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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 
 

 Multi-cycle and Microprogrammed Microarchitectures 
 

 Pipelining 
 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 
 

 Out-of-Order Execution 
 

 Issues in OoO Execution: Load-Store Handling, … 
 

 Alternative Approaches to Instruction Level Parallelism 
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Reminder: Announcements 

 Lab 3 due this Friday (Feb 20) 

 Pipelined MIPS 

 Competition for high performance 

 You can optimize both cycle time and CPI 

 Document and clearly describe what you do during check-off 

 

 Homework 3 due Feb 25 

 A lot of questions that enable you to learn the concepts via 
hands-on exercise 

 Remember this is all for your benefit (to learn and prepare for 
exams) 

 HWs have very little contribution to overall grade 

 Solutions to almost all questions are online anyway 
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Lab 2 Grade Distribution 
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  Avg 70.5 

 Med 96.9 

 Stdev 39.1 

 Max 100 

 Min 50.8 



Lab 2 Extra Credits 

 Complete and correct: 

 Terence An 

 Jared Choi 

 

 Almost correct: 

 Pete Ehrett 

 Xiaofan Li 

 Amanda Marano 

 Ashish Shrestha 

 

 Almost-1 correct: 

 Sohil Shah 
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Readings Specifically for Today 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Next Lecture 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, DAE, Systolic Arrays 

 

 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 
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Recap of Last Lecture 

 Maintaining Speculative Memory State (Ld/St Ordering) 

 Out of Order Execution (Dynamic Scheduling) 

 Link Dependent Instructions: Renaming 

 Buffer Instructions: Reservation Stations 

 Track Readiness of Source Values: Tag (and Value) Broadcast 

 Schedule/Dispatch: Wakeup and Select 

 Tomasulo’s Algorithm 

 OoO Execution Exercise with Code Example: Cycle by Cycle 

 OoO Execution with Precise Exceptions 

 Questions on OoO Implementation 

 Where data is stored? Single physical register file vs. reservation stations 

 Critical path, renaming IDs, … 

 OoO Execution as Restricted Data Flow 

 Reverse Engineering the Data Flow Graph 
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Review: In-order vs. Out-of-order Dispatch 

 In order dispatch + precise exceptions: 

 

 

 

 

 

 Out-of-order dispatch + precise exceptions: 

 

 

 

 

 

 16 vs. 12 cycles 
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Review: Out-of-Order Execution with Precise Exceptions 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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Review: Enabling OoO Execution, Revisited 

1. Link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
 

2. Buffer instructions until they are ready 

 Insert instruction into reservation stations after renaming  
 

3. Keep track of readiness of source values of an instruction 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU) 

 Wakeup and select/schedule the instruction 
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Review: Summary of OOO Execution Concepts 

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

 Buffering enables the pipeline to move for independent ops 

 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

 Wakeup and select enables out-of-order dispatch 
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Review: Our Example 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



Review: State of RAT and RS in Cycle 7 
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All our in-class drawings are at: 

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf  

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf


Review: Corresponding Dataflow Graph 
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Restricted Data Flow 

 An out-of-order machine is a “restricted data flow” machine 

 Dataflow-based execution is restricted to the microarchitecture 
level 

 ISA is still based on von Neumann model (sequential 
execution) 

 

 Remember the data flow model (at the ISA level): 

 Dataflow model: An instruction is fetched and executed in 
data flow order 

 i.e., when its operands are ready 

 i.e., there is no instruction pointer 

 Instruction ordering specified by data flow dependence 

 Each instruction specifies “who” should receive the result 

 An instruction can “fire” whenever all operands are received 
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Review: OOO Execution: Restricted 

Dataflow 
 An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program 

 which piece? 

 

 The dataflow graph is limited to the instruction window 

 Instruction window: all decoded but not yet retired 
instructions 

 

 Can we do it for the whole program?  

 Why would we like to? 

 In other words, how can we have a large instruction 
window? 

