
18-447
Computer Architecture

Lecture 12: Out-of-Order Execution
(Dynamic Instruction Scheduling)

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 2/13/2015

Agenda for Today & Next Few Lectures
n  Single-cycle Microarchitectures

n  Multi-cycle and Microprogrammed Microarchitectures

n  Pipelining

n  Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

n  Out-of-Order Execution

n  Issues in OoO Execution: Load-Store Handling, …

n  Alternative Approaches to Instruction Level Parallelism

2

Reminder: Announcements

n  Lab 3 due next Friday (Feb 20)
q  Pipelined MIPS
q  Competition for high performance

n  You can optimize both cycle time and CPI
n  Document and clearly describe what you do during check-off

n  Homework 3 due Feb 25
q  A lot of questions that enable you to learn the concepts via

hands-on exercise
q  Remember this is all for your benefit (to learn and prepare for

exams)
n  HWs have very little contribution to overall grade
n  Solutions to almost all questions are online anyway

3

Readings Specifically for Today
n  Smith and Sohi, “The Microarchitecture of Superscalar

Processors,” Proceedings of the IEEE, 1995
q  More advanced pipelining
q  Interrupt and exception handling
q  Out-of-order and superscalar execution concepts

n  Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

4

Recap of Last Lecture
n  Issues with Multi-Cycle Execution
n  Exceptions vs. Interrupts
n  Precise Exceptions/Interrupts
n  Why Do We Want Precise Exceptions?
n  How Do We Ensure Precise Exceptions?

q  Reorder buffer
q  History buffer
q  Future register file (best of both worlds)
q  Checkpointing

n  Register renaming with a reorder buffer
n  How to Handle Exceptions
n  How to Handle Branch Mispredictions
n  Speed of State Recovery: Recovery and Interrupt Latency

q  Checkpointing

n  Registers vs. Memory
5

Important: Register Renaming with a Reorder Buffer

n  Output and anti dependencies are not true dependencies
q  WHY? The same register refers to values that have nothing to

do with each other
q  They exist due to lack of register ID’s (i.e. names) in

the ISA

n  The register ID is renamed to the reorder buffer entry that
will hold the register’s value
q  Register ID à ROB entry ID
q  Architectural register ID à Physical register ID
q  After renaming, ROB entry ID used to refer to the register

n  This eliminates anti- and output- dependencies
q  Gives the illusion that there are a large number of registers

6

Review: Register Renaming Examples

7
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Review: Checkpointing Idea
n  Goal: Restore the frontend state (future file) such that the

correct next instruction after the branch can execute right
away after the branch misprediction is resolved

n  Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch
q  Upon branch misprediction, restore the checkpoint associated

with the branch

n  Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

8

Review: Checkpointing
n  When a branch is decoded

q  Make a copy of the future file/map and associate it with the
branch

n  When an instruction produces a register value
q  All future file/map checkpoints that are younger than the

instruction are updated with the value

n  When a branch misprediction is detected
q  Restore the checkpointed future file/map for the mispredicted

branch when the branch misprediction is resolved
q  Flush instructions in pipeline younger than the branch
q  Deallocate checkpoints younger than the branch

9

Review: Registers versus Memory
n  So far, we considered mainly registers as part of state

n  What about memory?

n  What are the fundamental differences between registers
and memory?
q  Register dependences known statically – memory

dependences determined dynamically
q  Register state is small – memory state is large
q  Register state is not visible to other threads/processors –

memory state is shared between threads/processors (in a
shared memory multiprocessor)

10

Maintaining Speculative Memory State: Stores

n  Handling out-of-order completion of memory operations
q  UNDOing a memory write more difficult than UNDOing a

register write. Why?
q  One idea: Keep store address/data in reorder buffer

n  How does a load instruction find its data?

q  Store/write buffer: Similar to reorder buffer, but used only for
store instructions
n  Program-order list of un-committed store operations
n  When store is decoded: Allocate a store buffer entry
n  When store address and data become available: Record in store

buffer entry
n  When the store is the oldest instruction in the pipeline: Update

the memory address (i.e. cache) with store data

n  We will get back to this after today!
11

Remember:
Static vs. Dynamic Scheduling

12

Remember: Questions to Ponder
n  What is the role of the hardware vs. the software in the

order in which instructions are executed in the pipeline?
q  Software based instruction scheduling à static scheduling
q  Hardware based instruction scheduling à dynamic scheduling

n  What information does the compiler not know that makes
static scheduling difficult?
q  Answer: Anything that is determined at run time

n  Variable-length operation latency, memory addr, branch direction

13

Dynamic Instruction Scheduling
n  Hardware has knowledge of dynamic events on a per-

instruction basis (i.e., at a very fine granularity)
q  Cache misses
q  Branch mispredictions
q  Load/store addresses

n  Wouldn’t it be nice if hardware did the scheduling of
instructions?

