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A Single-Cycle Microarchitecture 

A Closer Look 
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Remember… 

 Single-cycle machine 
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Let’s Start with the State Elements 

 Data and control inputs 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



For Now, We Will Assume 

 “Magic” memory and register file 
 

 Combinational read 

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port 

 

 Synchronous write 

 the selected register is updated on the positive edge clock 
transition when write enable is asserted 

 Cannot affect read output in between clock edges 
 

 

 Single-cycle, synchronous memory 

 Contrast this with memory that tells when the data is ready 

 i.e., Ready bit: indicating the read or write is done 
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Instruction Processing 

 5 generic steps (P&H) 

 Instruction fetch (IF) 

 Instruction decode and register operand fetch (ID/RF) 

 Execute/Evaluate memory address (EX/AG) 

 Memory operand fetch (MEM) 

 Store/writeback result (WB)  
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What Is To Come: The Full MIPS Datapath 
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Single-Cycle Datapath for 

Arithmetic and Logical Instructions 
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R-Type ALU Instructions 

 Assembly (e.g., register-register signed addition) 

  ADD rdreg rsreg rtreg 

 

 Machine encoding 

 

 

 

 

 Semantics 

 

  if MEM[PC] == ADD rd rs rt 

   GPR[rd]  GPR[rs] + GPR[rt]   

   PC  PC + 4 
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ALU Datapath 
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if MEM[PC] == ADD rd rs rt 
 GPR[rd]  GPR[rs] + GPR[rt]   
 PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



I-Type ALU Instructions 

 Assembly (e.g., register-immediate signed additions) 

  ADDI rtreg rsreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics 

  if MEM[PC] == ADDI rt rs immediate 

           GPR[rt]  GPR[rs] + sign-extend (immediate) 

           PC  PC + 4 
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Datapath for R and I-Type ALU Insts. 
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if MEM[PC] == ADDI rt rs immediate 
GPR[rt]  GPR[rs] + sign-extend (immediate)  
PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 



Single-Cycle Datapath for 

Data Movement Instructions 
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Load Instructions 

 Assembly (e.g., load 4-byte word) 

  LW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==LW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

GPR[rt]  MEM[ translate(EA) ]  

PC  PC + 4 
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LW Datapath 
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Store Instructions 

 Assembly (e.g., store 4-byte word) 

  SW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==SW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

MEM[ translate(EA) ]  GPR[rt]  

PC  PC + 4 
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SW Datapath 
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Load-Store Datapath 
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Datapath for Non-Control-Flow Insts. 
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Single-Cycle Datapath for 

Control Flow Instructions 
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Unconditional Jump Instructions 

 Assembly 

  J immediate26 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==J immediate26 

   target = { PC[31:28], immediate26, 2’b00 }  

   PC  target 
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Unconditional Jump Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 
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X 
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if MEM[PC]==J immediate26 
    PC = { PC[31:28], immediate26, 2’b00 } 



Conditional Branch Instructions 

 Assembly (e.g., branch if equal) 

  BEQ rsreg rtreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics (assuming no branch delay slot) 

 if MEM[PC]==BEQ rs rt immediate16 

target = PC + 4 + sign-extend(immediate) x 4  

if GPR[rs]==GPR[rt] then  PC  target 

    else  PC  PC + 4 
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Conditional Branch Datapath (For You to Fix) 
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watch out 



Putting It All Together 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Control Logic 
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Single-Cycle Hardwired Control 

 As combinational function of Inst=MEM[PC] 

 

 

 

 

 

 

 Consider 

 All R-type and I-type ALU instructions 

 LW and SW 

 BEQ, BNE, BLEZ, BGTZ 

 J, JR, JAL, JALR 
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Single-Bit Control Signals 
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When De-asserted When asserted Equation 
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ALU Control 

 case opcode 

‘0’  select operation according to funct 

‘ALUi’  selection operation according to opcode  

‘LW’  select addition 

‘SW’  select addition 

‘Bxx’  select bcond generation function 

 __  don’t care 

 

 Example ALU operations 

 ADD, SUB, AND, OR, XOR, NOR, etc. 

 bcond on equal, not equal, LE zero, GT zero, etc. 
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R-Type ALU 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
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I-Type ALU 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
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* 



What is in That Control Box? 

