
18-447

Computer Architecture

Lecture 5: Single-Cycle and Multi-Cycle

Microarchitectures

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/24/2014

A Single-Cycle Microarchitecture

A Closer Look

2

Remember…

 Single-cycle machine

3

ASNext AS Sequential
Logic
(State)

Combinational
Logic

Let’s Start with the State Elements

 Data and control inputs

4

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction

memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done

 5

Instruction Processing

 5 generic steps (P&H)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB)

6

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full MIPS Datapath

7

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Datapath for

Arithmetic and Logical Instructions

8

R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

 ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

 if MEM[PC] == ADD rd rs rt

 GPR[rd] GPR[rs] + GPR[rt]

 PC PC + 4

9

0
6-bit

rs
5-bit

rt
5-bit

R-type rd
5-bit

0
5-bit

ADD
6-bit

ALU Datapath

10

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation
3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
 GPR[rd] GPR[rs] + GPR[rt]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

 ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

 if MEM[PC] == ADDI rt rs immediate

 GPR[rt] GPR[rs] + sign-extend (immediate)

 PC PC + 4

11

ADDI
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Datapath for R and I-Type ALU Insts.

12

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1
ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt] GPR[rs] + sign-extend (immediate)
PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

Single-Cycle Datapath for

Data Movement Instructions

13

Load Instructions

 Assembly (e.g., load 4-byte word)

 LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==LW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

GPR[rt] MEM[translate(EA)]

PC PC + 4

14

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

LW Datapath

15

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 GPR[rt] MEM[translate(EA)]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

Store Instructions

 Assembly (e.g., store 4-byte word)

 SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==SW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

MEM[translate(EA)] GPR[rt]

PC PC + 4

16

SW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

SW Datapath

17

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 MEM[translate(EA)] GPR[rt]
 PC PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write
data

Read
data

a. Data memory unit

Address

0

add

ALUSrc

isItype

RegDest
isItype

Load-Store Datapath

18

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add
isStore

isLoad

ALUSrc

isItype

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

19

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc

isItype

MemtoReg

isLoad

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

20

Unconditional Jump Instructions

 Assembly

 J immediate26

 Machine encoding

 Semantics

 if MEM[PC]==J immediate26

 target = { PC[31:28], immediate26, 2’b00 }

 PC target

21

J
6-bit

immediate
26-bit

J-type

Unconditional Jump Datapath

22

PC

Instruction

memory

Read
address

Instruction

4

Add

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data

memory
Write
data

Read
data

Write
data

Sign

extend

ALU
result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
 PC = { PC[31:28], immediate26, 2’b00 }

Conditional Branch Instructions

 Assembly (e.g., branch if equal)

 BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

 if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC target

 else PC PC + 4

23

BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Conditional Branch Datapath (For You to Fix)

24

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

PC

Instruction

memory

Read
address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

25

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Control Logic

26

Single-Cycle Hardwired Control

 As combinational function of Inst=MEM[PC]

 Consider

 All R-type and I-type ALU instructions

 LW and SW

 BEQ, BNE, BLEZ, BGTZ

 J, JR, JAL, JALR

 27

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

0 6 11 16 21 26 31

0 16 21 26 31

0 26 31

Single-Bit Control Signals

28

When De-asserted When asserted Equation

RegDest
GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

ALUSrc

2nd ALU input from 2nd
GPR read port

2nd ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&

(opcode!=BEQ) &&

(opcode!=BNE)

MemtoReg
Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options

Single-Bit Control Signals

29

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1

According to PCSrc2 next PC is based on 26-
bit immediate jump
target

(opcode==J) ||

(opcode==JAL)

PCSrc2
next PC = PC + 4 next PC is based on 16-

bit immediate branch
target

(opcode==Bxx) &&

“bcond is satisfied”

JR and JALR require additional PCSrc options

ALU Control

 case opcode

‘0’ select operation according to funct

‘ALUi’ selection operation according to opcode

‘LW’ select addition

‘SW’ select addition

‘Bxx’ select bcond generation function

 __ don’t care

 Example ALU operations

 ADD, SUB, AND, OR, XOR, NOR, etc.

 bcond on equal, not equal, LE zero, GT zero, etc.

