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Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution
= Issues in O00O Execution: Load-Store Handling, ...

= Alternative Approaches to Instruction Level Parallelism




Reminder: Announcements

Lab 3 due next Friday (Feb 20)
o Pipelined MIPS
o Competition for high performance

You can optimize both cycle time and CPI
Document and clearly describe what you do during check-off

Homework 3 due Feb 25

o A lot of questions that enable you to learn the concepts via
hands-on exercise

o Remember this is all for your benefit (to learn and prepare for
exams)
HWs have very little contribution to overall grade
Solutions to almost all questions are online anyway



Readings Specifically for Today

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
a Out-of-order and superscalar execution concepts

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.



Recap of Last Lecture

Issues with Multi-Cycle Execution
Exceptions vs. Interrupts

Precise Exceptions/Interrupts

Why Do We Want Precise Exceptions?
How Do We Ensure Precise Exceptions?
o Reorder buffer

o History buffer

o Future register file (best of both worlds)
o Checkpointing

Register renaming with a reorder buffer
How to Handle Exceptions

How to Handle Branch Mispredictions
Speed of State Recovery: Recovery and Interrupt Latency
o Checkpointing

Registers vs. Memory



Important: Register Renaming with a Reorder Buftfer

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist due to lack of register ID’ s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’ s value

o Register ID > ROB entry ID

o Architectural register ID - Physical register ID

o After renaming, ROB entry ID used to refer to the register

This eliminates anti- and output- dependencies
o Gives the illusion that there are a large number of registers



Review: Register Renaming Examples
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Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 7



Review: Checkpointing Idea

Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch

o Upon branch misprediction, restore the checkpoint associated
with the branch

Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.



Review: Checkpointing

When a branch is decoded

o Make a copy of the future file/map and associate it with the
branch

When an instruction produces a register value

o All future file/map checkpoints that are younger than the
instruction are updated with the value

When a branch misprediction is detected

o Restore the checkpointed future file/map for the mispredicted
branch when the branch misprediction is resolved

o Flush instructions in pipeline younger than the branch
o Deallocate checkpoints younger than the branch



Review: Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

Handling out-of-order completion of memory operations

o UNDOQOing a memory write more difficult than UNDQing a
register write. Why?
o One idea: Keep store address/data in reorder buffer
How does a load instruction find its data?
o Store/write buffer: Similar to reorder buffer, but used only for
store instructions
Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

We will get back to this after today!
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Remember:
Static vs. Dynamic Scheduling




Remember: Questions to Ponder

What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

o Software based instruction scheduling - static scheduling
o Hardware based instruction scheduling - dynamic scheduling

What information does the compiler not know that makes
static scheduling difficult?

o Answer: Anything that is determined at run time
Variable-length operation latency, memory addr, branch direction

13



Dynamic Instruction Scheduling

Hardware has knowledge of dynamic events on a per-
instruction basis (i.e., at a very fine granularity)

o Cache misses
o Branch mispredictions
o Load/store addresses

Wouldn't it be nice if hardware did the scheduling of
instructions?
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Out-of-Order Execution
(Dynamic Instruction Scheduling)




An In-order Pipeline

Integer add
E >
Integer mul
E |E |E |E >
F ID FP mul R %W
—>E |E |E |E |E |E |E |E —>

E|E|E|E|E|E|E|E |«

Cache miss

Problem: A true data dependency stalls dispatch of younger

instructions into functional (execution) units
Dispatch: Act of sending an instruction to a functional unit
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Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2
ADD R3 € R3, R1
ADD R1 < R6, R7
IMUL R5 < R6, R8
ADD R7 € R9,R9

LD R3 & R1(0)
ADD R3 < R3, R1
ADD R1 & R6, R7
IMUL R5 < R6, R8
ADD R7 €< R9, R9

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
a Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture
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Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen at least THREE:

o 1.

o 2.

o 3.