 Combinational Logic  Hardwired Control 

 Idea: Control signals generated combinationally based on 
instruction 

 Necessary in a single-cycle microarchitecture… 

 

 Sequential Logic  Sequential/Microprogrammed Control 

 Idea: A memory structure contains the control signals 
associated with an instruction 

 Control Store 

38 



Evaluating the Single-Cycle 

Microarchitecture 
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A Single-Cycle Microarchitecture 

 Is this a good idea/design? 

 

 When is this a good design? 

 

 When is this a bad design? 

 

 How can we design a better microarchitecture? 
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A Single-Cycle Microarchitecture: Analysis 

 Every instruction takes 1 cycle to execute 

 CPI (Cycles per instruction) is strictly 1 

 

 How long each instruction takes is determined by how long 
the slowest instruction takes to execute 

 Even though many instructions do not need that long to 
execute 

 

 Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction 

 Critical path of the design is determined by the processing 
time of the slowest instruction 
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What is the Slowest Instruction to Process? 

 Let’s go back to the basics 

 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Do each of the above phases take the same time (latency) 
for all instructions? 
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1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Single-Cycle Datapath Analysis 

 Assume 

 memory units (read or write): 200 ps 

 ALU and adders: 100 ps 

 register file (read or write): 50 ps 

 other combinational logic: 0 ps 
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steps IF ID EX MEM WB 

Delay 
resources mem RF ALU mem RF 

R-type 200 50 100 50 400 

I-type 200 50 100 50 400 

LW 200 50 100 200 50 600 

SW 200 50 100 200 550 

Branch 200 50 100 350 

Jump 200 200 



Let’s Find the Critical Path 
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What About Control Logic?  

 How does that affect the critical path? 

 

 Food for thought for you: 

 Can control logic be on the critical path? 

 A note on CDC 5600: control store access too long… 
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What is the Slowest Instruction to Process? 

 Memory is not magic 

 

 What if memory sometimes takes 100ms to access? 

 

 Does it make sense to have a simple register to register 
add or jump to take {100ms+all else to do a memory 
operation}? 

 

 And, what if you need to access memory more than once to 
process an instruction? 

 Which instructions need this? 

 Do you provide multiple ports to memory? 
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Single Cycle uArch: Complexity 
 Contrived  

 All instructions run as slow as the slowest instruction 
 

 Inefficient 

 All instructions run as slow as the slowest instruction 

 Must provide worst-case combinational resources in parallel as required 
by any instruction 

 Need to replicate a resource if it is needed more than once by an 
instruction during different parts of the instruction processing cycle 

 

 Not necessarily the simplest way to implement an ISA 

 Single-cycle implementation of REP MOVS, INDEX, POLY? 
 

 Not easy to optimize/improve performance 

 Optimizing the common case does not work (e.g. common instructions) 

 Need to optimize the worst case all the time 
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Microarchitecture Design Principles 

 Critical path design 

 Find the maximum combinational logic delay and decrease it 

 

 Bread and butter (common case) design 

 Spend time and resources on where it matters  

 i.e., improve what the machine is really designed to do 

 Common case vs. uncommon case 

 

 Balanced design 

 Balance instruction/data flow through hardware components 

 Balance the hardware needed to accomplish the work 

 

 How does a single-cycle microarchitecture fare in light of 
these principles? 
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Multi-Cycle Microarchitectures 
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Multi-Cycle Microarchitectures 

 Goal: Let each instruction take (close to) only as much time 
it really needs 

 

 Idea 

 Determine clock cycle time independently of instruction 
processing time 

 Each instruction takes as many clock cycles as it needs to take 

 Multiple state transitions per instruction 

 The states followed by each instruction is different 
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Remember: The “Process instruction” Step 

