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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 

 

 Multi-cycle and Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

 

 Out-of-Order Execution 

 

 Issues in OoO Execution: Load-Store Handling, … 
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Reminder: Announcements 

 Homework 2 due today (Feb 11) 

 

 Lab 3 online & due next Friday (Feb 20) 

 Pipelined MIPS 

 Competition for high performance 

 You can optimize both cycle time and CPI 

 Document and clearly describe what you do during check-off 
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Reminder: Readings for Next Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      HW3 summary paper 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Reminder: Readings for Next Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).     HW3 summary paper 
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Readings Specifically for Today 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).     HW3 summary paper 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 
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Review: How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review of Last Few Lectures 

 Control dependence handling in pipelined machines 

 Delayed branching 

 Fine-grained multithreading 

 Branch prediction 

 Compile time (static) 

 Always NT, Always T, Backward T Forward NT, Profile based 

 Run time (dynamic) 

 Last time predictor 

 Hysteresis: 2BC predictor 

 Global branch correlation  Two-level global predictor 

 Local branch correlation  Two-level local predictor 

 Hybrid branch predictors 

 Predicated execution 

 Multipath execution 

 Return address stack & Indirect branch prediction 
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Pipelining and Precise Exceptions: 

Preserving Sequential Semantics 



Multi-Cycle Execution 

 Not all instructions take the same amount of time for 
“execution” 

 

 Idea: Have multiple different functional units that take 
different number of cycles 

 Can be pipelined or not pipelined 

 Can let independent instructions start execution on a different 
functional unit before a previous long-latency instruction 
finishes execution 
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Issues in Pipelining: Multi-Cycle Execute 

 Instructions can take different number of cycles in 
EXECUTE stage 

 Integer ADD versus FP MULtiply 

 

 

 

 

 

 

 

 What is wrong with this picture? 

 Sequential semantics of the ISA NOT preserved! 

 What if FMUL incurs an exception? 
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Exceptions vs. Interrupts 
 Cause 

 Exceptions: internal to the running thread 

 Interrupts: external to the running thread 

 

 When to Handle 

 Exceptions: when detected (and known to be non-speculative) 

 Interrupts: when convenient 

 Except for very high priority ones 

 Power failure 

 Machine check (error) 

 

 Priority: process (exception), depends (interrupt) 

 

 Handling Context: process (exception), system (interrupt) 
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Precise Exceptions/Interrupts 

 The architectural state should be consistent when the 
exception/interrupt is ready to be handled 

 

1. All previous instructions should be completely retired. 

 

2. No later instruction should be retired.  

 

Retire = commit = finish execution and update arch. state 
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Why Do We Want Precise Exceptions? 

 Semantics of the von Neumann model ISA specifies it 

 Remember von Neumann vs. Dataflow 

 

 Aids software debugging 

 

 Enables (easy) recovery from exceptions, e.g. page faults 

 

 Enables (easily) restartable processes 

 

 Enables traps into software (e.g., software implemented 
opcodes) 
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Ensuring Precise Exceptions in Pipelining 

 Idea: Make each operation take the same amount of time 

 

 

 

 

 

 

 

 Downside 

 Worst-case instruction latency determines all instructions’ latency 

 What about memory operations? 

 Each functional unit takes worst-case number of cycles? 
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Solutions 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 
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Solution I: Reorder Buffer (ROB) 

 Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state 

 When instruction is decoded it reserves an entry in the ROB 

 When instruction completes, it writes result into ROB entry 

 When instruction oldest in ROB and it has completed 
without exceptions, its result moved to reg. file or memory 
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What’s in a ROB Entry? 

 

 

 

 

 

 Need valid bits to keep track of readiness of the result(s) 
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V DestRegID DestRegVal StoreAddr StoreData PC 
Valid bits for reg/data 

+ control bits 
Exc? 



Reorder Buffer: Independent Operations 

 Results first written to ROB, then to register file at commit 
time 

 

 

 

 

 

 

 

 What if a later operation needs a value in the reorder 
buffer? 

 Read reorder buffer in parallel with the register file. How? 
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Reorder Buffer: How to Access? 

 A register value can be in the register file, reorder buffer, 
(or bypass/forwarding paths) 
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Simplifying Reorder Buffer Access 

 Idea: Use indirection 

 

 Access register file first 

 If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register 

 Mapping of the register to a ROB entry: Register file maps the 
register to a reorder buffer entry if there is an in-flight 
instruction writing to the register 

 

 Access reorder buffer next 

 

 Now, reorder buffer does not need to be content addressable 
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Reorder Buffer in Intel Pentium III 

22 

Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001. 



