
18-447 

Computer Architecture

Lecture 1: Introduction and Basics

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 1/12/2015



Question: What Is This?

2



Answer: Masterpiece of A Famous Architect

3



Your First 447 Assignment

 Go and visit Fallingwater

 Appreciate the importance of out-of-the-box and creative 
thinking

 Think about tradeoffs in the design of the building

 Strengths, weaknesses

 Derive principles on your own for good design and 
innovation

 Due date: After passing this course

 Apply what you have learned in this course

 Think out-of-the-box

4



But First, Today’s First Assignment

 Find The Differences Of This and That

5



Find Differences Of This and That

6



Many Tradeoffs Between Two Designs

 You can list them after you complete the first assignment…

7



A Key Question

 How Was Wright Able To Design Fallingwater?

 Can have many guesses

 (Ultra) hard work, perseverance, dedication (over decades)

 Experience of decades

 Creativity

 Out-of-the-box thinking

 Principled design

 A good understanding of past designs

 Good judgment and intuition

 Strong combination of skills (math, architecture, art, …) 

 …

 (You will be exposed to and hopefully develop/enhance 
many of these skills in this course)

8



A Quote from The Architect Himself

 “architecture […] based upon principle, and not upon 
precedent”

9



A Principled Design

10



11



A Quote from The Architect Himself

 “architecture […] based upon principle, and not upon 
precedent”

12



Major High-Level Goals of This Course

 Understand the principles

 Understand the precedents

 Based on such understanding:

 Enable you to evaluate tradeoffs of different designs and ideas

 Enable you to develop principled designs 

 Enable you to develop novel, out-of-the-box designs

 The focus is on:

 Principles, precedents, and how to use them for new designs

 In Computer Architecture

13



Role of the (Computer) Architect

from Yale Patt’s lecture notes



Role of The (Computer) Architect

 Look backward (to the past)

 Understand tradeoffs and designs, upsides/downsides, past 
workloads. Analyze and evaluate the past. 

 Look forward (to the future)

 Be the dreamer and create new designs. Listen to dreamers.

 Push the state of the art. Evaluate new design choices.

 Look up (towards problems in the computing stack)

 Understand important problems and their nature. 

 Develop architectures and ideas to solve important problems.

 Look down (towards device/circuit technology)

 Understand the capabilities of the underlying technology.

 Predict and adapt to the future of technology (you are 
designing for N years ahead). Enable the future technology.

15



Takeaways

 Being an architect is not easy

 You need to consider many things in designing a new 
system + have good intuition/insight into ideas/tradeoffs

 But, it is fun and can be very technically rewarding

 And, enables a great future

 E.g., many scientific and everyday-life innovations would not 
have been possible without architectural innovation that 
enabled very high performance systems

 E.g., your mobile phones

 This course will teach you how to become a good computer 
architect

16



So, I Hope You Are Here for This

 How does an assembly 
program end up executing as 
digital logic?

 What happens in-between?

 How is a computer designed 
using logic gates and wires 
to satisfy specific goals?

17

18-213

18-240

“C” as a model of computation

Digital logic as a 

model of computation

Programmer’s view of how 

a computer system works

HW designer’s view of how 

a computer system works

Architect/microarchitect’s view:

How to design a computer that

meets system design goals.

Choices critically affect both

the SW programmer and 

the HW designer



Levels of Transformation

18

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Circuits

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is insight” (Richard Hamming)

We gain and generate insight by solving problems

How do we ensure problems are solved by electrons?



Aside: A Paper By Hamming

 Hamming, “Error Detecting and Error Correcting Codes,”
Bell System Technical Journal 1950.

 Introduced the concept of Hamming distance 

 number of locations in which the corresponding symbols of 
two equal-length strings is different

 Developed a theory of codes used for error detection and 
correction

 Also:

 Hamming, “You and Your Research,” Talk at Bell Labs, 
1986.

 http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

19

http://www.cs.virginia.edu/~robins/YouAndYourResearch.html


The Power of Abstraction

 Levels of transformation create abstractions

 Abstraction: A higher level only needs to know about the 
interface to the lower level, not how the lower level is 
implemented

 E.g., high-level language programmer does not really need to 
know what the ISA is and how a computer executes instructions

 Abstraction improves productivity

 No need to worry about decisions made in underlying levels

 E.g., programming in Java vs. C vs. assembly vs. binary vs. by 
specifying control signals of each transistor every cycle

 Then, why would you want to know what goes on 
underneath or above?

