
18-447

Computer Architecture

Lecture 11: Precise Exceptions,

State Maintenance, State Recovery

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/11/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

2

Reminder: Announcements

 Homework 2 due today (Feb 11)

 Lab 3 online & due next Friday (Feb 20)

 Pipelined MIPS

 Competition for high performance

 You can optimize both cycle time and CPI

 Document and clearly describe what you do during check-off

3

Reminder: Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993. HW3 summary paper

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 4

Reminder: Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985). HW3 summary paper

5

Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985). HW3 summary paper

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

6

Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

7

Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation Two-level global predictor

 Local branch correlation Two-level local predictor

 Hybrid branch predictors

 Predicated execution

 Multipath execution

 Return address stack & Indirect branch prediction

8

Pipelining and Precise Exceptions:

Preserving Sequential Semantics

Multi-Cycle Execution

 Not all instructions take the same amount of time for
“execution”

 Idea: Have multiple different functional units that take
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions start execution on a different
functional unit before a previous long-latency instruction
finishes execution

10

Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 Sequential semantics of the ISA NOT preserved!

 What if FMUL incurs an exception?

11

F D E W

F D E W E E E E E E E FMUL R4 R1, R2

ADD R3 R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 R5, R6

ADD R7 R5, R6

F D E W E E E E E E E

Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check (error)

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)

12

Precise Exceptions/Interrupts

 The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

13

Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. Dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented
opcodes)

14

Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 Worst-case instruction latency determines all instructions’ latency

 What about memory operations?

 Each functional unit takes worst-case number of cycles?

15

F D E W

F D E W E E E E E E E

F D E W

F D E W

F D E W

F D E W

F D E W

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

FMUL R3 R1, R2

ADD R4 R1, R2

Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Readings

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

16

Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

17

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer

Instruction

Cache

What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)

18

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data

+ control bits
Exc?

Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit
time

 What if a later operation needs a value in the reorder
buffer?

 Read reorder buffer in parallel with the register file. How?

19

F D E W

F D E R E E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E R E E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

20

Register

File

Func Unit

Func Unit

Func Unit Reorder

Buffer

Instruction

Cache

bypass path

Content

Addressable

Memory

(searched with

register ID)

Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

 Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

 Access reorder buffer next

 Now, reorder buffer does not need to be content addressable

21

Reorder Buffer in Intel Pentium III

22

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

Important: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID ROB entry ID

 Architectural register ID Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers

23

Renaming Example

 Assume

 Register file has pointers to reorder buffer if the register is not
valid

 Reorder buffer works as described before

 Where is the latest definition of R3 for each instruction
below in sequential order?

 LD R0(0) R3

 LD R3, R1 R10

 MUL R1, R2 R3

 MUL R3, R4 R11

 ADD R5, R6 R3

 ADD R7, R8 R12

24

Reorder Buffer Storage Cost

 Idea: Reduce reorder buffer entry storage by specializing
for instruction types

 Do all instructions need all fields?

 Can you reuse some fields between instructions?

 Can you implement separate buffers per instruction type?

 LD, ST, BR, ALU

25

V DestRegID DestRegVal StoreAddr StoreData PC/IP
Control/val

id bits
Exc?

In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

26

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

R

Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

 CAM or indirection increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing

27

Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

 When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

28

History Buffer

 Advantage:

 Register file contains up-to-date values for incoming instructions
 History buffer access not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception

increased exception/interrupt handling latency

29

Register

File

Func Unit

Func Unit

Func Unit

History

Buffer

Instruction

Cache

Used only on exceptions

Comparison of Two Approaches

 Reorder buffer

 Pessimistic register file update

 Update only with non-speculative values (in program order)

 Leads to complexity/delay in accessing the new values

 History buffer

 Optimistic register file update

 Update immediately, but log the old value for recovery

 Leads to complexity/delay in logging old values

 Can we get the best of both worlds?

 Principle: Heterogeneity

 Idea: Have both types of register files

30

Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file

31

Future File

 Advantage

 No need to read the new values from the ROB (no CAM or
indirection) or the old value of destination register

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
32

Future

File

Func Unit

Func Unit

Func Unit

Arch.

File
Instruction

Cache

Used only on exceptions

ROB

V Data and Tag

In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

33

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Can We Reduce the Overhead of Two Register Files?

 Idea: Use indirection, i.e., pointers to data in frontend and
retirement

 Have a single storage that stores register data values

 Keep two register maps (speculative and architectural); also
called register alias tables (RATs)

 Future map used for fast access to latest register values
(speculative state)

 Frontend register map

 Architectural map is used for state recovery on exceptions
(architectural state)

 Backend register map

34

Future Map in Intel Pentium 4

35

Boggs et al., “The
Microarchitecture of
the Pentium 4
Processor,” Intel
Technology Journal,
2001.

Many modern

processors

are similar:

- MIPS R10K

- Alpha 21264

Reorder Buffer vs. Future Map Comparison

36

Before We Get to Checkpointing …

 Let’s cover what happens on exceptions

 And branch mispredictions

37

Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions

38

Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software (i.e., it is microarchitectural)

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before
the branch is the oldest instruction (not architectural)

 All three state recovery methods can be used

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common

 need fast state recovery to minimize performance impact of

mispredictions

39

How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms
of recovery latency?

 Reorder buffer

 History buffer

 Future file

40

Branch State Recovery Actions and Latency

 Reorder Buffer

 Flush instructions in pipeline younger than the branch

 Finish all instructions in the reorder buffer

 History buffer

 Flush instructions in pipeline younger than the branch

 Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file

 Flush entire pipeline
41

Can We Do Better?

 Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state/map at the
time a branch is decoded and keep the checkpointed state
updated with results of instructions older than the branch

 Upon branch misprediction, restore the checkpoint associated
with the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

42

Checkpointing

 When a branch is decoded

 Make a copy of the future file/map and associate it with the
branch

 When an instruction produces a register value

 All future file/map checkpoints that are younger than the
instruction are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file/map for the mispredicted
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch

43

Checkpointing

 Advantages

 Correct frontend register state available right after checkpoint
restoration Low state recovery latency

 …

 Disadvantages

 Storage overhead

 Complexity in managing checkpoints

 …

44

Many Modern Processors Use Checkpointing

 MIPS R10000

 Alpha 21264

 Pentium 4

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

45

Summary: Maintaining Precise State

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Readings

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

46

Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

47

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

 We will get back to this!

49

