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Lab 7: Multi-Core Cache Coherence 

 Last submission accepted on May 9, 11:59:59 pm 

 Cycle-level modeling of the MESI cache coherence protocol 

 

 Since this is the last lab 

 An automatic extension of 7 days granted for everyone 

 No other late days accepted 
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Midterm 2 Grade Distribution 
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Midterm 2 Statistics 

 MAX  90.71 

 MIN  22.86 

 MEDIAN  48.01 

 MEAN  42.5 

 STD  16.24 
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Final Exam: May 6 

 May 6, 8:30-11:30am, Hamerschlag Hall B103 

 

 Comprehensive (over all topics in course) 

 

 Three cheat sheets allowed 

 

 We might have a review session  

 

 Remember this is 25% of your grade 

 I will take into account your improvement over the course 

 Know all concepts, especially the previous midterm concepts 

 Same advice as before for Midterms I and II 
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A Note on 742, Research, Jobs 
 I am teaching Parallel Computer Architecture next semester 

(Fall 2014) 

 Deep dive into many topics we covered 

 And, many topics we did not cover 

 Research oriented with an open-ended research project 

 Cutting edge research and topics in HW/SW interface 
 

 If you are enjoying 447 and are doing well, you can take it 

    no need to have taken 640/740  

    talk with me 
 

 If you are excited about Computer Architecture research or 
looking for a job/internship in this area  

    talk with me 
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Last Two Lectures 

 Multiprocessors  

 

 Bottlenecks in parallel processing 

 

 Multiprocessor correctness 

 Sequential consistency 

 Weaker consistency 

 

 Cache coherence 

 Software vs. hardware 

 Update vs. invalidate 

 Snoopy cache vs. directory based  

 VI  MSI  MESI  MOESI  … 
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Today 

 Wrap up cache coherence 

 

 Interconnection networks 
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Readings: Multiprocessing 

 Required 

 Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967.  

 Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979 

 

 Recommended 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 
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Readings: Memory Consistency 

 Required 

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979 

 

 Recommended 

 Gharachorloo et al., “Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors,” ISCA 1990. 

 Charachorloo et al., “Two Techniques to Enhance the 
Performance of Memory Consistency Models,” ICPP 1991. 

 Ceze et al., “BulkSC: bulk enforcement of sequential 
consistency,” ISCA 2007. 
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Readings: Cache Coherence 

 Required 

 Culler and Singh, Parallel Computer Architecture 

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

 P&H, Computer Organization and Design 

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with 
private cache memories,” ISCA 1984. 

 

 Recommended 

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,” 
IEEE Trans. Computers, 1978. 

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997. 

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003. 

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA 
1988. 
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Cache Coherence 
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Review: MESI State Machine from Lab 7 
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Review: Intel Pentium Pro 

14 Slide credit: Yale Patt 



Snoopy Cache vs. Directory Coherence 
 Snoopy Cache 

+ Miss latency (critical path) is short: request  bus transaction to mem. 

+ Global serialization is easy: bus provides this already (arbitration) 

+ Simple: can adapt bus-based uniprocessors easily 

- Relies on broadcast messages to be seen by all caches (in same order):  

  single point of serialization (bus): not scalable 

  need a virtual bus (or a totally-ordered interconnect) 
 

 Directory 

- Adds indirection to miss latency (critical path): request  dir.  mem. 

- Requires extra storage space to track sharer sets 

 Can be approximate (false positives are OK) 

- Protocols and race conditions are more complex (for high-performance) 

+ Does not require broadcast to all caches 

+ Exactly as scalable as interconnect and directory storage 

(much more scalable than bus) 
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Revisiting Directory-Based 

Cache Coherence 
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Remember: Directory Based Coherence 

 Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 
directory to ensure coherence. 