20



Crossing the Abstraction Layers

 As long as everything goes well, not knowing what happens 
in the underlying level (or above) is not a problem.

 What if
 The program you wrote is running slow?

 The program you wrote does not run correctly?

 The program you wrote consumes too much energy?

 What if
 The hardware you designed is too hard to program?

 The hardware you designed is too slow because it does not provide the 
right primitives to the software?

 What if
 You want to design a much more efficient and higher performance 

system?

21



Crossing the Abstraction Layers

 Two key goals of this course are 

 to understand how a processor works underneath the 
software layer and how decisions made in hardware affect the 
software/programmer

 to enable you to be comfortable in making design and 
optimization decisions that cross the boundaries of different 
layers and system components

22



An Example: Multi-Core Systems

23

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

Multi-Core

Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY 

CONTROLLER



Unexpected Slowdowns in Multi-Core

24

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.



A Question or Two

 Can you figure out why there is a disparity in slowdowns if 
you do not know how the system executes the programs?

 Can you fix the problem without knowing what is 
happening “underneath”?

25



26

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2 

CACHE

L2 

CACHE

DRAM MEMORY CONTROLLER

DRAM 

Bank 0

DRAM 

Bank 1

DRAM 

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM 

Bank 3



DRAM Bank Operation

27

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e

r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address: 



28

DRAM Controllers

 A row-conflict memory access takes significantly longer 
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.



29

The Problem

 Multiple applications share the DRAM controller

 DRAM controllers designed to maximize DRAM data 
throughput

 DRAM scheduling policies are unfair to some applications

 Row-hit first: unfairly prioritizes apps with high row buffer locality

 Threads that keep on accessing the same row

 Oldest-first: unfairly prioritizes memory-intensive applications

 DRAM controller vulnerable to denial of service attacks

 Can write programs to exploit unfairness



// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

30

A Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



31

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e

r
Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Now That We Know What Happens Underneath

 How would you solve the problem?

 What is the right place to solve the problem?

 Programmer?

 System software?

 Compiler?

 Hardware (Memory controller)?

 Hardware (DRAM)?

 Circuits?

 Two other goals of this course:

 Enable you to think critically

 Enable you to think broadly

32

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Circuits

Runtime System
(VM, OS, MM)

Electrons



Reading on Memory Performance Attacks

 Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY), 
pages 257-274, Boston, MA, August 2007. Slides (ppt)

 One potential reading for your Homework 1 assignment

33

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


If You Are Interested … Further Readings

 Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

 Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut 
Kandemir, and Thomas Moscibroda, 

"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

34

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Takeaway

 Breaking the abstraction layers (between components and 
transformation hierarchy levels) and knowing what is 
underneath enables you to solve problems

35



Another Example

 DRAM Refresh

36



DRAM in the System

37

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

Multi-Core

Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY 

CONTROLLER



A DRAM Cell

 A DRAM cell consists of a capacitor and an access transistor

 It stores data in terms of charge in the capacitor

 A DRAM chip consists of (10s of 1000s of) rows of such cells

wordline

b
it
lin

e

b
it
lin

e

b
it
lin

e

b
it
lin

e

(row enable)



DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row periodically 
to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling 

39



First, Some Analysis

 Imagine a system with 1 ExaByte DRAM 

 Assume a row size of 8 KiloBytes

 How many rows are there?

 How many refreshes happen in 64ms?

 What is the total power consumption of DRAM refresh?

 What is the total energy consumption of DRAM refresh 
during a day?

 Part of your Homework 1

40



Refresh Overhead: Performance

41

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Refresh Overhead: Energy

42

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



How Do We Solve the Problem?

 Do we need to refresh all rows every 64ms?

 What if we knew what happened underneath and exposed 
that information to upper layers?

43



Underneath: Retention Time Profile of DRAM

44Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Taking Advantage of This Profile

 Expose this retention time profile information to

 the memory controller

 the operating system

 the programmer?

 the compiler?

 How much information to expose?

 Affects hardware/software overhead, power consumption, 
verification complexity, cost

 How to determine this profile information?

 Also, who determines it?