14

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

n  Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

n  Dispatch: Act of sending an instruction to a functional unit

16

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
n  What do the following two pieces of code have in common

(with respect to execution in the previous design)?

n  Answer: First ADD stalls the whole pipeline!

q  ADD cannot dispatch because its source registers unavailable
q  Later independent instructions cannot get executed

n  How are the above code portions different?
q  Answer: Load latency is variable (unknown until runtime)
q  What does this affect? Think compiler vs. microarchitecture

17

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

LD R3 ß R1 (0)
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

Preventing Dispatch Stalls
n  Multiple ways of doing it
n  You have already seen at least THREE:

q  1. Fine-grained multithreading
q  2. Value prediction
q  3. Compile-time instruction scheduling/reordering

n  What are the disadvantages of the above three?

n  Any other way to prevent dispatch stalls?
q  Actually, you have briefly seen the basic idea before

n  Dataflow: fetch and “fire” an instruction when its inputs are
ready

q  Problem: in-order dispatch (scheduling, or execution)
q  Solution: out-of-order dispatch (scheduling, or execution)

18

Out-of-order Execution (Dynamic Scheduling)

n  Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)
q  Rest areas for dependent instructions: Reservation stations

n  Monitor the source “values” of each instruction in the
resting area

n  When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction
q  Instructions dispatched in dataflow (not control-flow) order

n  Benefit:

q  Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

19

In-order vs. Out-of-order Dispatch
n  In order dispatch + precise exceptions:

n  Out-of-order dispatch + precise exceptions:

n  16 vs. 12 cycles
20

F D W E E E E R
F D E R W

F

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R3, R5

D E R W
F D E R W

F D E R W

F D W E E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W
This slide is actually correct

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

q  Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute
q  Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values
q  Broadcast the “tag” when the value is produced
q  Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

q  Instruction wakes up if all sources are ready
q  If multiple instructions are awake, need to select one per FU

21

Tomasulo’s Algorithm
n  OoO with register renaming invented by Robert Tomasulo

q  Used in IBM 360/91 Floating Point Units
q  Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple

Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

n  What is the major difference today?
q  Precise exceptions: IBM 360/91 did NOT have this
q  Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and

introduction,” MICRO 1985.
q  Patt et al., “Critical issues regarding HPS, a high performance

microarchitecture,” MICRO 1985.

n  Variants are used in most high-performance processors
q  Initially in Intel Pentium Pro, AMD K5
q  Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

22

Two Humps in a Modern Pipeline

n  Hump 1: Reservation stations (scheduling window)
n  Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

23

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

n  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

24

Tomasulo’s Machine: IBM 360/91

25

FP FU FP FU

from memory

load
buffers

from instruction unit
 FP registers

store buffers

to memory

operation bus

reservation
stations

Common data bus

Register Renaming
n  Output and anti dependencies are not true dependencies

q  WHY? The same register refers to values that have nothing to
do with each other

q  They exist because not enough register ID’s (i.e.
names) in the ISA

n  The register ID is renamed to the reservation station entry
that will hold the register’s value
q  Register ID à RS entry ID
q  Architectural register ID à Physical register ID
q  After renaming, RS entry ID used to refer to the register

n  This eliminates anti- and output- dependencies
q  Approximates the performance effect of a large number of

registers even though ISA has a small number
26

n  Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

27

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1

Tomasulo’s Algorithm
n  If reservation station available before renaming

q  Instruction + renamed operands (source value/tag) inserted into the
reservation station

q  Only rename if reservation station is available
n  Else stall
n  While in reservation station, each instruction:

q  Watches common data bus (CDB) for tag of its sources
q  When tag seen, grab value for the source and keep it in the reservation station
q  When both operands available, instruction ready to be dispatched

n  Dispatch instruction to the Functional Unit when instruction is ready
n  After instruction finishes in the Functional Unit

q  Arbitrate for CDB
q  Put tagged value onto CDB (tag broadcast)
q  Register file is connected to the CDB

n  Register contains a tag indicating the latest writer to the register
n  If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
q  Reclaim rename tag

n  no valid copy of tag in system!

