce locality in memory

 Can lead to inefficient bandwidth utilization
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What About Memory Divergence?

 Modern GPUs have caches

 To minimize accesses to main memory (save bandwidth)

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other)

 Problem: Some threads in the warp may hit others may miss

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache.

 Need techniques to 

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence
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An Example GPU



NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

46
Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= SIMD functional unit, control 

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

 Groups of 32 threads share instruction stream (each group is 
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285

Tex

Tex
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Tex

Tex
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………

………

………

………

………

49

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



GPU Readings

 Required

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008.

 Recommended

 Narasiman et al., “Improving GPU Performance via Large 
Warps and Two-Level Warp Scheduling,” MICRO 2011.

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.

 Jog et al., “Orchestrated Scheduling and Prefetching for 
GPGPUs,” ISCA 2013.
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VLIW and DAE



Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor
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SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute
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VLIW



VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with 
SIMD)

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed 
into the functional units
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VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
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SIMD Array Processing vs. VLIW

 Array processor
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VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding  very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism 

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple  higher frequency, easier to design
58



VLIW Philosophy and Properties

59Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones
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VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware  simple hardware

+ No need for dependency checking within a VLIW instruction 

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware

 Disadvantages

-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
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VLIW Summary

 VLIW simplifies hardware, but requires complex compiler 
techniques

 Solely-compiler approach of VLIW has several downsides 
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful when parallelism is easier to find by the 
compiler (traditionally embedded markets, DSPs)
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Decoupled Access/Execute (DAE)



Decoupled Access/Execute (DAE)

 Motivation: Tomasulo’s algorithm too complex to 
implement 

 1980s before Pentium Pro

 Idea: Decouple operand 

access and execution via 

two separate instruction 

streams that communicate 

via ISA-visible queues. 

 Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 

ACM TOCS 1984.
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Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)
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Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice 
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one, 
though)
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Astronautics ZS-1

 Single stream 
steered into A and 
X pipelines

 Each pipeline in-
order

 Smith et al., “The 
ZS-1 central 
processor,”
ASPLOS 1987.

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989.
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Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities
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Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
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