18-447
Computer Architecture
Lecture 15: GPUs, VLIW, DA

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 2/20/2015

Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution
= Issues in Oo0O Execution: Load-Store Handling, ...

= Alternative Approaches to Instruction Level Parallelism

Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= SIMD Processing (Vector and array processors, GPUS)
= VLIW

= Decoupled Access Execute

= Systolic Arrays

Homework 3.1: Feedback Form

Due Monday Feb 23

I would like your feedback on the course
Easy to fill in

Can submit anonymously, if you wish
Worth 0.25% of your grade (extra credit)

Need to get checked off after submitting to get your grade
points
o Can email

o If anonymous, show that you are turning in and have a TA
check you off

A Couple of Things

Midterm I Date
o March 4?
o March 187

Collaboration on Labs
o All labs individual — no collaboration permitted

Collaboration on homeworks
a2 You can collaborate
o But need to submit individual writeups on your own

Readings for Today

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

Recap of Last Lecture

SIMD Processing

Flynn's taxonomy: SISD, SIMD, MISD, MIMD
VLIW vs. SIMD

Array vs. Vector Processors

Vector Processors in Depth

Vector Registers, Stride, Masks, Length
Memory Banking

Vectorizable Code

Scalar vs. Vector Code Execution
Vector Chaining

Vector Stripmining

Gather/Scatter Operations

Minimizing Bank Conflicts

Automatic Code Vectorization

SIMD Operations in Modern ISAs: Example from MMX

o 0 0o 0 0 o0 0 o0 O

Review: Code Parallelization/Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i];
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 8

Recap: Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

GPUs are SIMD Engines Underneath

The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

However, the programming is done using threads, NOT
SIMD instructions

To understand this, let's go back to our parallelizable code
example

But, before that, let’s distinguish between
a Programming Model (Software)

VS.
o Execution Model (Hardware)

10

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

11

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
C[i] = A[i] + B[i];
Scalar Sequential Code

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)
2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

12

Prog. Model 1: Sequential (SISD) ™ &1} = ati) + aii1,

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

o Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

13

Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + aii1,

Vectorized Code

Scalar Sequential Code

VLD A->V1

VLD B—>V2

VADD V1+V2->V3

VST V3=>C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
14

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = cua1'= a1 + a1

Sca/ar Sequential Code

" Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

15

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded = cua1'= a1 + a1

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

a A warp is essentially a SIMD operation formed by hardware!

17

i < N; i++)

SPMD on SIMT Machine o c(:ltj§)= A[i] + B[il;

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - I1.e., can group threads
that are supposed to fruly execute the same instruction -

dynamically obtain and maximize benefits of SIMD processing
20

. . for (i=0; i < N; i++)
Multithreading ot Warps CLi] = ALi] + BI4I;

= Assume a warp consists of 32 threads
= If you have 32K iterations - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.
29*32 + 1 20*32 + 2

21

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3

- ‘I Thread Warp 8
)4
Thread Warp Common PC 7 :
Scalan Scalar| Scalar Scalan Thread Warp 7
ThreaqThread Thread* * * | Threac ¢
W X Y Z

SIMD Pipeline

22

High-ILevel View of a GPU

Shader
Core

Shader
Core

Shader

Core

,

'

:

¢

Interconnection Network

:

Memory

¢

Memory

¢

Controller |Controller

GDDR3 |

GDDR3

:

Memory
Controller

;

GDDR3

(PC, Mask) JJ

8l
I-Cache |
v

Decode

wl

i
|

auljadid Je|eas -

auljadid Jejeos
| auljedid Jejeos 4~

23

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction ;

! .
(on different data elements) T o scheduling
Fine-grained multithreading | Threadiwam | s pipeine
o One instruction per thread in | HEeieh |
pipeline at a time (No | —oecode |
interlocking) 3l 3l...|F
o Interleave warp execution to y Y | Warps accessing
hide latencies % ié ' ? memory hierarchy
Register values of all threads stay [D-Cache H/(T=hread Warp 1
in register file Al H"’-’l y Data | i Thread Warp 2
JIEZOGlgflrgnecréables long latency | ¥ | iz Va5 |

o Millions of pixels

Slide credit: Tor Aamodt 24

Warp Execution (Recall the Slide)

32-thread warp executing ADD A[tid],B[tid] = CJ[tid]

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
Vo Vo Vo Vo Vo

‘\ J ‘\] T T 1
\ C[2] / \ C[8] / \ C[9] / \C[lO] / \C[ll] /
| | Cli] /<F | | Cl4] /¢ | CIs] /¢ | | clé] /<F | cr] /Q
C[O] C[O] C[1] CI2] C[3]

Slide credit: Krste Asanovic 25

SIMD Execution Unit Structure

Registers
for each
Thread

Functional Unit
/

_ !

