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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 

 

 Multi-cycle and Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

 

 Out-of-Order Execution 

 

 Issues in OoO Execution: Load-Store Handling, … 
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Reminder: Announcements 

 Homework 2 due today (Feb 11) 

 

 Lab 3 online & due next Friday (Feb 20) 

 Pipelined MIPS 

 Competition for high performance 

 You can optimize both cycle time and CPI 

 Document and clearly describe what you do during check-off 
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Reminder: Readings for Next Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      HW3 summary paper 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Reminder: Readings for Next Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).     HW3 summary paper 
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Readings Specifically for Today 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).     HW3 summary paper 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 
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Review: How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review of Last Few Lectures 

 Control dependence handling in pipelined machines 

 Delayed branching 

 Fine-grained multithreading 

 Branch prediction 

 Compile time (static) 

 Always NT, Always T, Backward T Forward NT, Profile based 

 Run time (dynamic) 

 Last time predictor 

 Hysteresis: 2BC predictor 

 Global branch correlation  Two-level global predictor 

 Local branch correlation  Two-level local predictor 

 Hybrid branch predictors 

 Predicated execution 

 Multipath execution 

 Return address stack & Indirect branch prediction 
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Pipelining and Precise Exceptions: 

Preserving Sequential Semantics 



Multi-Cycle Execution 

 Not all instructions take the same amount of time for 
“execution” 

 

 Idea: Have multiple different functional units that take 
different number of cycles 

 Can be pipelined or not pipelined 

 Can let independent instructions start execution on a different 
functional unit before a previous long-latency instruction 
finishes execution 
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Issues in Pipelining: Multi-Cycle Execute 

 Instructions can take different number of cycles in 
EXECUTE stage 

 Integer ADD versus FP MULtiply 

 

 

 

 

 

 

 

 What is wrong with this picture? 

 Sequential semantics of the ISA NOT preserved! 

 What if FMUL incurs an exception? 
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Exceptions vs. Interrupts 
 Cause 

 Exceptions: internal to the running thread 

 Interrupts: external to the running thread 

 

 When to Handle 

 Exceptions: when detected (and known to be non-speculative) 

 Interrupts: when convenient 

 Except for very high priority ones 

 Power failure 

 Machine check (error) 

 

 Priority: process (exception), depends (interrupt) 

 

 Handling Context: process (exception), system (interrupt) 
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Precise Exceptions/Interrupts 

 The architectural state should be consistent when the 
exception/interrupt is ready to be handled 

 

1. All previous instructions should be completely retired. 

 

2. No later instruction should be retired.  

 

Retire = commit = finish execution and update arch. state 
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Why Do We Want Precise Exceptions? 

 Semantics of the von Neumann model ISA specifies it 

 Remember von Neumann vs. Dataflow 

 

 Aids software debugging 

 

 Enables (easy) recovery from exceptions, e.g. page faults 

 

 Enables (easily) restartable processes 

 

 Enables traps into software (e.g., software implemented 
opcodes) 

 

 
14 



Ensuring Precise Exceptions in Pipelining 

 Idea: Make each operation take the same amount of time 

 

 

 

 

 

 

 

 Downside 

 Worst-case instruction latency determines all instructions’ latency 

 What about memory operations? 

 Each functional unit takes worst-case number of cycles? 
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Solutions 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 
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Solution I: Reorder Buffer (ROB) 

 Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state 

 When instruction is decoded it reserves an entry in the ROB 

 When instruction completes, it writes result into ROB entry 

 When instruction oldest in ROB and it has completed 
without exceptions, its result moved to reg. file or memory 
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What’s in a ROB Entry? 

 

 

 

 

 

 Need valid bits to keep track of readiness of the result(s) 

 

18 

V DestRegID DestRegVal StoreAddr StoreData PC 
Valid bits for reg/data 

+ control bits 
Exc? 



Reorder Buffer: Independent Operations 

 Results first written to ROB, then to register file at commit 
time 

 

 

 

 

 

 

 

 What if a later operation needs a value in the reorder 
buffer? 

 Read reorder buffer in parallel with the register file. How? 
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Reorder Buffer: How to Access? 

 A register value can be in the register file, reorder buffer, 
(or bypass/forwarding paths) 
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Simplifying Reorder Buffer Access 

 Idea: Use indirection 

 

 Access register file first 

 If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register 

 Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register 

 

 Access reorder buffer next 

 

 Now, reorder buffer does not need to be content addressable 
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Reorder Buffer in Intel Pentium III 
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Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001. 