30

R-Type ALU

31

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0 funct

I-Type ALU

32

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

0

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

opcode

LW

33

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

1

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

SW

34

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
1

0

* *
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

Branch Not Taken

35

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

bcond

Branch Taken

36

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Jump

37

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

*

*

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

*

What is in That Control Box?

 Combinational Logic Hardwired Control

 Idea: Control signals generated combinationally based on
instruction

 Necessary in a single-cycle microarchitecture…

 Sequential Logic Sequential/Microprogrammed Control

 Idea: A memory structure contains the control signals
associated with an instruction

 Control Store

38

Evaluating the Single-Cycle

Microarchitecture

39

A Single-Cycle Microarchitecture

 Is this a good idea/design?

 When is this a good design?

 When is this a bad design?

 How can we design a better microarchitecture?

40

A Single-Cycle Microarchitecture: Analysis

 Every instruction takes 1 cycle to execute

 CPI (Cycles per instruction) is strictly 1

 How long each instruction takes is determined by how long
the slowest instruction takes to execute

 Even though many instructions do not need that long to
execute

 Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

 Critical path of the design is determined by the processing
time of the slowest instruction

41

What is the Slowest Instruction to Process?

 Let’s go back to the basics

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Do each of the above phases take the same time (latency)
for all instructions?

42

1. Instruction fetch (IF)
2. Instruction decode and
 register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Single-Cycle Datapath Analysis

 Assume

 memory units (read or write): 200 ps

 ALU and adders: 100 ps

 register file (read or write): 50 ps

 other combinational logic: 0 ps

43

steps IF ID EX MEM WB

Delay
resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600

SW 200 50 100 200 550

Branch 200 50 100 350

Jump 200 200

Let’s Find the Critical Path

44

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

45

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 400ps

100ps

100ps

LW

46

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 600ps

100ps

100ps

550ps

SW

47

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

100ps

550ps

Branch Taken

48

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

350ps

200ps

Jump

49

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps

100ps

200ps

What About Control Logic?

 How does that affect the critical path?

 Food for thought for you:

 Can control logic be on the critical path?

 A note on CDC 5600: control store access too long…

50

What is the Slowest Instruction to Process?

 Memory is not magic

 What if memory sometimes takes 100ms to access?

 Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

 And, what if you need to access memory more than once to
process an instruction?

 Which instructions need this?

 Do you provide multiple ports to memory?

51

Single Cycle uArch: Complexity
 Contrived

 All instructions run as slow as the slowest instruction

 Inefficient

 All instructions run as slow as the slowest instruction

 Must provide worst-case combinational resources in parallel as required
by any instruction

 Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

 Not necessarily the simplest way to implement an ISA

 Single-cycle implementation of REP MOVS, INDEX, POLY?

 Not easy to optimize/improve performance

 Optimizing the common case does not work (e.g. common instructions)

 Need to optimize the worst case all the time
52

Microarchitecture Design Principles

 Critical path design

 Find the maximum combinational logic delay and decrease it

 Bread and butter (common case) design

 Spend time and resources on where it matters

 i.e., improve what the machine is really designed to do

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through hardware components

 Balance the hardware needed to accomplish the work

 How does a single-cycle microarchitecture fare in light of
these principles?