(T

[
Y

Lane

\

1 1 1 1 1 1 1 1
Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2, 6,10, ... 3,7, 11, ..

‘\ A 4 ‘7</,7 ‘\ A 4 <]/7 ‘\ A 4 ‘7</,7 ‘\ A 4 ‘7</,7

A L L L

SN I (1 T B f PR AL
i y i i .

Memory Subsystem

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
00 0 e A A A A A
time oo o000 AAAAAAVYZ fame e mEEE
00 0 e AAAAAAA A EEEEEE
0100 |0|0 A A A A AAAANEEEEEEDE
0100 |0|0 AAAA A A \|HEEEEEEENE
O|0|0|0|0 AAAAALVE_IIIIIIIII
0100 |0|0 AAAAAAA A EEE EEEE
A A AAAAAAINEEEEEEDE
H EEEENENEN

I Warp issue >

Slide credit: Krste Asanovic 27

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp - 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

CPU code
[for (i = 0; i < 100000; ++ii) {

Clii] = A[ii] + BI[ii];

¥
CUDA code I

(// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

J J

—

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 30

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread

Q

a

Lock step: a vector instruction needs to finish before another can start

Programming model is SIMD (no extra threads) > SW needs to know
vector length

ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

Q

a

Does not have to be lock step

Each thread can be treated individually (i.e., placed in a different
warp) > programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
ISA is scalar - vector instructions can be formed dynamically

Essentially, it is SPMD programming model implemented on SIMD

hardware
31

SPMD

Single procedure/program, multiple data
o This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

32

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

a Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction -

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

£ Thread Warp Common PC
& 4 \ Thread| Thread| Thread | Thread
() F- 1 2 3 4

Slide credit: Tor Aamodt 34

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area
on control logic.

o Groups scalar threads

into warps Branch VYV Y YV Y Y
Path A
Branch divergence v '
occurs when threads Patﬂ |
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths.

This is the same as conditional execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 35

Branch Divergence Handling (I)

Idea: Dynamic predicated (conditional) execution

Stack
A/1111 Reconv. PC Next PC Active Mask
TOS— - E 1111
TOS— E D 0110
B/1111 TOS— E E 1001

C/1001]| |D/0110| |F

\/ Thread Warp Common PC

E/1111 Thread | Thread | Thread| Thread
4

=
N
w

G/1111

A B C D E A
il | mtmivaad] (duiraa | it | (vt (tmtrtt. et
r—>| —>|r—>| |=-—> r—> r—>|
ceos b —it =1 r—i—1—1—
|—>: —>:| : —>:|—> 1 —> |—>:
:—’j —*>J:—’j J:—”:—*> :—’1

. > Time

Slide credit: Tor Aamodt

36

Branch Dlvergence Handling (II)

g:Lf (some condition) {
B; One per warp
} else { \
.G Control Flow Stack
]}3 Next PC_Recv PC Active Mask
o llll TOS = D 1111
B D 1110
D D 0001

Execution Sequence
A C B D

1110 1
110 1
110 1
1] [1 1

OR KR

Slide credit: Tor Aamodt 37

Remember: Fach Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately = i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction =2

dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
38

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX 4 ¥4 \ - Vidd e v Wapz

39

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN
RN
RN
EERRNER
TXIE RN
e oy T } !

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

40

Dynamic Warp Formation Example

X/llll

A 111
A A
x/1110 m a
B y/0011 f::| Execution of Warp X r__:l Execution of Warp y
|_>| at Basic Block A |_>| at Basic Block A
= =

X/OllO X/OOOl
y/0001 y/1100 D
v A new warp created from scalar
E x/1110 :: threads of both Warp x and y
y/0011 —» | executing at Basic Block D
X/ 1111

Gyt

Baseline °*°°

N

Dynamic A A B B |c! E E G G A A
[15 [> > > >[5 5 [5]
Wal’p ...I—)l—)-? =d =a —>|—>|_>|_>|_>ooo
: > 1> |=>l|>I>0>H>| > i ad i ded
Formation 2= 2l L= 12y 2 12y
[:>Time
41

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

e Functional Unit
(L]]] S
// \\@ // \\ // \\@ |

Registers \/T T\ i /T T\ v /T T\ ¥ /T 1 v)
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0, 4,8, .. 1,5,9, .. 2, 6,10, .. 3,7, 11, ..

A A A A A
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
\ | \ | \ | \ |
=

can you move any thread i
-\ flexibly to any lane?

Memory Subsystem

42

Slide credit: Krste Asanovic

When You Group Threads Dynamically ...

What happens to memory accesses?

Simple, strided (predictable) memory access patterns within
a warp can become complex, randomized (unpredictable)
with dynamic regrouping of threads

- Can reduce locality in memory
- Can lead to inefficient bandwidth utilization

43

What About Memory Divergence?