 Can we do it efficiently with Tomasulo’s algorithm? 
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Questions to Ponder 

 Why is OoO execution beneficial? 

 What if all operations take single cycle? 

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently 

 

 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm? 

 Active/instruction window size: determined by both scheduling 
window and reorder buffer size 
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Registers versus Memory, Revisited 

 So far, we considered register based value communication 
between instructions 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Memory Dependence Handling (I) 

 Need to obey memory dependences in an out-of-order 
machine  

 and need to do so while providing high performance 

 

 Observation and Problem: Memory address is not known until 
a load/store executes 

 

 Corollary 1: Renaming memory addresses is difficult 

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their (partial) execution 

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine 
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Memory Dependence Handling (II) 

 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 

 Known as the memory disambiguation problem or the unknown 
address problem 

 

 Approaches 

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine) 

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away 

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store 
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Handling of Store-Load Dependences 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to check 
for address match)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load dependent on all previous stores 

 Option 2: Assume load independent of all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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Memory Disambiguation (I) 

 Option 1: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 2: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  
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Data Forwarding Between Stores and Loads 

 We cannot update memory out of program order 

     Need to buffer all store and load instructions in instruction window 

 

 Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain: 

1. How do we check whether or not it is dependent on a store 

2. How do we forward data to the load if it is dependent on a store 

 

 Modern processors use a LQ (load queue) and an SQ for this 

 Can be combined or separate between loads and stores 

 A load searches the SQ after it computes its address. Why? 

 A store searches the LQ after it computes its address. Why? 

 

25 



Food for Thought for You 

 Many other design choices 

 

 Should reservation stations be centralized or distributed 
across functional units? 

 What are the tradeoffs? 

 

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 

 What are the tradeoffs? 

 

 Exactly when does an instruction broadcast its tag? 

 … 
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More Food for Thought for You 

 How can you implement branch prediction in an out-of-
order execution machine? 

 Think about branch history register and PHT updates 

 Think about recovery from mispredictions 

 How to do this fast? 
 

 How can you combine superscalar execution with out-of-
order execution? 

 These are different concepts 

 Concurrent renaming of instructions 

 Concurrent broadcast of tags 

 

 How can you combine superscalar + out-of-order + branch 
prediction? 
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General Organization of an OOO Processor 

 

 

 

 

 

 

 

 

 

 

 
 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 

1995. 
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A Modern OoO Design: Intel Pentium 4 

29 
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001. 



Intel Pentium 4 Simplified 

30 

Mutlu+, “Runahead Execution,”  

HPCA 2003. 



Alpha 21264 

31 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999. 



MIPS R10000 

32 Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996 



IBM POWER4 

 Tendler et al., 
“POWER4 system 
microarchitecture,” 
IBM J R&D, 2002. 
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IBM POWER4 

 2 cores, out-of-order execution 

 100-entry instruction window in each core 

 8-wide instruction fetch, issue, execute 

 Large, local+global hybrid branch predictor 

 1.5MB, 8-way L2 cache 

 Aggressive stream based prefetching 
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IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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Recommended Readings 

 Out-of-order execution processor designs 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002. 
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And More Readings… 

 Stark et al., “On Pipelining Dynamic Scheduling Logic,” 
MICRO 2000. 

 

 Brown et al., “Select-free Instruction Scheduling Logic,” 
MICRO 2001. 