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are
ready

a Problem: in-order dispatch (scheduling, or execution)
o Solution: out-of-order dispatch (scheduling, or execution)

18



Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation
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In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

IMUL R3 € R1, R2
PR EIE R RW ADD R3 ¢ R3, R1
F|D| STALL |E |R|W ADD R1 < R6, R7
F | STALL |[D |E |R |W IMUL R5 < R6, R8
FIolEE ETE TE R [w] APD R7 <R3 R5

F|D| STALL |E|R|W

Out-of-order dispatch + precise exceptions:

F |/ D|E|E |E|E|R|W

F|D| WAIT |E | R |W This slide is actually correct
F |D|E |R W

F|D|E |E |E|E
F |D WAIT |E

py
=

0
=

16 vs. 12 cycles
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Enabling OoO Execution

1.

2.

3.

Need to link the consumer of a value to the producer

o Register renaming: Associate a “tag” with each data value
Need to buffer instructions until they are ready to execute

o Insert instruction into reservation stations after renaming
Instructions need to keep track of readiness of source values

o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU
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Tomasulo’s Algorithm

000 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Variants are used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS5, IBM 2196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

<__

g > E Integer add « R
H Integer mul (E)
o s E E |E |E |E R sl
D FP mul D
U >E |E |E |E |E |E |E | E > -
- R
c [>E|E|E|E|E|E|E|E >
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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General Organization of an OOQO Processor

pre- 1nstr.
decode cache

4

floating pt.

yiyy

register ]
file
floating pt. . .
| mnstruction functional units
buffers S
) | memory
instr. |1 decode, ) p
buffer : rename, mterface
L= &dispatch : , : o
|| L] integer/address functional units
mstruction and
buffers data cache |
integer M
register
file
Lo . |
—> re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.
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Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

|

to memory

reservation
stations

Common data bus
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Register Renaming

Output and anti dependencies are not true dependencies

o WHY? The same register refers to values that have nothing to
do with each other

a They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID - Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number
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Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

—

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9

_— ] [ - _—\ [ =\ —_— -




Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB

o Put tagged value onto CDB (tag broadcast)

o Register file is connected to the CDB

Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!
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An BExercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2
R5 < R3, R4
R7 < R2, R6 FIDIE |W
R10 € R8, R9
R11 < R7, R10
RS < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

Q

Q

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)
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Exercise Continued

MUl R),R2,— R3

ADD R3 ,RYy— RS
POV R2LRE — RTF-
AP RE,RG — RAQ
Mul-  R3> RIO - R4
ADY RS RN 5 RS

MU twes & oycles
AP tees 4 oyoles

Huwv ooy eyotes tobpl wjo oldin
e v LA s w, ””

Proeime Shudhwre,

T
* L
o
Cyoles
fvwvduﬁ?

?
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Exercise Continued
FD123454 W

FD-=-- - -D1234 W
ARt D123 4 w
R EDI23 4 W
Ele == = DEIILSE W,
| =B Tk 55 D234 W
7
Eveatin trwime. w| Scurcbeadng
3 oycles
FD123,€ 46 W
FD PER 3Ly W
= D4 23 L s
=l o TR U5 A 0 R SAeS |
F D 24 2.0 5 W 60
F D R

2 cleg
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Exercise Continued

MUL R3 € R1, R2
ADD R5 < R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 €« R7,R10
ADD RS < R5,R11

Tano.fdo's Glgotnen 5 f hw""l"'s

20 oyeles
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How It Works
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Cycle 0

:_.\/ cle O .

Rl

| R1]

. o= [

v velue
“ | Sl
2

- IntHal coatnds of- e
regEle okas jeble

~ regovon shies gre oll ynvelrd

34



MUl R, R2 — R3A _resds 4% Soweces Ao bre RAT

Cycle 2 :
Cycle 2 et el bishiiehiabid
(rernunes ¥ destrrchor, I
—2 allccotes & resengbun sloton ey

— allccotes ¢ tag frrhe deshwcimn
h.srsk/—
= plees s4s Sewas m e resSe~votun shign
vy b5 allccoteo! .

