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Lab 7: Multi-Core Cache Coherence 

 Last submission accepted on May 9, 11:59:59 pm 

 Cycle-level modeling of the MESI cache coherence protocol 

 

 Since this is the last lab 

 An automatic extension of 7 days granted for everyone 

 No other late days accepted 
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Midterm 2 Statistics 

 MAX  90.71 

 MIN  22.86 

 MEDIAN  48.01 

 MEAN  42.5 

 STD  16.24 
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Final Exam: May 6 

 May 6, 8:30-11:30am, Hamerschlag Hall B103 

 

 Comprehensive (over all topics in course) 

 

 Three cheat sheets allowed 

 

 We might have a review session  

 

 Remember this is 25% of your grade 

 I will take into account your improvement over the course 

 Know all concepts, especially the previous midterm concepts 

 Same advice as before for Midterms I and II 
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A Note on 742, Research, Jobs 
 I am teaching Parallel Computer Architecture next semester 

(Fall 2014) 

 Deep dive into many topics we covered 

 And, many topics we did not cover 

 Research oriented with an open-ended research project 

 Cutting edge research and topics in HW/SW interface 
 

 If you are enjoying 447 and are doing well, you can take it 

    no need to have taken 640/740  

    talk with me 
 

 If you are excited about Computer Architecture research or 
looking for a job/internship in this area  

    talk with me 
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Last Two Lectures 

 Multiprocessors  

 

 Bottlenecks in parallel processing 

 

 Multiprocessor correctness 

 Sequential consistency 

 Weaker consistency 

 

 Cache coherence 

 Software vs. hardware 

 Update vs. invalidate 

 Snoopy cache vs. directory based  

 VI  MSI  MESI  MOESI  … 
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Today 

 Wrap up cache coherence 

 

 Interconnection networks 
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Readings: Multiprocessing 

 Required 

 Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967.  

 Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979 

 

 Recommended 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 
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Readings: Memory Consistency 

 Required 

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979 

 

 Recommended 

 Gharachorloo et al., “Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors,” ISCA 1990. 

 Charachorloo et al., “Two Techniques to Enhance the 
Performance of Memory Consistency Models,” ICPP 1991. 

 Ceze et al., “BulkSC: bulk enforcement of sequential 
consistency,” ISCA 2007. 
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Readings: Cache Coherence 

 Required 

 Culler and Singh, Parallel Computer Architecture 

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

 P&H, Computer Organization and Design 

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with 
private cache memories,” ISCA 1984. 

 

 Recommended 

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,” 
IEEE Trans. Computers, 1978. 

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997. 

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003. 

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA 
1988. 
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Cache Coherence 
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Review: MESI State Machine from Lab 7 
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Review: Intel Pentium Pro 

14 Slide credit: Yale Patt 



Snoopy Cache vs. Directory Coherence 
 Snoopy Cache 

+ Miss latency (critical path) is short: request  bus transaction to mem. 

+ Global serialization is easy: bus provides this already (arbitration) 

+ Simple: can adapt bus-based uniprocessors easily 

- Relies on broadcast messages to be seen by all caches (in same order):  

  single point of serialization (bus): not scalable 

  need a virtual bus (or a totally-ordered interconnect) 
 

 Directory 

- Adds indirection to miss latency (critical path): request  dir.  mem. 

- Requires extra storage space to track sharer sets 

 Can be approximate (false positives are OK) 

- Protocols and race conditions are more complex (for high-performance) 

+ Does not require broadcast to all caches 

+ Exactly as scalable as interconnect and directory storage 

(much more scalable than bus) 
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Revisiting Directory-Based 

Cache Coherence 
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Remember: Directory Based Coherence 

 Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 
directory to ensure coherence. 

 

 An example mechanism: 

 For each cache block in memory, store P+1 bits in directory 

 One bit for each cache, indicating whether the block is in cache 

 Exclusive bit: indicates that the cache that has the only copy of 
the block and can update it without notifying others 

 On a read: set the cache’s bit and arrange the supply of data  

 On a write: invalidate all caches that have the block and reset 
their bits 

 Have an “exclusive bit” associated with each block in each 
cache 
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Remember: Directory Based Coherence 

Example 
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Directory-Based Protocols 

 Required when scaling past the capacity of a single bus 

 Distributed, but: 

 Coherence still requires single point of serialization (for write 
serialization) 

 Serialization location can be different for every block (striped 
across nodes) 

 

 We can reason about the protocol for a single block: one 
server (directory node), many clients (private caches) 

 