 

 Palacharla et al., “Complexity-effective Superscalar 
Processors,” ISCA 1997. 
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Other Approaches to Concurrency 

(or Instruction Level Parallelism) 

 

 

 

 

 



Approaches to (Instruction-Level) Concurrency 

 Pipelining 

 Out-of-order execution 

 Dataflow (at the ISA level) 

 SIMD Processing (Vector and array processors, GPUs) 

 VLIW 

 Decoupled Access Execute 

 Systolic Arrays 
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Data Flow: 

Exploiting Irregular Parallelism 

 
 

 

 

 

 



Remember: State of RAT and RS in Cycle 7 
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Remember: Dataflow Graph 
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Review: More on Data Flow 

 In a data flow machine, a program consists of data flow 
nodes 

 A data flow node fires (fetched and executed) when all it 
inputs are ready 

 i.e. when all inputs have tokens 

 

 Data flow node and its ISA representation 
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Data Flow Nodes 
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Dataflow Nodes (II) 

 A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 
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+ T F 
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T T 


 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 
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 Values in dataflow graphs are 
represented as tokens 

 

 

 

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators 

token < ip , p , v > 

instruction ptr port data 

no separate control flow 



Example Data Flow Program 
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Control Flow vs. Data Flow 
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Data Flow Characteristics 

 Data-driven execution of instruction-level graphical code 

 Nodes are operators 

 Arcs are data (I/O) 

 As opposed to control-driven execution 

 

 Only real dependencies constrain processing 

 

 No sequential instruction stream  

 No program counter 

 

 Execution triggered by the presence/readiness of data 

 

 Operations execute asynchronously 
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What About Loops and Function Calls? 

 Problem: Multiple dynamic instances can be active for the 
same instruction (i.e., due to loop iteration or invocation of 
function from different location) 

 IP is not enough to distinguish between these different 
dynamic instances of the same static instruction 

 

 

 Solution: Distinguish between different instances by creating 
new tags/frames (at the beginning of new iteration or call) 
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token < ip , p , v > 

instruction ptr port data 

<fp, ip, port, data> 

frame  
pointer  

(tag or context ID) 

instruction 
pointer 

a tagged token 



An Example Frame and Execution  
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Monsoon Dataflow Processor [ISCA 1990] 

Instruction 
Fetch 

Operand 
Fetch 

ip 

fp+r 

Network Network 

Frames 

op r d1,d2 

Code 

Form 
Token 

ALU 

Token 
Queue 



A Dataflow Processor 
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MIT Tagged Token Data Flow Architecture 

 Wait−Match Unit: try 
to match incoming 
token and context id 
and a waiting token 
with same instruction 
address  

 Success: Both 
tokens forwarded, 
fetch instruction 

 Fail: Incoming token 
stored in Waiting 
Token Memory, 
bubble inserted 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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Manchester Data Flow Machine 

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

 Large data set  

overflow in overflow 
unit 

 Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Advantages/Disadvantages 
 Advantages 

 Very good at exploiting irregular parallelism 

 Only real dependencies constrain processing 
 

 Disadvantages 

 Debugging difficult (no precise state) 

 Interrupt/exception handling is difficult (what is precise state 
semantics?) 

 Implementing dynamic data structures difficult in pure data 
flow models 

 Too much parallelism? (Parallelism control needed) 

 High bookkeeping overhead (tag matching, data storage) 

 Instruction cycle is inefficient (delay between dependent 
instructions), memory locality is not exploited 
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Combining Data Flow and Control Flow 

 Can we get the best of both worlds? 

 

 Two possibilities 

 

 Model 1: Keep control flow at the ISA level, do dataflow 
underneath, preserving sequential semantics 

 

 Model 2: Keep dataflow model, but incorporate some control 
flow at the ISA level to improve efficiency, exploit locality, and 
ease resource management 

 Incorporate threads into dataflow: statically ordered instructions; 
when the first instruction is fired, the remaining instructions 
execute without interruption 
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Data Flow Summary 

 Availability of data determines order of execution 

 A data flow node fires when its sources are ready 

 Programs represented as data flow graphs (of nodes) 

 

 Data Flow at the ISA level has not been (as) successful 

 

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful 

 Out of order execution 

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986. 
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Further Reading on Data Flow 

 ISA level dataflow 

 Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

 

 Microarchitecture-level dataflow: 

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale 
and introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 Hwu and Patt, “HPSm, a high performance restricted data 
flow architecture having minimal functionality,” ISCA 1986. 
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