Modern GPUs have caches
o To minimize accesses to main memory (save bandwidth)

Ideally: Want all threads in the warp to hit (without
conflicting with each other)

Problem: Some threads in the warp may hit others may miss

Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

Need techniques to
o Tolerate memory divergence
o Integrate solutions to branch and memory divergence

44

An Example GPU

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
a 8 SIMD functional units per core

46
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core’’

64 KB of storage
for thread contexts

ol = SIMD functional unit, control
shared across 8 units

= multiply-add
B = multiply

(registers)

= instruction stream decode

= execution context storage

47
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core’’

R 64 KB of storage

l for thread contexts
(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

48

NVIDIA GeForce GTX 285

[ST=])| [ST]{ [ST=]§ [=]|

| [=]=] | [=]=] | [=I=]{ [=]=]|

 [=]=] | [=]=] [=[=]{| [=]=]|

=[]] (ST=]{ [ST=]{ [ST=])

| [T=] | [ST=])] [wT=]{ [=T];

=[] | (=I5 | (S[=] | =[=],

CLifr--T1170

INNEER RN

[=T=]| (ST=]| [ST=] | T=]|

| [=[=]| [=]=]{[=[=] | [=[=]

|[=[=])[=]=]{[=[=]1{ [=1=]]

 [=]=]{[=I=] [=I=]{| [=]=]|

[[S[=]] [ST=] | [ST=] | [wT=]|

=[5} (=[5 S[=]{ =[5,

|[=T=] | [=[=]}| [=T=]{ [=[=1 ¥ [sTs] | =[] ST EE) EE]) EE EE EE) (08][oo|[oo||oo|| | [Oe] (0] (o] (o] | | (o] [oe][Ca][oa]
 [w]=] | [=]=]) [=[=]1| [=I=] {§ § [=T=]| [=T=] | [=I=1{ [=I=] § R (== == | [=1=] | =1=]) | [u]=] | [=]=]| [=[=1) [=T=1 | R == | == | =E EE R EE EE EE EE)
-t e -1 eIy I -1 It
[=T=]| (=[]} [=T=]{ [=I=1 RN [sT=] | [=T=]) [=T=]{ [sI=]§) (=T=]] [=[=1}| [=T=]{ [=]=]] |[=E]| EE EE EE I EE| EE| EE EE Y EE EE EE EE
EE|EE|EE | EE I EEEE | EE EE I EE EE EE EEEEEE|EEEE EE EE EE EE EE EE EE
Ceirt---TIr eIy frrr---11rti -ty Iy -1 ITtd
(0o][og||oo||oo|| | [Oe][os][ose][oa] | | (o] [oe][oa][oa] EEEEEEEEE EE EE EE N EE EE EE EE
(0o|[og||oo||on|| | [Oe][0s] (0] (o] | | (o] [oe][oa] [oa] EEEEE EE EE EE EE EENEE EE EEEE

INNEED AR

 [=]=]{ [=]=] [=[=]{| [=]=]|

| [T=] | [T [ST=] | [ST=]]

=[] | I=]| S[=] | [=])

 [=]=]{ [=]=] [=[=]{| [=]=]|

[=]=]{[=]=] [=I=] | [=]=]|

 [=]=] | [=]=] [=[=]{| [=]=]|

CLifl--T101]

INNEER RN

INNEEN RN

 [=]=]{[=I=] [=I=]{| [=]=]|

| [m]=] | [=]=] [=[=] | [=]=]|

 [=]=]| [=]=]} [=[=] | [=]=]|

 [=]=] | [=]=] [=[=] | [=]=]|

[=[=]|[=]=]|[=I=]| [=]=]

[=[=]|[=I=] [=I=] | [=]=]|

INNEED RN

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

49

GPU Readings

Required

a Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

o Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008.

Recommended

o Narasiman et al., “"Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

a Fung et al., "Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

o Jog et al., "Orchestrated Scheduling and Prefetching for
GPGPUSs,"” ISCA 2013.

50

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD? Multiple instructions operate on single data element
o Closest form: systolic array processor?