 Directory receives Read and ReadEx requests, and sends 
Invl requests: invalidation is explicit (as opposed to snoopy 
buses) 
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Directory: Basic Operations 

 Follow semantics of snoop-based system 

 but with explicit request, reply messages 

 

 Directory: 

 Receives Read, ReadEx, Upgrade requests from nodes 

 Sends Inval/Downgrade messages to sharers if needed 

 Forwards request to memory if needed 

 Replies to requestor and updates sharing state 

 

 Protocol design is flexible 

 Exact forwarding paths depend on implementation 

 For example, do cache-to-cache transfer? 
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MESI Directory Transaction: Read 

21 

P0 Home 

1. Read 

2. DatEx (DatShr) 

Culler/Singh Fig. 8.16 

P0 acquires an address for reading: 

P1 



RdEx with Former Owner 
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P0 Home 

1. RdEx 

3b. DatEx 

Owner 

2. Invl 

3a. Rev 



Contention Resolution (for Write) 
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P0 Home 

1a. RdEx 

2a. DatEx 

P1 

1b. RdEx 

2b. NACK 

  
3. RdEx 4. Invl 

5a. Rev 

5b. DatEx 

 



Issues with Contention Resolution 

 Need to escape race conditions by: 

 NACKing requests to busy (pending invalidate) entries 

 Original requestor retries 

 OR, queuing requests and granting in sequence 

 Or some combination thereof 

 

 Fairness 

 Which requestor should be preferred in a conflict? 

 Both interconnect delivery order and distance matter 

 

 Preventing ping-ponging is important 

 Can be achieved with better synchronization mechanisms or 
better prediction mechanisms 
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Scaling the Directory: Some Questions 

 How large is the directory? 

 

 

 How can we reduce the access latency to the directory? 

 

 

 How can we scale the system to thousands of nodes? 

 

 

 Can we get the best of snooping and directory protocols? 

 Think heterogeneity  
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Directory: Data Structures 

 

 Required to support invalidation and cache block requests 

 Key operation to support is set inclusion test 

 False positives are OK: want to know which caches may contain 
a copy of a block, and spurious invalidations are ignored 

 False positive rate determines performance 

 Most accurate (and expensive): full bit-vector 

 Compressed representation, linked list, Bloom filters are all 
possible 
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0x00 
0x04 
0x08 
0x0C 
… 

Shared: {P0, P1, P2} 
--- 
Exclusive: P2 
--- 
--- 
 



Interconnection Network Basics 
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Where Is Interconnect Used? 

 To connect components 

 

 Many examples 

 Processors and processors 

 Processors and memories (banks) 

 Processors and caches (banks) 

 Caches and caches 

 I/O devices 
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Interconnection network 



Why Is It Important? 

 Affects the scalability of the system 

 How large of a system can you build? 

 How easily can you add more processors? 

 

 Affects performance and energy efficiency 

 How fast can processors, caches, and memory communicate? 

 How long are the latencies to memory? 

 How much energy is spent on communication? 
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Interconnection Network Basics 

 Topology 

 Specifies the way switches are wired 

 Affects routing, reliability, throughput, latency, building ease 

 

 Routing (algorithm) 

 How does a message get from source to destination 

 Static or adaptive  

 

 Buffering and Flow Control 

 What do we store within the network? 

 Entire packets, parts of packets, etc? 

 How do we throttle during oversubscription? 

 Tightly coupled with routing strategy 
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Topology 

 Bus (simplest) 

 Point-to-point connections (ideal and most costly) 

 Crossbar (less costly) 

 Ring 

 Tree 

 Omega 

 Hypercube 

 Mesh 

 Torus 

 Butterfly 

 … 
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Metrics to Evaluate Interconnect Topology 

 Cost 

 Latency (in hops, in nanoseconds) 

 Contention 

 

 Many others exist you should think about 

 Energy 

 Bandwidth 

 Overall system performance 
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Bus 

+ Simple 

+ Cost effective for a small number of nodes 

+ Easy to implement coherence (snooping and serialization) 

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading  reduced frequency) 

- High contention  fast saturation 

 

 

 

33 

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7 



Point-to-Point  

Every node connected to every other 

 

+ Lowest contention 

+ Potentially lowest latency 

+ Ideal, if cost is not an issue 

 

-- Highest cost 

   O(N) connections/ports  

   per node 

   O(N2) links 

-- Not scalable 

-- How to lay out on chip? 