53

Multi-Cycle Microarchitectures

54

Multi-Cycle Microarchitectures

 Goal: Let each instruction take (close to) only as much time
it really needs

 Idea

 Determine clock cycle time independently of instruction
processing time

 Each instruction takes as many clock cycles as it needs to take

 Multiple state transitions per instruction

 The states followed by each instruction is different

55

Remember: The “Process instruction” Step

 ISA specifies abstractly what A’ should be, given an
instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: AS AS’ (transform A to A’ in a single clock cycle)

 Choice 2: AS AS+MS1 AS+MS2 AS+MS3 AS’ (take multiple

clock cycles to transform AS to AS’)

56

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

 57

Benefits of Multi-Cycle Design

 Critical path design

 Can keep reducing the critical path independently of the worst-
case processing time of any instruction

 Bread and butter (common case) design

 Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

 Balanced design

 No need to provide more capability or resources than really
needed

 An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

 Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

58

Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI hopefully small

 Clock cycle time = short
59

Now, we have

two degrees of freedom

to optimize independently

An Aside: CPI vs. Frequency

 CPI vs. Clock cycle time

 At odds with each other

 Reducing one increases the other for a single instruction

 Why?

 Average CPI can be amortized/reduced via concurrent
processing of multiple instructions

 The same cycle is devoted to processing multiple instructions

 Example: Pipelining, superscalar execution

60

A Multi-Cycle Microarchitecture

A Closer Look

61

How Do We Implement This?

 Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

 The concept of microcoded/microprogrammed machines

 Realization

 One can implement the “process instruction” step as a finite
state machine that sequences between states and eventually
returns back to the “fetch instruction” state

 A state is defined by the control signals asserted in it

 Control signals for the next state determined in current state

62

The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

63

A Basic Multi-Cycle Microarchitecture

 Instruction processing cycle divided into “states”

 A stage in the instruction processing cycle can take multiple states

 A multi-cycle microarchitecture sequences from state to
state to process an instruction

 The behavior of the machine in a state is completely determined by
control signals in that state

 The behavior of the entire processor is specified fully by a
finite state machine

 In a state (clock cycle), control signals control

 How the datapath should process the data

 How to generate the control signals for the next clock cycle

64

Microprogrammed Control Terminology

 Control signals associated with the current state

 Microinstruction

 Act of transitioning from one state to another

 Determining the next state and the microinstruction for the
next state

 Microsequencing

 Control store stores control signals for every possible state

 Store for microinstructions for the entire FSM

 Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

65

What Happens In A Clock Cycle?

 The control signals (microinstruction) for the current state
control

 Processing in the data path

 Generation of control signals (microinstruction) for the next
cycle

 See Supplemental Figure 1 (next slide)

 Datapath and microsequencer operate concurrently

 Question: why not generate control signals for the current
cycle in the current cycle?

 This will lengthen the clock cycle

 Why would it lengthen the clock cycle?

 See Supplemental Figure 2

66

A Clock Cycle

67

A Bad Clock Cycle!

68

A Simple LC-3b Control and Datapath

69

What Determines Next-State Control Signals?

 What is happening in the current clock cycle

 See the 9 control signals coming from “Control” block

 What are these for?

 The instruction that is being executed

 IR[15:11] coming from the Data Path

 Whether the condition of a branch is met, if the instruction
being processed is a branch

 BEN bit coming from the datapath

 Whether the memory operation is completing in the current
cycle, if one is in progress

 R bit coming from memory

 70

A Simple LC-3b Control and Datapath

71

The State Machine for Multi-Cycle Processing

 The behavior of the LC-3b uarch is completely determined by

 the 35 control signals and

 additional 7 bits that go into the control logic from the datapath

 35 control signals completely describe the state of the control
structure

 We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of

 Nodes (one corresponding to each state)

 Arcs (showing flow from each state to the next state(s))

72

An LC-3b State Machine

 Patt and Patel, App C, Figure C.2

 Each state must be uniquely specified

 Done by means of state variables

 31 distinct states in this LC-3b state machine

 Encoded with 6 state variables

 Examples

 State 18,19 correspond to the beginning of the instruction
processing cycle

 Fetch phase: state 18, 19 state 33 state 35

 Decode phase: state 32

 73

C.2. THE STATE MACHINE 5

R

PC<! BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<! SR[7:0]

MDR <! M

IR <! MDR

R

DR<! SR1+OP2*
set CC

DR<! SR1&OP2*
set CC

[BEN]