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

52

SISD Parallelism Extraction Techniques

We have already seen
o Superscalar execution
o Out-of-order execution

Are there simpler ways of extracting SISD parallelism?
o VLIW (Very Long Instruction Word)
o Decoupled Access/Execute

53

VLIW

VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional Characteristics
o Multiple functional units
o Each instruction in a bundle executed in lock step

o Instructions in a bundle statically aligned to be directly fed

into the functional units
55

VLIW Concept

Memory

add r1,r2,r3 load r4 r5+4 mov r6,r2 mul r7,r8.r9

Erograml
ounter

Instruction
Sreedien
PE PE PE PE

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)

56

SIMD Array Processing vs. VLIW

= Array processor

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution
PE PE PE PE

57

VLIW Philosophy

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism
o Hardware stays as simple and streamlined as possible

Executes each instruction in a bundle in lock step

Simple = higher frequency, easier to design
58

VLIW Philosophy and Properties

More formally, VLIW architectures have the following
properties:

There is one central control umit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

QOperations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWSs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. >°

Commercial VLLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

a A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

60

VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
61

VLIW Summary

VLIW simplifies hardware, but requires complex compiler
techniques

Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW successful when parallelism is easier to find by the

compiler (traditionally embedded markets, DSPs)
62

Decoupled Access/Execute (DAE)

Decoupled Access/Execute (DAE)

Motivation: Tomasulo’ s algorithm too complex to

implement

o 1980s before Pentium Pro

Idea: Decouple operand
access and execution via

A-instructions

E-instructions

AEQ
two separate instruction Lt -r-——)l _.[

streams that communicate

waq ! mommm-
via ISA-visible queues. Access
Processor
Smith, “Decoupled Access/Execute reg?ster

file

Computer Architectures,” ISCA 1982,

Execute
6 P— Processor

X
e{[[l— register

ACM TOCS 1984.

64

Decoupled Access/Execute (11)

Compiler generates two instruction streams (A and E)
o Synchronizes the two upon control flow instructions (using branch queues)

?k§ =q + y(k) * (r * z(k+10) + t * z(k+1l))

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO

FXCERPT) Access Execute

A7 « -400 . negative loop count .

A2 « 0 . initialize index

A3 « 1 . index increment .

X2 «r . load loop invariants AEQ « z + 10, A2 X4 « X2 *f AEQ

X5« t . into registers -7 + - *f A
loop: X3 « z + 10, A2 . Toad z(k+10) igg . ; Aél’ At §g . ig +f XEQ

X7 ez + 11, A2 . 1oad z(k+11) A7 « A7 + 1 EAQ < AEQ *f X6

X4 « X2 *f X3 . r*z(k+10)-f1t. mult.

X3 « X5 *f X7 .t * z{k+11) x, A2 « EAQ .

X7 « y, R2 . Toad y(k) A2 « A2+ A3 .

X6 « X3 +f X4 . r*z(x+10)+t*z(k+11)) . .

X4 « X7 *f X6 . y(k) * (above) .

A7 « A7 + 1 . increment loop counter .

X, AZ « X4 . store into x(k)

A2 « A2 + A3 . increment index

AN oo -+ Branch 1 A7 <0 Fig. 2c. Access and execute programs for
Fig. 2b. Compilation onto CRAY-1-like straight-line section of loop

architecture

65

Decoupled Access/Execute (111

Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers
+ Limited out-of-order execution without wakeup/select complexity

Disadvantages:

-- Compiler support to partition the program and manage queues
-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

66

Astronautics Z.S-1

X

UNIT

| LOGICAL
UNIT
FLOATING
X REGISTERS A FLoAT
::3]] MULTIPLIER
’...”.-mm-.‘..
i—a FLOATING
" POINT
T Aooer
RESTART
UNIT X “RECIPROCAL
| INSTRUCTION [* %] APPROX.
PIPELINE ©UNIT
NsTRUCTION | | cory
FETCH
UNIT UNIT
A $TA INTEGER
3% INSTRUCTION SHIFTER
PIPELINE Ly
o+ iNTEGER
ADDER/
A REGISTERS | LocicaL
* —T] INTEGER
: MULTIPLIER/
E| Ly DIVIDER

STORES

TO CENTRAL
MEMORY

LOCAL
MEMORY

Single stream
steered into A and
X pipelines

Each pipeline in-
order

Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” 1IEEE
Computer 1989.

67

Astronautics ZS-1 Instruction Scheduling

Dynamic scheduling
o A and X streams are issued/executed independently
o Loads can bypass stores in the memory unit (if no conflict)

o Branches executed early in the pipeline
To reduce synchronization penalty of A/X streams
Works only if the register a branch sources is available

Static scheduling

o Move compare instructions as early as possible before a branch
So that branch source register is available when branch is decoded

o Reorder code to expose parallelism in each stream

o Loop unrolling:
Reduces branch count + exposes code reordering opportunities

68

Loop Unrolling

1=1; _ 4.
while (i< 100){ \Lvh|?e(i{100){

ali] = bi+1] + (+1)/m _ pi+1] + (i+1)m

bli] = 'j["” - 1/m b[i] = a[i-1] - i/m

=1+
) afi+1] = b[i+2] + (i+2)/m

= - (I+1)/m
= i+2
}

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead
o Induction variable increment or loop condition test
+ Enlarges basic block (and analysis scope)
o Enables code optimization and scheduling opportunities
-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
69