    34 

0 

1 

2 

3 

4 

5 

6 

7 



Crossbar 

 Every node connected to every other (non-blocking) except 
one can be using the connection at any given time 

 Enables concurrent transfers to non-conflicting destinations  

 Could be cost-effective for small number of nodes 

 

+ Low latency and high throughput 

- Expensive 

- Not scalable  O(N2) cost 

- Difficult to arbitrate as N increases 

 

Used in core-to-cache-bank 

networks in 

- IBM POWER5 

- Sun Niagara I/II 
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Another Crossbar Design 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 

 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 

 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Bufferless and Buffered Crossbars 
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Can We Get Lower Cost than A Crossbar? 

 Yet still have low contention compared to a bus? 

 

 Idea: Multistage networks 
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Multistage Logarithmic Networks 

 Idea: Indirect networks with multiple layers of switches 
between terminals/nodes 

 Cost: O(NlogN), Latency: O(logN) 

 Many variations (Omega, Butterfly, Benes, Banyan, …) 

 Omega Network: 
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Multistage Networks (Circuit Switched) 

 

 

 

 

 

 

 

 

 

 

 Multistage has more restrictions on feasible concurrent Tx-Rx pairs 

 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly 
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Multistage Networks (Packet Switched) 

 

 

 

 

 

 

 

 

 

 

 Packets “hop” from router to router, pending availability of 
the next-required switch and buffer 
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Aside: Circuit vs. Packet Switching 

 Circuit switching sets up full path 

 Establish route then send data 

 Noone else can use those links 

+ faster arbitration 

-- setting up and bringing down links takes time 

 

 Packet switching routes per packet 

 Route each packet individually (possibly via different paths) 

 If link is free, any packet can use it 

-- potentially slower --- must dynamically switch 

+ no setup, bring down time 

+ more flexible, does not underutilize links 
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Switching vs. Topology 

 Circuit/packet switching choice independent of topology 

 It is a higher-level protocol on how a message gets sent to 
a destination 

 

 However, some topologies are more amenable to circuit vs. 
packet switching 
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Another Example: Delta Network 

 Single path from source to 
destination 
 

 Each stage has different 
routers 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Another Example: Omega Network 

 Single path from source to 
destination 

 

 All stages are the same 

 

 Used in NYU 
Ultracomputer 

 

 Gottlieb et al. “The NYU 
Ultracomputer - Designing 
an MIMD Shared Memory 
Parallel Computer,” IEEE 
Trans. On Comp., 1983. 
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Ring 

+ Cheap: O(N) cost 

- High latency: O(N) 

- Not easy to scale 

   - Bisection bandwidth remains constant 

 

Used in Intel Haswell, Intel Larrabee, IBM Cell, many 
commercial systems today 
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Unidirectional Ring 

 

 

 

 

 

 

 

 Simple topology and implementation 

 Reasonable performance if N and performance needs 
(bandwidth & latency) still moderately low 

 O(N) cost 

 N/2 average hops; latency depends on utilization 
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Bidirectional Rings 

+ Reduces latency 

+ Improves scalability 

 

- Slightly more complex injection policy (need to select which 
ring to inject a packet into) 
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Hierarchical Rings 

 

 

 

 

 

 

 

+ More scalable 

+ Lower latency 

 

- More complex 
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More on Hierarchical Rings 

 HiRD: A Low-Complexity, Energy-Efficient 
Hierarchical Ring Interconnect. 
SAFARI Technical Report No. 2012-004. December 13, 
2012.  

 

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring 
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https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
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Mesh 

 O(N) cost 

 Average latency: O(sqrt(N)) 

 Easy to layout on-chip: regular and equal-length links 

 Path diversity: many ways to get from one node to another 

 

 Used in Tilera 100-core 

 And many on-chip network 

   prototypes 
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Torus 

 Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle 

 Torus avoids this problem 

+ Higher path diversity (and bisection bandwidth) than mesh 

- Higher cost 

- Harder to lay out on-chip 

  - Unequal link lengths 
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Torus, continued 

 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 

Latency: O(logN) 

Good for local traffic 

+ Cheap: O(N) cost 

+ Easy to Layout 

- Root can become a bottleneck 

  Fat trees avoid this problem (CM-5) 

 

Trees 
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Fat Tree 



CM-5 Fat Tree 

 Fat tree based on 4x2 switches 

 Randomized routing on the way up 

 Combining, multicast, reduction operators supported in 
hardware 

 Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992. 
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Hypercube 

 

 

 

 

 Latency: O(logN) 

 Radix: O(logN) 

 #links: O(NlogN) 

+ Low latency 

- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 

 64-node message passing 
machine 

 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Handling Contention 

 

 

 

 

 

 

 Two packets trying to use the same link at the same time 

 What do you do? 