PC<! MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<! PC
MDR<! M[MAR]

set CC

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<! SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<! B+off6

set CC

To 18

MAR<! B+off6

DR<! MDR
set CC

To 18

MDR<! M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<! PC+LSHF(off9, 1)

14

LDW

MAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)

PC<! PC+LSHF(off9,1)

33

35

DR<! SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<! M[MAR[15:1]’0]

DR<! SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<! SR

To 18

R R

M[MAR]<! MDR

16

23

R R

17

To 19

24

M[MAR]<! MDR**

MAR<! LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<! BaseR

PC<! PC+LSHF(off11,1)

R7<! PC

R7<! PC

13

Figure C.2: A state machine for the LC-3b

LC-3b State Machine: Some Questions

 How many cycles does the fastest instruction take?

 How many cycles does the slowest instruction take?

 Why does the BR take as long as it takes in the FSM?

 What determines the clock cycle?

 Is this a Mealy machine or a Moore machine?

75

LC-3b Datapath

 Patt and Patel, App C, Figure C.3

 Single-bus datapath design

 At any point only one value can be “gated” on the bus (i.e.,
can be driving the bus)

 Advantage: Low hardware cost: one bus

 Disadvantage: Reduced concurrency – if instruction needs the
bus twice for two different things, these need to happen in
different states

 Control signals (26 of them) determine what happens in the
datapath in one clock cycle

 Patt and Patel, App C, Table C.1

76

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.

LC-3b Datapath: Some Questions

 How does instruction fetch happen in this datapath
according to the state machine?

 What is the difference between gating and loading?

 Is this the smallest hardware you can design?

80

LC-3b Microprogrammed Control Structure

 Patt and Patel, App C, Figure C.4

 Three components:

 Microinstruction, control store, microsequencer

 Microinstruction: control signals that control the datapath
(26 of them) and determine the next state (9 of them)

 Each microinstruction is stored in a unique location in the
control store (a special memory structure)

 Unique location: address of the state corresponding to the
microinstruction

 Remember each state corresponds to one microinstruction

 Microsequencer determines the address of the next
microinstruction (i.e., next state)

81

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

J LD
.P

C

LD
.B

EN

LD
.IR

LD
.M

D
R

LD
.M

A
R

LD
.R

EG
LD

.C
C

C
on

d

IR
D

G
at

eP
C

G
at

eM
D

R
G

at
eA

LU
G

at
eM

A
R

M
U

X

G
at

eS
H

F
PC

M
U

X
D

R
M

U
X

SR
1M

U
X

A
D

D
R

1M
U

X
A

D
D

R
2M

U
X

M
A

R
M

U
X

010000 (State 16)

010001 (State 17)

010011 (State 19)

010010 (State 18)

010100 (State 20)

010101 (State 21)

010110 (State 22)

010111 (State 23)

011000 (State 24)

011001 (State 25)

011010 (State 26)

011011 (State 27)

011100 (State 28)

011101 (State 29)

011110 (State 30)

011111 (State 31)

100000 (State 32)

100001 (State 33)

100010 (State 34)

100011 (State 35)

100100 (State 36)

100101 (State 37)

100110 (State 38)

100111 (State 39)

101000 (State 40)

101001 (State 41)

101010 (State 42)

101011 (State 43)

101100 (State 44)

101101 (State 45)

101110 (State 46)

101111 (State 47)

110000 (State 48)

110001 (State 49)

110010 (State 50)

110011 (State 51)

110100 (State 52)

110101 (State 53)

110110 (State 54)

110111 (State 55)

111000 (State 56)

111001 (State 57)

111010 (State 58)

111011 (State 59)

111100 (State 60)

111101 (State 61)

111110 (State 62)

111111 (State 63)

001000 (State 8)

001001 (State 9)

001010 (State 10)

001011 (State 11)

001100 (State 12)

001101 (State 13)

001110 (State 14)

001111 (State 15)

000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

A
LU

K

M
IO

.E
N

R
.W

LS
H

F1

D
A

TA
.S

IZ
E

Figure C.7: Specification of the control store

LC-3b Microsequencer

 Patt and Patel, App C, Figure C.5

 The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

 Next address depends on 9 control signals

85

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

The Microsequencer: Some Questions

 When is the IRD signal asserted?