Important: Register Renaming with a Reorder Buffer 

 Output and anti dependencies are not true dependencies 

 WHY? The same register refers to values that have nothing to 
do with each other 

 They exist due to lack of register ID’s (i.e. names) in 
the ISA 

 The register ID is renamed to the reorder buffer entry that 
will hold the register’s value 

 Register ID  ROB entry ID 

 Architectural register ID  Physical register ID 

 After renaming, ROB entry ID used to refer to the register 

 

 This eliminates anti- and output- dependencies 

 Gives the illusion that there are a large number of registers 
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Renaming Example 

 Assume 

 Register file has pointers to reorder buffer if the register is not 
valid 

 Reorder buffer works as described before 

 

 Where is the latest definition of R3 for each instruction 
below in sequential order? 

 LD R0(0)  R3 

 LD R3, R1  R10 

 MUL R1, R2  R3 

 MUL R3, R4  R11 

 ADD R5, R6  R3 

 ADD R7, R8  R12  
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Reorder Buffer Storage Cost 

 Idea: Reduce reorder buffer entry storage by specializing 
for instruction types 

 

 

 

 Do all instructions need all fields? 

 Can you reuse some fields between instructions? 

 Can you implement separate buffers per instruction type? 

 LD, ST, BR, ALU 
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V DestRegID DestRegVal StoreAddr StoreData PC/IP 
Control/val

id bits 
Exc? 



In-Order Pipeline with Reorder Buffer 

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if 
instruction can execute, if so dispatch instruction 

 Execute (E): Instructions can complete out-of-order 

 Completion (R): Write result to reorder buffer 

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline and start from 
exception handler 

 In-order dispatch/execution, out-of-order completion, in-order retirement  
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Reorder Buffer Tradeoffs 

 Advantages 

 Conceptually simple for supporting precise exceptions 

 Can eliminate false dependencies 

 

 Disadvantages 

 Reorder buffer needs to be accessed to get the results that 
are yet to be written to the register file 

 CAM or indirection  increased latency and complexity 

 

 Other solutions aim to eliminate the disadvantages 

 History buffer 

 Future file 

 Checkpointing 
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Solution II: History Buffer (HB) 

 Idea: Update the register file when instruction completes, 
but UNDO UPDATES when an exception occurs 

 

 When instruction is decoded, it reserves an HB entry 

 When the instruction completes, it stores the old value of 
its destination in the HB 

 When instruction is oldest and no exceptions/interrupts, the 
HB entry discarded 

 When instruction is oldest and an exception needs to be 
handled, old values in the HB are written back into the 
architectural state from tail to head 
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History Buffer 

 

 

 

 

 

 

 Advantage: 

 Register file contains up-to-date values for incoming instructions 
 History buffer access not on critical path 

 Disadvantage: 

 Need to read the old value of the destination register 

 Need to unwind the history buffer upon an exception  

increased exception/interrupt handling latency 
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Comparison of Two Approaches 

 Reorder buffer 

 Pessimistic register file update 

 Update only with non-speculative values (in program order) 

 Leads to complexity/delay in accessing the new values 

 

 History buffer 

 Optimistic register file update 

 Update immediately, but log the old value for recovery 

 Leads to complexity/delay in logging old values 

 

 Can we get the best of both worlds? 

 Principle: Heterogeneity 

 Idea: Have both types of register files 
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Solution III: Future File (FF) + ROB 

 Idea: Keep two register files (speculative and architectural) 

 Arch reg file: Updated in program order for precise exceptions 

 Use a reorder buffer to ensure in-order updates 

 Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register) 

 

 Future file is used for fast access to latest register values 
(speculative state) 

 Frontend register file 

 

 Architectural file is used for state recovery on exceptions 
(architectural state) 

 Backend register file 
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Future File 

 

 

 

 

 

 

 Advantage 

 No need to read the new values from the ROB (no CAM or 
indirection) or the old value of destination register 

 

 Disadvantage 

 Multiple register files 

 Need to copy arch. reg. file to future file on an exception 
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In-Order Pipeline with Future File and Reorder Buffer 

 Decode (D): Access future file, allocate entry in ROB, check if instruction 
can execute, if so dispatch instruction 

 Execute (E): Instructions can complete out-of-order 

 Completion (R): Write result to reorder buffer and future file  

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline, copy 
architectural file to future file, and start from exception handler  

 In-order dispatch/execution, out-of-order completion, in-order retirement  
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Can We Reduce the Overhead of Two Register Files? 