28

An Exercise

n  Assume ADD (4 cycle execute), MUL (6 cycle execute)
n  Assume one adder and one multiplier
n  How many cycles

q  in a non-pipelined machine
q  in an in-order-dispatch pipelined machine with imprecise

exceptions (no forwarding and full forwarding)
q  in an out-of-order dispatch pipelined machine imprecise

exceptions (full forwarding)
29

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

F D E W

Exercise Continued

30

Exercise Continued

31

Exercise Continued

32

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

How It Works

33

Cycle 0

34

Cycle 2

35

36

Cycle 3

Cycle 4

37

Cycle 7

38

Cycle 8

39

Some Questions
n  What is needed in hardware to perform tag broadcast and

value capture?
à make a value valid
à wake up an instruction

n  Does the tag have to be the ID of the Reservation Station
Entry?

n  What can potentially become the critical path?
q  Tag broadcast à value capture à instruction wake up

n  How can you reduce the potential critical paths?

40

An Exercise, with Precise Exceptions

n  Assume ADD (4 cycle execute), MUL (6 cycle execute)
n  Assume one adder and one multiplier
n  How many cycles

q  in a non-pipelined machine
q  in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)
q  in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
41

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

n  Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

n  An instruction updates the register alias table (essentially a
future file) when it completes execution

n  An instruction updates the architectural register file when it is
the oldest in the machine and has completed execution

42

Out-of-Order Execution with Precise Exceptions

n  Hump 1: Reservation stations (scheduling window)
n  Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

43

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Modern OoO Execution w/ Precise Exceptions

n  Most modern processors use
q  Reorder buffer to support in-order retirement of instructions
q  A single register file to store registers (speculative and

architectural) – INT and FP are still separate
q  Future register map à used for renaming
q  Architectural register map à used for state recovery

44

An Example from Modern Processors

45
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001.

Enabling OoO Execution, Revisited
1. Link the consumer of a value to the producer

q  Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
q  Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
q  Broadcast the “tag” when the value is produced
q  Instructions compare their “source tags” to the broadcast tag

à if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

q  Wakeup and select/schedule the instruction

46

Summary of OOO Execution Concepts
n  Register renaming eliminates false dependencies, enables

linking of producer to consumers

n  Buffering enables the pipeline to move for independent ops

n  Tag broadcast enables communication (of readiness of
produced value) between instructions

n  Wakeup and select enables out-of-order dispatch

47

OOO Execution: Restricted Dataflow
n  An out-of-order engine dynamically builds the dataflow

graph of a piece of the program
q  which piece?

n  The dataflow graph is limited to the instruction window
q  Instruction window: all decoded but not yet retired

instructions

n  Can we do it for the whole program?
n  Why would we like to?
n  In other words, how can we have a large instruction

window?
n  Can we do it efficiently with Tomasulo’s algorithm?

48

Dataflow Graph for Our Example

49

MUL R3 ß R1, R2
ADD R5 ß R3, R4
ADD R7 ß R2, R6
ADD R10 ß R8, R9
MUL R11 ß R7, R10
ADD R5 ß R5, R11

State of RAT and RS in Cycle 7

50

Dataflow Graph

51

In-Class Exercise on Tomasulo

52

In-Class Exercise on Tomasulo

53

In-Class Exercise on Tomasulo

54

In-Class Exercise on Tomasulo

55

In-Class Exercise on Tomasulo

56

In-Class Exercise on Tomasulo

57

In-Class Exercise on Tomasulo

58

In-Class Exercise on Tomasulo

59

In-Class Exercise on Tomasulo

60

In-Class Exercise on Tomasulo

61

In-Class Exercise on Tomasulo

62

In-Class Exercise on Tomasulo

63

Tomasulo Template

64

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Restricted Data Flow
n  An out-of-order machine is a “restricted data flow” machine

q  Dataflow-based execution is restricted to the microarchitecture
level

q  ISA is still based on von Neumann model (sequential
execution)

n  Remember the data flow model (at the ISA level):
q  Dataflow model: An instruction is fetched and executed in

data flow order
q  i.e., when its operands are ready
q  i.e., there is no instruction pointer
q  Instruction ordering specified by data flow dependence

n  Each instruction specifies “who” should receive the result
n  An instruction can “fire” whenever all operands are received

66

Questions to Ponder
n  Why is OoO execution beneficial?

q  What if all operations take single cycle?
q  Latency tolerance: OoO execution tolerates the latency of

multi-cycle operations by executing independent operations
concurrently

n  What if an instruction takes 500 cycles?
q  How large of an instruction window do we need to continue

decoding?
q  How many cycles of latency can OoO tolerate?
q  What limits the latency tolerance scalability of Tomasulo’s

algorithm?
n  Active/instruction window size: determined by both scheduling

window and reorder buffer size

67