 What happens if an illegal instruction is decoded?

 What are condition (COND) bits for?

 How is variable latency memory handled?

 How do you do the state encoding?

 Minimize number of state variables

 Start with the 16-way branch

 Then determine constraint tables and states dependent on COND

87

An Exercise in

Microprogramming

88

Handouts

 7 pages of Microprogrammed LC-3b design

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=manu
als

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?m
edia=lc3b-figures.pdf

89

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf

A Simple LC-3b Control and Datapath

90

C.2. THE STATE MACHINE 5

R

PC<! BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<! SR[7:0]

MDR <! M

IR <! MDR

R

DR<! SR1+OP2*
set CC

DR<! SR1&OP2*
set CC

[BEN]

PC<! MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<! PC
MDR<! M[MAR]

set CC

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<! SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<! B+off6

set CC

To 18

MAR<! B+off6

DR<! MDR
set CC

To 18

MDR<! M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<! PC+LSHF(off9, 1)

14

LDW

MAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)

PC<! PC+LSHF(off9,1)

33

35

DR<! SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<! M[MAR[15:1]’0]

DR<! SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<! SR

To 18

R R

M[MAR]<! MDR

16

23

R R

17

To 19

24

M[MAR]<! MDR**

MAR<! LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<! BaseR

PC<! PC+LSHF(off11,1)

R7<! PC

R7<! PC

13

Figure C.2: A state machine for the LC-3b

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
State 18 (010010)
State 33 (100001)
State 35 (100011)
State 32 (100000)
State 6 (000110)
State 25 (011001)
State 27 (011011)

State Machine for LDW Microsequencer

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

J LD
.P

C

LD
.B

EN

LD
.IR

LD
.M

D
R

LD
.M

A
R

LD
.R

EG
LD

.C
C

C
on

d

IR
D

G
at

eP
C

G
at

eM
D

R
G

at
eA

LU
G

at
eM

A
R

M
U

X

G
at

eS
H

F
PC

M
U

X
D

R
M

U
X

SR
1M

U
X

A
D

D
R

1M
U

X
A

D
D

R
2M

U
X

M
A

R
M

U
X

010000 (State 16)

010001 (State 17)

010011 (State 19)

010010 (State 18)

010100 (State 20)

010101 (State 21)

010110 (State 22)

010111 (State 23)

011000 (State 24)

011001 (State 25)

011010 (State 26)

011011 (State 27)

011100 (State 28)

011101 (State 29)

011110 (State 30)

011111 (State 31)

100000 (State 32)

100001 (State 33)

100010 (State 34)

100011 (State 35)

100100 (State 36)

100101 (State 37)

100110 (State 38)

100111 (State 39)

101000 (State 40)

101001 (State 41)

101010 (State 42)

101011 (State 43)

101100 (State 44)

101101 (State 45)

101110 (State 46)

101111 (State 47)

110000 (State 48)

110001 (State 49)

110010 (State 50)

110011 (State 51)

110100 (State 52)

110101 (State 53)

110110 (State 54)

110111 (State 55)

111000 (State 56)

111001 (State 57)

111010 (State 58)

111011 (State 59)

111100 (State 60)

111101 (State 61)

111110 (State 62)

111111 (State 63)

001000 (State 8)

001001 (State 9)

001010 (State 10)

001011 (State 11)

001100 (State 12)

001101 (State 13)

001110 (State 14)

001111 (State 15)

000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

A
LU

K

M
IO

.E
N

R
.W

LS
H

F1

D
A

TA
.S

IZ
E

Figure C.7: Specification of the control store

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

End of the Exercise in

Microprogramming

100

Homework 2

 You will write the microcode for the entire LC-3b as
specified in Appendix C

101

