
18-447

Computer Architecture

Lecture 13: Out-of-Order Execution

and Data Flow

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/16/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

2

Reminder: Announcements

 Lab 3 due this Friday (Feb 20)

 Pipelined MIPS

 Competition for high performance

 You can optimize both cycle time and CPI

 Document and clearly describe what you do during check-off

 Homework 3 due Feb 25

 A lot of questions that enable you to learn the concepts via
hands-on exercise

 Remember this is all for your benefit (to learn and prepare for
exams)

 HWs have very little contribution to overall grade

 Solutions to almost all questions are online anyway

3

Lab 2 Grade Distribution

4

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

 Avg 70.5

 Med 96.9

 Stdev 39.1

 Max 100

 Min 50.8

Lab 2 Extra Credits

 Complete and correct:

 Terence An

 Jared Choi

 Almost correct:

 Pete Ehrett

 Xiaofan Li

 Amanda Marano

 Ashish Shrestha

 Almost-1 correct:

 Sohil Shah

5

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

6

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, DAE, Systolic Arrays

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

7

Recap of Last Lecture

 Maintaining Speculative Memory State (Ld/St Ordering)

 Out of Order Execution (Dynamic Scheduling)

 Link Dependent Instructions: Renaming

 Buffer Instructions: Reservation Stations

 Track Readiness of Source Values: Tag (and Value) Broadcast

 Schedule/Dispatch: Wakeup and Select

 Tomasulo’s Algorithm

 OoO Execution Exercise with Code Example: Cycle by Cycle

 OoO Execution with Precise Exceptions

 Questions on OoO Implementation

 Where data is stored? Single physical register file vs. reservation stations

 Critical path, renaming IDs, …

 OoO Execution as Restricted Data Flow

 Reverse Engineering the Data Flow Graph

8

Review: In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
9

F D W E E E E R

F D E R W

F

IMUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R3, R5
D E R W

F D E R W

F D E R W

F D W E E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

This slide is actually correct

Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

10

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

11

Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

12

Review: Our Example

13

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

Review: State of RAT and RS in Cycle 7

14

All our in-class drawings are at:

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf

Review: Corresponding Dataflow Graph

15

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

16

Review: OOO Execution: Restricted

Dataflow
 An out-of-order engine dynamically builds the dataflow

graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

17

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by both scheduling
window and reorder buffer size

 18

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

19

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known until
a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their (partial) execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

20

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

21

Handling of Store-Load Dependences

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to check
for address match)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

22

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

23

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

24

Data Forwarding Between Stores and Loads

 We cannot update memory out of program order

 Need to buffer all store and load instructions in instruction window

 Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store

2. How do we forward data to the load if it is dependent on a store

 Modern processors use a LQ (load queue) and an SQ for this

 Can be combined or separate between loads and stores

 A load searches the SQ after it computes its address. Why?

 A store searches the LQ after it computes its address. Why?

25

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed
across functional units?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …

26

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

27

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

 28

A Modern OoO Design: Intel Pentium 4

29
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

30

Mutlu+, “Runahead Execution,”

HPCA 2003.

Alpha 21264

31 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

MIPS R10000

32 Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996

IBM POWER4

 Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

33

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

34

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

35

Recommended Readings

 Out-of-order execution processor designs

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

36

And More Readings…

 Stark et al., “On Pipelining Dynamic Scheduling Logic,”
MICRO 2000.

 Brown et al., “Select-free Instruction Scheduling Logic,”
MICRO 2001.

 Palacharla et al., “Complexity-effective Superscalar
Processors,” ISCA 1997.

37

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

39

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

41

Remember: Dataflow Graph

42

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

43

Data Flow Nodes

44

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

47

OUT

Control Flow vs. Data Flow

48

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential instruction stream

 No program counter

 Execution triggered by the presence/readiness of data

 Operations execute asynchronously

49

What About Loops and Function Calls?

 Problem: Multiple dynamic instances can be active for the
same instruction (i.e., due to loop iteration or invocation of
function from different location)

 IP is not enough to distinguish between these different
dynamic instances of the same static instruction

 Solution: Distinguish between different instances by creating
new tags/frames (at the beginning of new iteration or call)

50

token < ip , p , v >

instruction ptr port data

<fp, ip, port, data>

frame
pointer

(tag or context ID)

instruction
pointer

a tagged token

An Example Frame and Execution

51

1

2

3

4

5

Program +

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out *

1

2

4

5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

L

Monsoon Dataflow Processor [ISCA 1990]

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

A Dataflow Processor

53

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit: try
to match incoming
token and context id
and a waiting token
with same instruction
address

 Success: Both
tokens forwarded,
fetch instruction

 Fail: Incoming token
stored in Waiting
Token Memory,
bubble inserted

54

TTDA Data Flow Example

55

TTDA Data Flow Example

56

TTDA Data Flow Example

57

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

58

Data Flow Advantages/Disadvantages
 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 Debugging difficult (no precise state)

 Interrupt/exception handling is difficult (what is precise state
semantics?)

 Implementing dynamic data structures difficult in pure data
flow models

 Too much parallelism? (Parallelism control needed)

 High bookkeeping overhead (tag matching, data storage)

 Instruction cycle is inefficient (delay between dependent
instructions), memory locality is not exploited

59

Combining Data Flow and Control Flow

 Can we get the best of both worlds?

 Two possibilities

 Model 1: Keep control flow at the ISA level, do dataflow
underneath, preserving sequential semantics

 Model 2: Keep dataflow model, but incorporate some control
flow at the ISA level to improve efficiency, exploit locality, and
ease resource management

 Incorporate threads into dataflow: statically ordered instructions;
when the first instruction is fired, the remaining instructions
execute without interruption

 60

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

61

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

 Microarchitecture-level dataflow:

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale
and introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Hwu and Patt, “HPSm, a high performance restricted data
flow architecture having minimal functionality,” ISCA 1986.

62