End of oycle. 2.c
V. 489 e
Ry |1 = T al V _des velve \/ . vl
Rzl | —~ | a2 b Xl ~11 0] ~ 1z
R3O X | —~ ; ¥
il il & l ]
b—ﬂ
Yk
= * -
Ryl ~ L

-—_ Mul. o} ¥ &MM#WCW‘Q_,
{ Wind- §f muitple. meinainng becomre recdy od-
—be,.sonch«c.)

bd'ho{lﬂ-s SowceS Gwe, Vold i e
esevinn  sivbren X _35




3/

~ AP R3S Rl RS cete renemeel ond plused mivhres

AV PRR. rescnrehen Sdxbsens

L],

7

c\’ole 3. - muL ot X stots oneotivn
end of oyde 3
V doy whe V Jeg e
Ri T~T 1 0| X[~~~
RL|I]~ | 2 bl
R3[O| X | ~ C*'L
Ll ~ | 4 a
RSO a | ~ g y
RL[1 1~ | & \”
| 4

RiIlN)) | ~ T —f

o=

— ADD ot 0 cannd—be resdy +o eweote becase.
e Gf-rfs Swwteg (£ nd- e
— T+ 15 wolng for Hie wale wihh e Fag X
b be bracdestt Iy hre muL m X)

Agides Doeg Hre 4ug need 42 be ocscomwkd win
N RS eviry of P prcolvcef'?
Arswer: No: Tog 16 a dog for-re udue Yo
& cormprniicoied.
/ RS 55 & ploce 4o held he rcinars
evobles dola-flan Wihie oy becore r<ody .



cyde 4+

end o foycle L
RET ~ Tt |
Ri |l | ~ z
o hr=te
il ~1Z
A?-._Q__b ~
_enll] — N

ADD R2,R6— RZ wxww ploced mbp RS @

|2

Soe 08 Oyde 3

£

" A s e
\ = . /
— ADD g+ b becores recdyin @eote.

(ba gowees cre reody! )
— Aropde S, i+ 18 gent & e adder cut-of-pregyaa

—-QIJ-ISOVQN‘C‘L‘C&‘M add ™M O

2 0 b

37




w«:f«»d«*

‘V.};: vol\&q '

ey ST A~ T~ =]
Cl

SR dpa ey~ YA = A o

rsiol d | ~ \ N \

:;l"'é - N L. 4

O]l L | ~ |

EEm—

£~ ) e

gb'ooaq)— ' e

RNIO] Y | ~

x Al £ msindwns yrereved.
— Neke whd- hoppened 40 RS

38



=
- MUl at X and ADD or b R

brvodcost 1rer fygeond voles

— RS orvhtesvwosimg fo- hese brgs cypbve e vohes
acdd sed Ne \Jolud bD—'ooaﬂ‘mﬂ\f
—s (Whd—r3 reedded m HW o octmalich Hxe? )

- CAM on +ras tnd-oe brcodcost fo-all 2S
erbfes § Scmwces

- B AT etries watng ﬁflfhcg hess Glse CC,aHLM
Veolves ond geb e Voot w0s aca/-dnfs/y

39



Some Questions

What is needed in hardware to perform tag broadcast and
value capture?

- make a value valid
- wake up an instruction

Does the tag have to be the ID of the Reservation Station
Entry?

What can potentially become the critical path?
o Tag broadcast - value capture - instruction wake up

How can you reduce the potential critical paths?
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An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2
R5 < R3, R4
R7 < R2, R6 FIDIEI|RI|W
R10 < R8, R9
R11 < R7, R10
RS < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier

How many cycles

o in a non-pipelined machine

o in an in-order-dispatch pipelined machine with reorder buffer

(no forwarding and full forwarding)

o in an out-of-order dispatch pipelined machine with reorder

buffer (full forwarding)
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Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the register alias table (essentially a
future file) when it completes execution