 

 An example mechanism: 

 For each cache block in memory, store P+1 bits in directory 

 One bit for each cache, indicating whether the block is in cache 

 Exclusive bit: indicates that the cache that has the only copy of 
the block and can update it without notifying others 

 On a read: set the cache’s bit and arrange the supply of data  

 On a write: invalidate all caches that have the block and reset 
their bits 

 Have an “exclusive bit” associated with each block in each 
cache 
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Remember: Directory Based Coherence 

Example 
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Directory-Based Protocols 

 Required when scaling past the capacity of a single bus 

 Distributed, but: 

 Coherence still requires single point of serialization (for write 
serialization) 

 Serialization location can be different for every block (striped 
across nodes) 

 

 We can reason about the protocol for a single block: one 
server (directory node), many clients (private caches) 

 

 Directory receives Read and ReadEx requests, and sends 
Invl requests: invalidation is explicit (as opposed to snoopy 
buses) 
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Directory: Basic Operations 

 Follow semantics of snoop-based system 

 but with explicit request, reply messages 

 

 Directory: 

 Receives Read, ReadEx, Upgrade requests from nodes 

 Sends Inval/Downgrade messages to sharers if needed 

 Forwards request to memory if needed 

 Replies to requestor and updates sharing state 

 

 Protocol design is flexible 

 Exact forwarding paths depend on implementation 

 For example, do cache-to-cache transfer? 
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MESI Directory Transaction: Read 
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P0 Home 

1. Read 

2. DatEx (DatShr) 

Culler/Singh Fig. 8.16 

P0 acquires an address for reading: 

P1 



RdEx with Former Owner 
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Contention Resolution (for Write) 
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Issues with Contention Resolution 

 Need to escape race conditions by: 

 NACKing requests to busy (pending invalidate) entries 

 Original requestor retries 

 OR, queuing requests and granting in sequence 

 Or some combination thereof 

 

 Fairness 

 Which requestor should be preferred in a conflict? 

 Both interconnect delivery order and distance matter 

 

 Preventing ping-ponging is important 

 Can be achieved with better synchronization mechanisms or 
better prediction mechanisms 
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Scaling the Directory: Some Questions 

 How large is the directory? 

 

 

 How can we reduce the access latency to the directory? 

 

 

 How can we scale the system to thousands of nodes? 

 

 

 Can we get the best of snooping and directory protocols? 

 Think heterogeneity  
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Directory: Data Structures 

 

 Required to support invalidation and cache block requests 

 Key operation to support is set inclusion test 

 False positives are OK: want to know which caches may contain 
a copy of a block, and spurious invalidations are ignored 

 False positive rate determines performance 

 Most accurate (and expensive): full bit-vector 

 Compressed representation, linked list, Bloom filters are all 
possible 

 26 

0x00 
0x04 
0x08 
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--- 
--- 
 



Interconnection Network Basics 
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Where Is Interconnect Used? 

 To connect components 

 

 Many examples 

 Processors and processors 

 Processors and memories (banks) 

 Processors and caches (banks) 

 Caches and caches 

 I/O devices 
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Why Is It Important? 

 Affects the scalability of the system 

 How large of a system can you build? 

 How easily can you add more processors? 

 

 Affects performance and energy efficiency 

 How fast can processors, caches, and memory communicate? 

 How long are the latencies to memory? 

 How much energy is spent on communication? 
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Interconnection Network Basics 

 Topology 

 Specifies the way switches are wired 

 Affects routing, reliability, throughput, latency, building ease 

 

 Routing (algorithm) 

 How does a message get from source to destination 

 Static or adaptive  

 

 Buffering and Flow Control 

 What do we store within the network? 

 Entire packets, parts of packets, etc? 

 How do we throttle during oversubscription? 