Important: Register Renaming with a Reorder Buffer 

 Output and anti dependencies are not true dependencies 

 WHY? The same register refers to values that have nothing to 
do with each other 

 They exist due to lack of register ID’s (i.e. names) in 
the ISA 

 The register ID is renamed to the reorder buffer entry that 
will hold the register’s value 

 Register ID  ROB entry ID 

 Architectural register ID  Physical register ID 

 After renaming, ROB entry ID used to refer to the register 

 

 This eliminates anti- and output- dependencies 

 Gives the illusion that there are a large number of registers 
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Renaming Example 

 Assume 

 Register file has pointers to reorder buffer if the register is not 
valid 

 Reorder buffer works as described before 

 

 Where is the latest definition of R3 for each instruction 
below in sequential order? 

 LD R0(0)  R3 

 LD R3, R1  R10 

 MUL R1, R2  R3 

 MUL R3, R4  R11 

 ADD R5, R6  R3 

 ADD R7, R8  R12  
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Reorder Buffer Storage Cost 

 Idea: Reduce reorder buffer entry storage by specializing 
for instruction types 

 

 

 

 Do all instructions need all fields? 

 Can you reuse some fields between instructions? 

 Can you implement separate buffers per instruction type? 

 LD, ST, BR, ALU 
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In-Order Pipeline with Reorder Buffer 

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if 
instruction can execute, if so dispatch instruction 

 Execute (E): Instructions can complete out-of-order 

 Completion (R): Write result to reorder buffer 

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline and start from 
exception handler 

 In-order dispatch/execution, out-of-order completion, in-order retirement  
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Reorder Buffer Tradeoffs 

 Advantages 

 Conceptually simple for supporting precise exceptions 

 Can eliminate false dependencies 

 

 Disadvantages 

 Reorder buffer needs to be accessed to get the results that 
are yet to be written to the register file 

 CAM or indirection  increased latency and complexity 

 

 Other solutions aim to eliminate the disadvantages 

 History buffer 

 Future file 

 Checkpointing 
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Solution II: History Buffer (HB) 

 Idea: Update the register file when instruction completes, 
but UNDO UPDATES when an exception occurs 

 

 When instruction is decoded, it reserves an HB entry 

 When the instruction completes, it stores the old value of 
its destination in the HB 

 When instruction is oldest and no exceptions/interrupts, the 
HB entry discarded 

 When instruction is oldest and an exception needs to be 
handled, old values in the HB are written back into the 
architectural state from tail to head 
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History Buffer 

 

 

 

 

 

 

 Advantage: 

 Register file contains up-to-date values for incoming instructions 
 History buffer access not on critical path 

 Disadvantage: 

 Need to read the old value of the destination register 

 Need to unwind the history buffer upon an exception  

increased exception/interrupt handling latency 
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Comparison of Two Approaches 

 Reorder buffer 

 Pessimistic register file update 

 Update only with non-speculative values (in program order) 

 Leads to complexity/delay in accessing the new values 

 

 History buffer 

 Optimistic register file update 

 Update immediately, but log the old value for recovery 

 Leads to complexity/delay in logging old values 

 

 Can we get the best of both worlds? 

 Principle: Heterogeneity 

 Idea: Have both types of register files 
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Solution III: Future File (FF) + ROB 

 Idea: Keep two register files (speculative and architectural) 

 Arch reg file: Updated in program order for precise exceptions 

 Use a reorder buffer to ensure in-order updates 

 Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register) 

 

 Future file is used for fast access to latest register values 
(speculative state) 

 Frontend register file 

 

 Architectural file is used for state recovery on exceptions 
(architectural state) 

 Backend register file 
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Future File 

 

 

 

 

 

 

 Advantage 

 No need to read the new values from the ROB (no CAM or 
indirection) or the old value of destination register 

 

 Disadvantage 

 Multiple register files 

 Need to copy arch. reg. file to future file on an exception 
32 

Future 

File 

Func Unit 

Func Unit 

Func Unit 

Arch. 

File 
Instruction 

Cache 

Used only on exceptions 

ROB 

V Data and Tag 



In-Order Pipeline with Future File and Reorder Buffer 

 Decode (D): Access future file, allocate entry in ROB, check if instruction 
can execute, if so dispatch instruction 

 Execute (E): Instructions can complete out-of-order 

 Completion (R): Write result to reorder buffer and future file  

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline, copy 
architectural file to future file, and start from exception handler  

 In-order dispatch/execution, out-of-order completion, in-order retirement  

 

33 

F D 

E 

W 

E E E E E E E E 

E E E E 

E E E E E E E E . . . 