  ISA specifies abstractly what A’ should be, given an 
instruction and A 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between A and A’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how A is transformed to A’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: AS  AS’ (transform A to A’ in a single clock cycle) 

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple 

clock cycles to transform AS to AS’) 
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Multi-Cycle Microarchitecture 

AS = Architectural (programmer visible) state  

at the beginning of an instruction 
 

 

Step 1: Process part of instruction in one clock cycle 

 
 

Step 2: Process part of instruction in the next clock cycle 

 
 

… 

 

AS’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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Benefits of Multi-Cycle Design 

 Critical path design 

 Can keep reducing the critical path independently of the worst-
case processing time of any instruction 

 

 Bread and butter (common case) design 

 Can optimize the number of states it takes to execute “important” 
instructions that make up much of the execution time 
 

 Balanced design 

 No need to provide more capability or resources than really 
needed  

 An instruction that needs resource X multiple times does not require 
multiple X’s to be implemented 

 Leads to more efficient hardware: Can reuse hardware components 
needed multiple times for an instruction 
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Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
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Now, we have  

two degrees of freedom 

to optimize independently 



An Aside: CPI vs. Frequency 

 CPI vs. Clock cycle time 

 

 At odds with each other 

 Reducing one increases the other for a single instruction 

 Why? 

 

 Average CPI can be amortized/reduced via concurrent 
processing of multiple instructions 

 The same cycle is devoted to processing multiple instructions 

 Example: Pipelining, superscalar execution 
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A Multi-Cycle Microarchitecture 

A Closer Look 
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How Do We Implement This? 

 Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer 
Inaugural Conf., 1951. 

 

 The concept of microcoded/microprogrammed machines 

 

 Realization 

 One can implement the “process instruction” step as a finite 
state machine that sequences between states and eventually 
returns back to the “fetch instruction” state 

 A state is defined by the control signals asserted in it 

 Control signals for the next state determined in current state 
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The Instruction Processing Cycle 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 
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A Basic Multi-Cycle Microarchitecture 

 Instruction processing cycle divided into “states” 

 A stage in the instruction processing cycle can take multiple states 
 

 A multi-cycle microarchitecture sequences from state to 
state to process an instruction  

 The behavior of the machine in a state is completely determined by 
control signals in that state 

 

 The behavior of the entire processor is specified fully by a 
finite state machine 
 

 In a state (clock cycle), control signals control 

 How the datapath should process the data 

 How to generate the control signals for the next clock cycle 
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Microprogrammed Control Terminology 

 Control signals associated with the current state 

 Microinstruction 

 

 Act of transitioning from one state to another 

 Determining the next state and the microinstruction for the 
next state 

 Microsequencing 

 

 Control store stores control signals for every possible state 

 Store for microinstructions for the entire FSM 

 

 Microsequencer determines which set of control signals will 
be used in the next clock cycle (i.e., next state) 
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What Happens In A Clock Cycle? 

 The control signals (microinstruction) for the current state 
control 

 Processing in the data path 

 Generation of control signals (microinstruction) for the next 
cycle 

 See Supplemental Figure 1 (next slide) 

 

 Datapath and microsequencer operate concurrently 

 

 Question: why not generate control signals for the current 
cycle in the current cycle? 

 This will lengthen the clock cycle 

 Why would it lengthen the clock cycle?  

 See Supplemental Figure 2 

 
66 



A Clock Cycle 
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A Bad Clock Cycle! 
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A Simple LC-3b Control and Datapath 
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What Determines Next-State Control Signals? 

 What is happening in the current clock cycle 

 See the 9 control signals coming from “Control” block 

 What are these for? 