 Buffer one 

 Drop one 

 Misroute one (deflection) 

 Tradeoffs? 
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Destination 

Bufferless Deflection Routing 

 Key idea: Packets are never buffered in the network. When 
two packets contend for the same link, one is deflected.1 
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1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964. 

New traffic can be injected 
whenever there is a free 
output link. 



Bufferless Deflection Routing 

 Input buffers are eliminated: packets are buffered in 
pipeline latches and on network links 
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Routing Algorithm 

 Types 

 Deterministic: always chooses the same path for a 
communicating source-destination pair 

 Oblivious: chooses different paths, without considering 
network state 

 Adaptive: can choose different paths, adapting to the state 
of the network 

 

 How to adapt 

 Local/global feedback 

 Minimal or non-minimal paths 
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Deterministic Routing 

 All packets between the same (source, dest) pair take the 
same path 

 

 Dimension-order routing 

 E.g., XY routing (used in Cray T3D, and many on-chip 
networks) 

 First traverse dimension X, then traverse dimension Y 

 

+ Simple 

+ Deadlock freedom (no cycles in resource allocation) 

- Could lead to high contention 

- Does not exploit path diversity 
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Deadlock 

 No forward progress 

 Caused by circular dependencies on resources 

 Each packet waits for a buffer occupied by another packet 
downstream 
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Handling Deadlock 

 Avoid cycles in routing 

 Dimension order routing 

 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 

 

 

 Avoid deadlock by adding more buffering (escape paths) 

 

 

 Detect and break deadlock 

 Preemption of buffers 
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Turn Model to Avoid Deadlock 

 Idea 

 Analyze directions in which packets can turn in the network 

 Determine the cycles that such turns can form 

 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 
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Oblivious Routing: Valiant’s Algorithm 

 An example of oblivious algorithm 

 Goal: Balance network load  

 Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination 

 Between source-intermediate and intermediate-dest, can use 
dimension order routing 

 

+ Randomizes/balances network load 

- Non minimal (packet latency can increase) 

 

 Optimizations: 

 Do this on high load 

 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 

 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 

- Minimality restricts achievable link utilization (load balance) 

 

 Non-minimal (fully) adaptive 

 “Misroute” packets to non-productive output ports based on 
network state 

+ Can achieve better network utilization and load balance 

- Need to guarantee livelock freedom 

 

 

68 



On-Chip Networks 
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On-chip Networks 
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On-Chip vs. Off-Chip Interconnects 

 On-chip advantages 

 Low latency between cores 

 No pin constraints 

 Rich wiring resources 

 Very high bandwidth 

 Simpler coordination 

 

 On-chip constraints/disadvantages 

 2D substrate limits implementable topologies 

 Energy/power consumption a key concern 

 Complex algorithms undesirable 

 Logic area constrains use of wiring resources 
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On-Chip vs. Off-Chip Interconnects (II) 

 Cost 

 Off-chip: Channels, pins, connectors, cables 

 On-chip: Cost is storage and switches (wires are plentiful) 

 Leads to networks with many wide channels, few buffers 

 

 Channel characteristics 

 On chip short distance  low latency 

 On chip RC lines  need repeaters every 1-2mm 

 Can put logic in repeaters 

 

 Workloads 

 Multi-core cache traffic vs. supercomputer interconnect traffic 
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Motivation for Efficient Interconnect 

 In many-core chips, on-chip interconnect (NoC)    
consumes significant power 

 Intel Terascale: ~28% of chip power 

 Intel SCC:    ~10%  

 MIT RAW:    ~36% 
 

 

 

 

 

 

 Recent work1 uses bufferless deflection routing to 
reduce power and die area 

73 

Core L1 

L2 Slice Router 

1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009. 



Research Topics in Interconnects 

 Plenty of topics in interconnection networks. Examples: 
 

 Energy/power efficient and proportional design 

 Reducing Complexity: Simplified router and protocol designs 

 Adaptivity: Ability to adapt to different access patterns 

 QoS and performance isolation 

 Reducing and controlling interference, admission control 

 Co-design of NoCs with other shared resources 

 End-to-end performance, QoS, power/energy optimization 

 Scalable topologies to many cores, heterogeneous systems 

 Fault tolerance 

 Request prioritization, priority inversion, coherence, … 

 New technologies (optical, 3D) 
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One Example: Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 
 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 
 

 Better policies in a multi-core environment 

 Use application characteristics 

 Minimize energy 
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