45



An Example: RAIDR

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells 

more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
74.6% refresh reduction @ 1.25KB storage

~16%/20% DRAM dynamic/idle power reduction

~9% performance improvement 

Benefits increase with DRAM capacity

46
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Reading on RAIDR

 Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2012. Slides (pdf)

 One potential reading for your Homework 1 assignment

47

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


If You Are Interested … Further Readings

 Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. 
Slides (pptx) (pdf) Video

 Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, 
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing 
Refreshes with Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)

48

http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://hpca20.ece.ufl.edu/
http://hpca20.ece.ufl.edu/
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


Takeaway

 Breaking the abstraction layers (between components and 
transformation hierarchy levels) and knowing what is 
underneath enables you to solve problems and design 
better future systems

 Cooperation between multiple components and layers can 
enable more effective solutions and systems

49



Yet Another Example

 DRAM Row Hammer (or, DRAM Disturbance Errors)

50



Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Aggressor Row

Repeatedly opening and closing a row enough times within a 
refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed

51

Disturbance Errors in Modern DRAM

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.



86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors 

Up to

2.7×106

errors 

Up to

3.3×105

errors 

52
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Most DRAM Modules Are At Risk



DRAM Modulex86 CPU

Y

X

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop



DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Y

X



DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Y

X



DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)  

clflush (Y)

mfence

jmp loop

Y

X



• A real reliability & security issue 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

57Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



58

All modules from 2012–2013 are vulnerable

First
Appearance

Errors vs. Vintage



How Do We Solve The Problem?

 Do business as usual but better: Improve circuit and device 
technology such that disturbance does not happen. 

Use stronger error correcting codes.

 Tolerate it: Make DRAM and controllers more intelligent so 
that they can proactively fix the errors 

 Eliminate or minimize it: Replace DRAM with a different 
technology that does not have the problem

 Embrace it: Design heterogeneous-reliability memories that 
map error-tolerant data to less reliable portions

 …
59



More on DRAM Disturbance Errors

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf)
Lightning Session Slides (pptx) (pdf) Source Code and Data

 Source Code to Induce Errors in Modern DRAM Chips

 https://github.com/CMU-SAFARI/rowhammer

 One potential reading for your Homework 1 assignment

60

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer


Recap: Some Goals of 447

 Teach/enable/empower you to:

 Understand how a computing platform (processor + memory + 
interconnect) works 

 Implement a simple platform (with not so simple parts), with a 
focus on the processor and memory

 Understand how decisions made in hardware affect the 
software/programmer as well as hardware designer

 Think critically (in solving problems)

 Think broadly across the levels of transformation

 Understand how to analyze and make tradeoffs in design

61



Review: Major High-Level Goals of This Course

 Understand the principles

 Understand the precedents

 Based on such understanding:

 Enable you to evaluate tradeoffs of different designs and ideas

 Enable you to develop principled designs 

 Enable you to develop novel, out-of-the-box designs

 The focus is on:

 Principles, precedents, and how to use them for new designs

 In Computer Architecture

62



Agenda

 Intro to 18-447

 Course logistics, info, requirements

 What 447 is about

 Lab assignments

 Homeworks, readings, etc

 Assignments for the next two weeks

 Homework 0 (due this Friday: January 16)

 Homework 1 (due Jan 28)

 Lab 1 (due Jan 23)

 Basic concepts in computer architecture

63



Handouts for Today

 Online

 Homework 0

 Syllabus

 Website and Past Websites

64



Course Info: Who Are We?

 Instructor: Prof. Onur Mutlu

 onur@cmu.edu

 Office: CIC 4105

 Office Hours: W 2:30-3:30pm (or by appointment)

 http://www.ece.cmu.edu/~omutlu

 PhD from UT-Austin, worked at Microsoft Research, Intel, 
AMD

 Research and teaching interests:
 Computer architecture, hardware/software interaction

 Many-core systems

 Memory and storage systems

 Improving programmer productivity

 Interconnection networks

 Hardware/software interaction and co-design (PL, OS, Architecture)

 Fault tolerance

 Hardware security

 Algorithms and architectures for bioinformatics, genomics, health applications 65

mailto:onur@cmu.edu
http://www.ece.cmu.edu/~omutlu


Course Info: Who Are We?