 

 The instruction that is being executed 

 IR[15:11] coming from the Data Path 

 

 Whether the condition of a branch is met, if the instruction 
being processed is a branch 

 BEN bit coming from the datapath 

 

 Whether the memory operation is completing in the current 
cycle, if one is in progress 

 R bit coming from memory 
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A Simple LC-3b Control and Datapath 
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The State Machine for Multi-Cycle Processing 

 The behavior of the LC-3b uarch is completely determined by 

 the 35 control signals and 

 additional 7 bits that go into the control logic from the datapath 

 

 35 control signals completely describe the state of the control 
structure 

 

 We can completely describe the behavior of the LC-3b as a 
state machine, i.e. a directed graph of  

 Nodes (one corresponding to each state) 

 Arcs (showing flow from each state to the next state(s)) 
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An LC-3b State Machine 

 Patt and Patel, App C, Figure C.2 

 

 Each state must be uniquely specified  

 Done by means of state variables 

 

 31 distinct states in this LC-3b state machine 

 Encoded with 6 state variables 

 

 Examples 

 State 18,19 correspond to the beginning of the instruction 
processing cycle 

 Fetch phase: state 18, 19  state 33  state 35 

 Decode phase: state 32 
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Figure C.2: A state machine for the LC-3b



LC-3b State Machine: Some Questions 

 How many cycles does the fastest instruction take? 

 

 How many cycles does the slowest instruction take? 

 

 Why does the BR take as long as it takes in the FSM?  

 

 What determines the clock cycle? 

 

 Is this a Mealy machine or a Moore machine?  
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LC-3b Datapath 

 Patt and Patel, App C, Figure C.3 

 

 Single-bus datapath design 

 At any point only one value can be “gated” on the bus (i.e., 
can be driving the bus) 

 Advantage: Low hardware cost: one bus 

 Disadvantage: Reduced concurrency – if instruction needs the 
bus twice for two different things, these need to happen in 
different states 

 

 Control signals (26 of them) determine what happens in the 
datapath in one clock cycle 

 Patt and Patel, App C, Table C.1 
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.





LC-3b Datapath: Some Questions 

 How does instruction fetch happen in this datapath 
according to the state machine? 

 

 What is the difference between gating and loading? 

 

 Is this the smallest hardware you can design? 
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LC-3b Microprogrammed Control Structure 

 Patt and Patel, App C, Figure C.4 
 

 Three components: 

 Microinstruction, control store, microsequencer 
 

 Microinstruction: control signals that control the datapath  
(26 of them) and determine the next state (9 of them) 

 Each microinstruction is stored in a unique location in the 
control store (a special memory structure) 

 Unique location: address of the state corresponding to the 
microinstruction 

 Remember each state corresponds to one microinstruction 

 Microsequencer determines the address of the next 
microinstruction (i.e., next state) 
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Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.7: Specification of the control store



LC-3b Microsequencer 

 Patt and Patel, App C, Figure C.5 
 

 The purpose of the microsequencer is to determine the 
address of the next microinstruction (i.e., next state) 

 

 Next address depends on 9 control signals 
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Mode
Addr.

J[0]J[1]J[2]

COND0COND1
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



The Microsequencer: Some Questions 

 When is the IRD signal asserted? 

 

 What happens if an illegal instruction is decoded? 

 

 What are condition (COND) bits for? 

 

 How is variable latency memory handled? 

 

 How do you do the state encoding? 

 Minimize number of state variables 

 Start with the 16-way branch 

 Then determine constraint tables and states dependent on COND 
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An Exercise in 

Microprogramming 
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Handouts 

 7 pages of Microprogrammed LC-3b design 

 

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=manu
als 

 

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?m
edia=lc3b-figures.pdf 
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Figure C.2: A state machine for the LC-3b





10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State
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0,0,IR[15:12]

J[5]
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Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
State 18 (010010) 
State 33 (100001) 
State 35 (100011) 
State 32 (100000) 
State 6    (000110) 
State 25 (011001) 
State 27 (011011) 

State Machine for LDW Microsequencer 
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DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.
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Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.7: Specification of the control store
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



End of the Exercise in 

Microprogramming 

100 



Homework 2 

 You will write the microcode for the entire LC-3b as 
specified in Appendix C 
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