
18-447

Computer Architecture

Lecture 30: Interconnection Networks

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/28/2014

Lab 7: Multi-Core Cache Coherence

 Last submission accepted on May 9, 11:59:59 pm

 Cycle-level modeling of the MESI cache coherence protocol

 Since this is the last lab

 An automatic extension of 7 days granted for everyone

 No other late days accepted

2

Midterm 2 Grade Distribution

3

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

Midterm 2 Grade Distribution

Midterm 2 Statistics

 MAX 90.71

 MIN 22.86

 MEDIAN 48.01

 MEAN 42.5

 STD 16.24

4

Final Exam: May 6

 May 6, 8:30-11:30am, Hamerschlag Hall B103

 Comprehensive (over all topics in course)

 Three cheat sheets allowed

 We might have a review session

 Remember this is 25% of your grade

 I will take into account your improvement over the course

 Know all concepts, especially the previous midterm concepts

 Same advice as before for Midterms I and II

5

A Note on 742, Research, Jobs
 I am teaching Parallel Computer Architecture next semester

(Fall 2014)

 Deep dive into many topics we covered

 And, many topics we did not cover

 Research oriented with an open-ended research project

 Cutting edge research and topics in HW/SW interface

 If you are enjoying 447 and are doing well, you can take it

  no need to have taken 640/740

  talk with me

 If you are excited about Computer Architecture research or
looking for a job/internship in this area

  talk with me

6

Last Two Lectures

 Multiprocessors

 Bottlenecks in parallel processing

 Multiprocessor correctness

 Sequential consistency

 Weaker consistency

 Cache coherence

 Software vs. hardware

 Update vs. invalidate

 Snoopy cache vs. directory based

 VI  MSI  MESI  MOESI  …

 7

Today

 Wrap up cache coherence

 Interconnection networks

8

Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

 Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

9

Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

10

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

 11

Cache Coherence

12

Review: MESI State Machine from Lab 7

13

Review: Intel Pentium Pro

14 Slide credit: Yale Patt

Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: request  bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

  single point of serialization (bus): not scalable

  need a virtual bus (or a totally-ordered interconnect)

 Directory

- Adds indirection to miss latency (critical path): request  dir.  mem.

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
15

Revisiting Directory-Based

Cache Coherence

16

Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

17

Remember: Directory Based Coherence

Example

18

Directory-Based Protocols

 Required when scaling past the capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

19

Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?

20

MESI Directory Transaction: Read

21

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

22

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

23

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 
3. RdEx 4. Invl

5a. Rev

5b. DatEx



Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 Or some combination thereof

 Fairness

 Which requestor should be preferred in a conflict?

 Both interconnect delivery order and distance matter

 Preventing ping-ponging is important

 Can be achieved with better synchronization mechanisms or
better prediction mechanisms

 24

Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

 Can we get the best of snooping and directory protocols?

 Think heterogeneity

25

Directory: Data Structures

 Required to support invalidation and cache block requests

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all
possible

 26

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Interconnection Network Basics

27

Where Is Interconnect Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

28

Interconnection network

Why Is It Important?

 Affects the scalability of the system

 How large of a system can you build?

 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?

 How long are the latencies to memory?

 How much energy is spent on communication?

29

Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy

 30

Topology

 Bus (simplest)

 Point-to-point connections (ideal and most costly)

 Crossbar (less costly)

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …

31

Metrics to Evaluate Interconnect Topology

 Cost

 Latency (in hops, in nanoseconds)

 Contention

 Many others exist you should think about

 Energy

 Bandwidth

 Overall system performance

32

Bus

+ Simple

+ Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading  reduced frequency)

- High contention  fast saturation

33

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7

Point-to-Point

Every node connected to every other

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is not an issue

-- Highest cost

 O(N) connections/ports

 per node

 O(N2) links

-- Not scalable

-- How to lay out on chip?

 34

0

1

2

3

4

5

6

7

Crossbar

 Every node connected to every other (non-blocking) except
one can be using the connection at any given time

 Enables concurrent transfers to non-conflicting destinations

 Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable  O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II

35

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Another Crossbar Design

36

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

37

Bufferless and Buffered Crossbars

38

Output

Arbiter

Output

Arbiter

Output

Arbiter

Output

Arbiter

Flow

Control

Flow

Control

Flow

Control

Flow

Control

NI

NI

NI

NI

Buffered

Crossbar

0

1

2

3

NI

NI

NI

NI

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?

 Yet still have low contention compared to a bus?