An instruction updates the architectural register file when it is
the oldest in the machine and has completed execution
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Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

g > E Integer add « R
H Integer mul (E)
- pls E E |E |E|E R Lol
D FP mul D
U >E |E |E |E |E |E |E | E > -
- R
c [>E|E|E|E|E|E|E|E >
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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Modern OoO Execution w/ Precise Exceptions

Most modern processors use
o Reorder buffer to support in-order retirement of instructions

o A single register file to store registers (speculative and
architectural) — INT and FP are still separate

o Future register map = used for renaming
o Architectural register map - used for state recovery
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An Example from Modern Processors

Pentium III ;5 NetBurst RF ROB
Data Status Data Status
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Boggs et al., "The Microarchitecture of the Pentium 4 Processor,”
Intel Technology Journal, 2001. 45



Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
a Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch
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OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?
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Datatlow Graph for Our Example

MUL R3 €< R1, R2
ADD R5 < R3,R4
ADD R7 € R2,R6
ADD R10 € R8,R9
MUL R11 < R7,R10
ADD RS < R5,R11



State of RAT and RS in Cycle 7
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Datatlow Graph
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In-Class Exercise on Tomasulo

LCYcLlE

| MUL RA,RL— RS
| ADD R3,RL— RS
| ADO R2,RL-HRF
| ADD R8&,Rq R0
| muL R#,RA0 - RH
| ADD RS.Q‘H"KS

- ] \""L;L/ ]
| k I j o d
—— Regisler—Alias Table_ / p L kich sqmle
" \Y) jaq V, e, i VvV T I V] { -5 \glve_ \J Tﬂl \} lve V T
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] | ‘

-
+
n
&
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In-Class Exercise on Tomasulo

cwcee @

| MUL RA,R.—RD
| ADD R3 RL— RS
| ADO R2,RLHRF
| ADD RR,Rq - RIO
MmuL. R%RA0 - R#H
ADD RE R4{— RS

—|RegisleAlias Table SwrCE L SOURCE 2 SourceE L SOURCE 2
V Tag Value V Tasa Vave V Tog \Valve V Tag \ale V Tug \Nalve
Rl ] a X
R2 4 2 b Y
R3 2 & z
By L, d t
RS [N
w1 4
=31 +
' <
faf 3 s *
Ri0[ 10
pat L 11
Ta 9 \olve. To X) \Ualve-
A - hd
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In-Class Exercise on Tomasulo

| cYcLE £ Eregubion Treline- R SO R
| |
- MUL BR-RD) FD
g AOD R3 Rl — RS =

ADO R2,RL6-RH
ADD R&,R9 - R10
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SwRrC SOURLE 2. L SoXRLE 2.
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ke [1 L
&3 =
J "4
42 : + *
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pit Ll 14
Tag  \olve Toy  Volve-




In-Class Exercise on Tomasulo

2

CYCLE g&)
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In-Class Exercise on Tomasulo

| CYCLE
| MUL RA,RL—RD

| ADD —
-—yADO -’:@ FD
A0 RE&R9 - RI0 P

— 4_—.—#77-_77.‘ —_— S—
;Z Cyde 1 23 4
F DE¥,
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In-Class Exercise on Tomasulo

| eYeLE A7 Cre. | 2.3 4,

| MUL RYR2.—RD F DEEE;
| ADD R3,RL— RS FD=- -
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In-Class Exercise on Tomasulo
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In-Class Exercise on Tomasulo
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In-Class Exercise on Tomasulo
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In-Class Exercise on Tomasulo
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In-Class Exercise on Tomasulo
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In-Class Exercise on Tomasulo
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Tomasulo Template

RAIEALRRE

CYCILER

MUL RA,R2— R
ADD R3 RL— RS
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

a ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence

Each instruction specifies “who” should receive the result

An instruction can “fire” whenever all operands are received
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Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: Oo0O execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?
o How large of an instruction window do we need to continue
decoding?
o How many cycles of latency can OoO tolerate?
a What limits the latency tolerance scalability of Tomasulo’s
algorithm?
Active/instruction window size: determined by both scheduling
window and reorder buffer size
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