 Teaching Assistants 

 Kevin Chang

 kevincha@cmu.edu

 Rachata Ausavarungnirun

 rachata@cmu.edu

 Albert Cho

 aycho@andrew.cmu.edu

 Jeremie Kim

 jeremiek@andrew.cmu.edu

 Clement Loh

 changshl@andrew.cmu.edu

 Reach all of us at

 447-instructors@ece.cmu.edu and Piazza
66

mailto:kevincha@cmu.edu
mailto:rachata@cmu.edu
mailto:aycho@andrew.cmu.edu
mailto:jeremiek@andrew.cmu.edu
mailto:changshl@andrew.cmu.edu
mailto:447-instructors@ece.cmu.edu
mailto:447-instructors@ece.cmu.edu
mailto:447-instructors@ece.cmu.edu


Your Turn

 Who are you?

 Homework 0 (absolutely required)

 Your opportunity to tell us about yourself

 Due this Friday (midnight)

 Attach your picture (absolutely required)

 Submit via Autolab

 All grading predicated on receipt of Homework 0

67



Where to Get Up-to-date Course Info?

 Website: http://www.ece.cmu.edu/~ece447

 Lecture notes and videos

 Project information

 Homeworks

 Course schedule, handouts, papers, FAQs

 Material from past incarnations of 447

 This is your single point of access to all resources: Learn it well

 Your email

 Me and the TAs

 Piazza
68

http://www.ece.cmu.edu/~ece447


Lecture and Lab Locations, Times

 Lectures:

 MWF 12:30-2:20pm

 Hamerschlag Hall 1107

 Attendance is for your benefit and is therefore important

 Some days, we may have recitation sessions or guest lectures

 Recitations:

 T 10:30am-1:20pm, Th 1:30-4:20pm, F 6:30-9:20pm

 Hamerschlag Hall 1303

 You can attend any session

 Goals: to enhance your understanding of the lecture material,  
help you with homework assignments, exams, and labs, and 
get one-on-one help from the TAs on the labs. 

69



Tentative Course Schedule

 Tentative schedule is in syllabus and online

 To get an idea of topics, you can look at last year’s 
schedule, lectures, videos, etc:

 http://www.ece.cmu.edu/~ece447/s14

 http://www.ece.cmu.edu/~ece447/s13

 But don’t believe the “static” schedule

 Systems that perform best are usually dynamically 
scheduled

 Static vs. Dynamic scheduling

 Compile time vs. Run time

70

http://www.ece.cmu.edu/~ece447/s14
http://www.ece.cmu.edu/~ece447/s13


A Note on Hardware vs. Software

 This course is classified under “Computer Hardware”

 However, you will be much more capable if you master 
both hardware and software (and the interface between 
them)

 Can develop better software if you understand the underlying 
hardware

 Can design better hardware if you understand what software 
it will execute

 Can design a better computing system if you understand both

 This course covers the HW/SW interface and 
microarchitecture

 We will focus on tradeoffs and how they affect software
71



What Do I Expect From You?

 Required background: 240 (digital logic, RTL implementation, 
Verilog), 213 (systems, virtual memory, assembly)

 Learn the material thoroughly

 attend lectures, do the readings, do the homeworks

 Do the work & work hard

 Ask questions, take notes, participate

 Perform the assigned readings

 Come to class on time

 Start early – do not procrastinate

 If you want feedback, come to office hours

 Remember “Chance favors the prepared mind.” (Pasteur)
72



What Do I Expect From You?

 How you prepare and manage your time is very important

 There will be an assignment due almost every week

 8 Labs and 7 Homework Assignments

 This will be a heavy course

 However, you will learn a lot of fascinating topics and 
understand how a microprocessor actually works (and how it 
can be made to work better)

 And, it will hopefully change how you look at and think about 
designs around you

73



How Will You Be Evaluated?

 Seven Homeworks + Reading Summaries: 14%

 Eight Lab Assignments: 40% (+ many extra credit chances)

 Midterm I: 12%

 Midterm II: 12%

 Final: 22%

 Our evaluation of your performance: 5%

 Participation counts

 Doing the readings counts

74



More on Homeworks and Labs

 Homeworks

 Do them to truly understand the material, not to get the grade

 Content from lectures, readings, labs, discussions

 All homework writeups must be your own work, written up 
individually and independently

 However, you can discuss with others

 No late homeworks accepted

 Labs

 These will take time. 