 Idea: Multistage networks

39

Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches
between terminals/nodes

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:

40

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

conflict

Multistage Networks (Circuit Switched)

 Multistage has more restrictions on feasible concurrent Tx-Rx pairs

 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly

 41

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Networks (Packet Switched)

 Packets “hop” from router to router, pending availability of
the next-required switch and buffer

42

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Aside: Circuit vs. Packet Switching

 Circuit switching sets up full path

 Establish route then send data

 Noone else can use those links

+ faster arbitration

-- setting up and bringing down links takes time

 Packet switching routes per packet

 Route each packet individually (possibly via different paths)

 If link is free, any packet can use it

-- potentially slower --- must dynamically switch

+ no setup, bring down time

+ more flexible, does not underutilize links

43

Switching vs. Topology

 Circuit/packet switching choice independent of topology

 It is a higher-level protocol on how a message gets sent to
a destination

 However, some topologies are more amenable to circuit vs.
packet switching

44

Another Example: Delta Network

 Single path from source to
destination

 Each stage has different
routers

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

45

8x8 Delta network

Another Example: Omega Network

 Single path from source to
destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer - Designing
an MIMD Shared Memory
Parallel Computer,” IEEE
Trans. On Comp., 1983.

46

Ring

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

 - Bisection bandwidth remains constant

Used in Intel Haswell, Intel Larrabee, IBM Cell, many
commercial systems today

47

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring

 Simple topology and implementation

 Reasonable performance if N and performance needs
(bandwidth & latency) still moderately low

 O(N) cost

 N/2 average hops; latency depends on utilization

48

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

49

Hierarchical Rings

+ More scalable

+ Lower latency

- More complex

50

More on Hierarchical Rings

 HiRD: A Low-Complexity, Energy-Efficient
Hierarchical Ring Interconnect.
SAFARI Technical Report No. 2012-004. December 13,
2012.

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring

51

https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf

Mesh

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

 prototypes

52

Torus

 Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

 - Unequal link lengths

53

Torus, continued

 Weave nodes to make inter-node latencies ~constant

54

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

 Fat trees avoid this problem (CM-5)

Trees

55

Fat Tree

CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in
hardware

 Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

56

Hypercube

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

57

00

00

01

01

01

00

00

01

00

11

00

10

01

10

01

11

10

00

11

01

11

00

10

01

10

11

10

10

11

10

11

11

Caltech Cosmic Cube

 64-node message passing
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

58

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Tradeoffs?

59

Destination

Bufferless Deflection Routing

 Key idea: Packets are never buffered in the network. When
two packets contend for the same link, one is deflected.1

60
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.

Bufferless Deflection Routing

 Input buffers are eliminated: packets are buffered in
pipeline latches and on network links

61

North

South

East

West

Local

North

South

East

West

Local

Deflection Routing Logic

Input Buffers

Routing Algorithm

 Types

 Deterministic: always chooses the same path for a
communicating source-destination pair

 Oblivious: chooses different paths, without considering
network state

 Adaptive: can choose different paths, adapting to the state
of the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths

62

Deterministic Routing

 All packets between the same (source, dest) pair take the
same path

 Dimension-order routing

 E.g., XY routing (used in Cray T3D, and many on-chip
networks)

 First traverse dimension X, then traverse dimension Y

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

63

Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet
downstream

64

Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

65

Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

66

Oblivious Routing: Valiant’s Algorithm

 An example of oblivious algorithm

 Goal: Balance network load

 Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)

67

Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom

68

On-Chip Networks

69

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

• Connect cores, caches, memory
controllers, etc

– Buses and crossbars are not scalable

• Packet switched

• 2D mesh: Most commonly used
topology

• Primarily serve cache misses and
memory requests

On-chip Networks

70

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Router

P

E
Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

On-Chip vs. Off-Chip Interconnects

 On-chip advantages

 Low latency between cores

 No pin constraints

 Rich wiring resources

 Very high bandwidth

 Simpler coordination

 On-chip constraints/disadvantages

 2D substrate limits implementable topologies

 Energy/power consumption a key concern

 Complex algorithms undesirable

 Logic area constrains use of wiring resources

 71

On-Chip vs. Off-Chip Interconnects (II)

 Cost

 Off-chip: Channels, pins, connectors, cables

 On-chip: Cost is storage and switches (wires are plentiful)

 Leads to networks with many wide channels, few buffers

 Channel characteristics

 On chip short distance  low latency

 On chip RC lines  need repeaters every 1-2mm

 Can put logic in repeaters

 Workloads

 Multi-core cache traffic vs. supercomputer interconnect traffic

72

Motivation for Efficient Interconnect

 In many-core chips, on-chip interconnect (NoC)
consumes significant power

 Intel Terascale: ~28% of chip power

 Intel SCC: ~10%

 MIT RAW: ~36%

 Recent work1 uses bufferless deflection routing to
reduce power and die area

73

Core L1

L2 Slice Router

1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009.

Research Topics in Interconnects

 Plenty of topics in interconnection networks. Examples:

 Energy/power efficient and proportional design

 Reducing Complexity: Simplified router and protocol designs

 Adaptivity: Ability to adapt to different access patterns

 QoS and performance isolation

 Reducing and controlling interference, admission control

 Co-design of NoCs with other shared resources

 End-to-end performance, QoS, power/energy optimization

 Scalable topologies to many cores, heterogeneous systems

 Fault tolerance

 Request prioritization, priority inversion, coherence, …

 New technologies (optical, 3D)

74

One Example: Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

 Minimize energy

75