 Idea: Use indirection, i.e., pointers to data in frontend and 
retirement 

 Have a single storage that stores register data values 

 Keep two register maps (speculative and architectural); also 
called register alias tables (RATs) 

 

 Future map used for fast access to latest register values 
(speculative state) 

 Frontend register map 

 

 Architectural map is used for state recovery on exceptions 
(architectural state) 

 Backend register map 
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Future Map in Intel Pentium 4 

35 

Boggs et al., “The 
Microarchitecture of 
the Pentium 4 
Processor,” Intel 
Technology Journal, 
2001. 

Many modern  

processors 

are similar: 

- MIPS R10K 

- Alpha 21264 



Reorder Buffer vs. Future Map Comparison 
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Before We Get to Checkpointing … 

 Let’s cover what happens on exceptions 

 And branch mispredictions 
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Checking for and Handling Exceptions in Pipelining 

 

 When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic 

 Recovers architectural state (register file, IP, and memory) 

 Flushes all younger instructions in the pipeline 

 Saves IP and registers (as specified by the ISA) 

 Redirects the fetch engine to the exception handling routine 

 Vectored exceptions 
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Pipelining Issues: Branch Mispredictions 

 A branch misprediction resembles an “exception” 

 Except it is not visible to software (i.e., it is microarchitectural) 

 

 What about branch misprediction recovery? 

 Similar to exception handling except can be initiated before 
the branch is the oldest instruction (not architectural) 

 All three state recovery methods can be used  

 

 Difference between exceptions and branch mispredictions? 

 Branch mispredictions are much more common  

     need fast state recovery to minimize performance impact of 

mispredictions 
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How Fast Is State Recovery? 

 Latency of state recovery affects 

 Exception service latency 

 Interrupt service latency 

 Latency to supply the correct data to instructions fetched after 
a branch misprediction 

 

 Which ones above need to be fast? 

 

 How do the three state maintenance methods fare in terms 
of recovery latency? 

 Reorder buffer 

 History buffer 

 Future file 

40 



Branch State Recovery Actions and Latency 

 Reorder Buffer 

 Flush instructions in pipeline younger than the branch 

 Finish all instructions in the reorder buffer  

 

 History buffer 

 Flush instructions in pipeline younger than the branch 

 Undo all instructions after the branch by rewinding from the 
tail of the history buffer until the branch & restoring old values 
one by one into the register file 

 

 Future file 

 Wait until branch is the oldest instruction in the machine 

 Copy arch. reg. file to future file  

 Flush entire pipeline 
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Can We Do Better? 

 Goal: Restore the frontend state (future file) such that the 
correct next instruction after the branch can execute right 
away after the branch misprediction is resolved 

 

 Idea: Checkpoint the frontend register state/map at the 
time a branch is decoded and keep the checkpointed state 
updated with results of instructions older than the branch 

 Upon branch misprediction, restore the checkpoint associated 
with the branch 

 

 Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987. 
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Checkpointing 

 When a branch is decoded 

 Make a copy of the future file/map and associate it with the 
branch 

 

 When an instruction produces a register value 

 All future file/map checkpoints that are younger than the 
instruction are updated with the value 

 

 When a branch misprediction is detected 

 Restore the checkpointed future file/map for the mispredicted 
branch when the branch misprediction is resolved 

 Flush instructions in pipeline younger than the branch 

 Deallocate checkpoints younger than the branch 
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Checkpointing 

 Advantages 

 Correct frontend register state available right after checkpoint 
restoration  Low state recovery latency 

 … 

 

 

 

 Disadvantages 

 Storage overhead 

 Complexity in managing checkpoints 

 … 
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Many Modern Processors Use Checkpointing 

 MIPS R10000 

 Alpha 21264 

 Pentium 4 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 
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Summary: Maintaining Precise State 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 
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Registers versus Memory 

 So far, we considered mainly registers as part of state 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Maintaining Speculative Memory State: Stores 

 Handling out-of-order completion of memory operations 

 UNDOing a memory write more difficult than UNDOing a 
register write. Why? 

 One idea: Keep store address/data in reorder buffer 

 How does a load instruction find its data? 

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions 

 Program-order list of un-committed store operations 

 When store is decoded: Allocate a store buffer entry  

 When store address and data become available: Record in store 
buffer entry 

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data 

 

 We will get back to this! 
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