 You need to start early and work hard.

 Labs will be done individually unless specified otherwise.

 A total of five late lab days per semester allowed.

75



A Note on Cheating and Academic Dishonesty

 Absolutely no form of cheating will be tolerated

 You are all adults and we will treat you so

 See syllabus, CMU Policy, and ECE Academic Integrity Policy

 Linked from syllabus

 Cheating  Failing grade (no exceptions)

 And, perhaps more

76



Homeworks for the Next Two Weeks (I)

 Homework 0 

 Due this Friday (Jan 16)

77



Homeworks for the Next Two Weeks (II)

 Homework 1

 Due Wednesday Jan 28

 Refresh question, MIPS warmup, ISA concepts, basic 
performance evaluation, …

 Write a ½-page summary for the following paper:
 Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for Microprocessor 

Evolution,” Proceedings of the IEEE 2001.

 Write ½-page summary for one of the following papers:
 Moscibroda and Mutlu, “Memory Performance Attacks: Denial of Memory Service in 

Multi-Core Systems,” USENIX Security 2007.

 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

 How to write a good critical summary handout will be 
posted

 0.5% extra credit for each well-done additional summary
78



Lab Assignment 1

 A functional C-level simulator for a subset of the MIPS ISA

 Due Friday Jan 23, at the end of the Friday recitation session

 Start early, you will have a lot to learn

 Homework 1 and Lab 1 are synergistic

 Homework questions are meant to help you in the Lab

79



Required Readings for This Week
 Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for 

Microprocessor Evolution,” Proceedings of the IEEE 2001.

 One of

 Moscibroda and Mutlu, “Memory Performance Attacks: Denial of Memory 
Service in Multi-Core Systems,” USENIX Security 2007.

 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors,” ISCA 2014.

 P&P Chapter 1 (Fundamentals)

 P&H Chapters 1 and 2 (Intro, Abstractions, ISA, MIPS)

 Reference material throughout the course

 MIPS ISA Reference Manual + x86 ISA Reference Manual

 http://www.ece.cmu.edu/~ece447/s15/doku.php?id=techdocs

80

http://www.ece.cmu.edu/~ece447/s15/doku.php?id=techdocs


A Note on Books

 None required

 But, I expect you to be resourceful in finding and doing the 
readings…

81



Recitations Next Week

 MIPS ISA Tutorial

 You can attend any recitation session

82



18-447 

Computer Architecture

Lecture 1: Introduction and Basics

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 1/12/2015



What Will You Learn

 Computer Architecture: The science and art of 
designing, selecting, and interconnecting hardware 
components and designing the hardware/software interface 
to create a computing system that meets functional, 
performance, energy consumption, cost, and other specific 
goals. 

 Traditional definition: “The term architecture is used 
here to describe the attributes of a system as seen by the 
programmer, i.e., the conceptual structure and functional 
behavior as distinct from the organization of the dataflow 
and controls, the logic design, and the physical 
implementation.” Gene Amdahl, IBM Journal of R&D, April 
1964

84



Computer Architecture in Levels of Transformation

 Read: Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for 
Microprocessor Evolution,” Proceedings of the IEEE 2001.

85

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Circuits

Runtime System
(VM, OS, MM)

Electrons



Levels of Transformation, Revisited

86

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 A user-centric view: computer designed for users

 The entire stack should be optimized for user

Logic

Circuits

Electrons



What Will You Learn?

 Fundamental principles and tradeoffs in designing the 
hardware/software interface and major components of a 
modern programmable microprocessor

 Focus on state-of-the-art (and some recent research and trends)

 Trade-offs and how to make them

 How to design, implement, and evaluate a functional modern 
processor

 Semester-long lab assignments

 A combination of RTL implementation and higher-level simulation

 Focus is functionality first (some on “how to do even better”) 

 How to dig out information, think critically and broadly

 How to work even harder!
87



Course Goals

 Goal 1: To familiarize those interested in computer system 

design with both fundamental operation principles and design 
tradeoffs of processor, memory, and platform architectures in 
today’s systems. 

 Strong emphasis on fundamentals and design tradeoffs.

 Goal 2: To provide the necessary background and experience to 

design, implement, and evaluate a modern processor by 
performing hands-on RTL and C-level implementation. 

 Strong emphasis on functionality and hands-on design. 

88