Integer add 

Integer mul 

FP mul 

Load/store 

R 



Can We Reduce the Overhead of Two Register Files? 

 Idea: Use indirection, i.e., pointers to data in frontend and 
retirement 

 Have a single storage that stores register data values 

 Keep two register maps (speculative and architectural); also 
called register alias tables (RATs) 

 

 Future map used for fast access to latest register values 
(speculative state) 

 Frontend register map 

 

 Architectural map is used for state recovery on exceptions 
(architectural state) 

 Backend register map 
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Future Map in Intel Pentium 4 

35 

Boggs et al., “The 
Microarchitecture of 
the Pentium 4 
Processor,” Intel 
Technology Journal, 
2001. 

Many modern  

processors 

are similar: 

- MIPS R10K 

- Alpha 21264 



Reorder Buffer vs. Future Map Comparison 
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Before We Get to Checkpointing … 

 Let’s cover what happens on exceptions 

 And branch mispredictions 
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Checking for and Handling Exceptions in Pipelining 

 

 When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic 

 Recovers architectural state (register file, IP, and memory) 

 Flushes all younger instructions in the pipeline 

 Saves IP and registers (as specified by the ISA) 

 Redirects the fetch engine to the exception handling routine 

 Vectored exceptions 
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Pipelining Issues: Branch Mispredictions 

 A branch misprediction resembles an “exception” 

 Except it is not visible to software (i.e., it is microarchitectural) 

 

 What about branch misprediction recovery? 

 Similar to exception handling except can be initiated before 
the branch is the oldest instruction (not architectural) 

 All three state recovery methods can be used  

 

 Difference between exceptions and branch mispredictions? 

 Branch mispredictions are much more common  

     need fast state recovery to minimize performance impact of 

mispredictions 
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How Fast Is State Recovery? 

 Latency of state recovery affects 

 Exception service latency 

 Interrupt service latency 

 Latency to supply the correct data to instructions fetched after 
a branch misprediction 

 

 Which ones above need to be fast? 

 

 How do the three state maintenance methods fare in terms 
of recovery latency? 

 Reorder buffer 

 History buffer 

 Future file 
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Branch State Recovery Actions and Latency 

 Reorder Buffer 

 Flush instructions in pipeline younger than the branch 

 Finish all instructions in the reorder buffer  

 

 History buffer 

 Flush instructions in pipeline younger than the branch 

 Undo all instructions after the branch by rewinding from the 
tail of the history buffer until the branch & restoring old values 
one by one into the register file 

 

 Future file 

 Wait until branch is the oldest instruction in the machine 

 Copy arch. reg. file to future file  

 Flush entire pipeline 
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Can We Do Better? 

 Goal: Restore the frontend state (future file) such that the 
correct next instruction after the branch can execute right 
away after the branch misprediction is resolved 

 

 Idea: Checkpoint the frontend register state/map at the 
time a branch is decoded and keep the checkpointed state 
updated with results of instructions older than the branch 

 Upon branch misprediction, restore the checkpoint associated 
with the branch 

 

 Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987. 
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Checkpointing 

 When a branch is decoded 

 Make a copy of the future file/map and associate it with the 
branch 

 

 When an instruction produces a register value 

 All future file/map checkpoints that are younger than the 
instruction are updated with the value 

 

 When a branch misprediction is detected 

 Restore the checkpointed future file/map for the mispredicted 
branch when the branch misprediction is resolved 

 Flush instructions in pipeline younger than the branch 

 Deallocate checkpoints younger than the branch 
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Checkpointing 

 Advantages 

 Correct frontend register state available right after checkpoint 
restoration  Low state recovery latency 

 … 

 

 

 

 Disadvantages 

 Storage overhead 

 Complexity in managing checkpoints 

 … 
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Many Modern Processors Use Checkpointing 

 MIPS R10000 

 Alpha 21264 

 Pentium 4 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 
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Summary: Maintaining Precise State 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 
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Registers versus Memory 

 So far, we considered mainly registers as part of state 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Maintaining Speculative Memory State: Stores 

 Handling out-of-order completion of memory operations 

 UNDOing a memory write more difficult than UNDOing a 
register write. Why? 

 One idea: Keep store address/data in reorder buffer 

 How does a load instruction find its data? 

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions 

 Program-order list of un-committed store operations 

 When store is decoded: Allocate a store buffer entry  

 When store address and data become available: Record in store 
buffer entry 

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data 

 

 We will get back to this! 
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