 Tightly coupled with routing strategy 
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Topology 

 Bus (simplest) 

 Point-to-point connections (ideal and most costly) 

 Crossbar (less costly) 

 Ring 

 Tree 

 Omega 

 Hypercube 

 Mesh 

 Torus 

 Butterfly 

 … 
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Metrics to Evaluate Interconnect Topology 

 Cost 

 Latency (in hops, in nanoseconds) 

 Contention 

 

 Many others exist you should think about 

 Energy 

 Bandwidth 

 Overall system performance 
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Bus 

+ Simple 

+ Cost effective for a small number of nodes 

+ Easy to implement coherence (snooping and serialization) 

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading  reduced frequency) 

- High contention  fast saturation 
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Point-to-Point  

Every node connected to every other 

 

+ Lowest contention 

+ Potentially lowest latency 

+ Ideal, if cost is not an issue 

 

-- Highest cost 

   O(N) connections/ports  

   per node 

   O(N2) links 

-- Not scalable 

-- How to lay out on chip? 

    34 

0 

1 

2 

3 

4 

5 

6 

7 



Crossbar 

 Every node connected to every other (non-blocking) except 
one can be using the connection at any given time 

 Enables concurrent transfers to non-conflicting destinations  

 Could be cost-effective for small number of nodes 

 

+ Low latency and high throughput 

- Expensive 

- Not scalable  O(N2) cost 

- Difficult to arbitrate as N increases 

 

Used in core-to-cache-bank 

networks in 

- IBM POWER5 

- Sun Niagara I/II 
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Another Crossbar Design 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 

 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 

 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Bufferless and Buffered Crossbars 
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Can We Get Lower Cost than A Crossbar? 

 Yet still have low contention compared to a bus? 

 

 Idea: Multistage networks 
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Multistage Logarithmic Networks 

 Idea: Indirect networks with multiple layers of switches 
between terminals/nodes 

 Cost: O(NlogN), Latency: O(logN) 

 Many variations (Omega, Butterfly, Benes, Banyan, …) 

 Omega Network: 
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Multistage Networks (Circuit Switched) 

 

 

 

 

 

 

 

 

 

 

 Multistage has more restrictions on feasible concurrent Tx-Rx pairs 

 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly 
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Multistage Networks (Packet Switched) 

 

 

 

 

 

 

 

 

 

 

 Packets “hop” from router to router, pending availability of 
the next-required switch and buffer 
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Aside: Circuit vs. Packet Switching 

 Circuit switching sets up full path 

 Establish route then send data 

 Noone else can use those links 

+ faster arbitration 

-- setting up and bringing down links takes time 

 

 Packet switching routes per packet 

 Route each packet individually (possibly via different paths) 

 If link is free, any packet can use it 

-- potentially slower --- must dynamically switch 

+ no setup, bring down time 

+ more flexible, does not underutilize links 
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Switching vs. Topology 

 Circuit/packet switching choice independent of topology 

 It is a higher-level protocol on how a message gets sent to 
a destination 

 

 However, some topologies are more amenable to circuit vs. 
packet switching 
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Another Example: Delta Network 

 Single path from source to 
destination 
 

 Each stage has different 
routers 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Another Example: Omega Network 

 Single path from source to 
destination 

 

 All stages are the same 

 

 Used in NYU 
Ultracomputer 

 

 Gottlieb et al. “The NYU 
Ultracomputer - Designing 
an MIMD Shared Memory 
Parallel Computer,” IEEE 
Trans. On Comp., 1983. 
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Ring 

+ Cheap: O(N) cost 

- High latency: O(N) 

- Not easy to scale 

   - Bisection bandwidth remains constant 

 

Used in Intel Haswell, Intel Larrabee, IBM Cell, many 
commercial systems today 
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Unidirectional Ring 

 

 

 

 

 

 

 

 Simple topology and implementation 

 Reasonable performance if N and performance needs 
(bandwidth & latency) still moderately low 

 O(N) cost 

 N/2 average hops; latency depends on utilization 
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Bidirectional Rings 

+ Reduces latency 

+ Improves scalability 

 

- Slightly more complex injection policy (need to select which 
ring to inject a packet into) 
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Hierarchical Rings 

 

 

 

 

 

 

 

+ More scalable 

+ Lower latency 

 

- More complex 
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More on Hierarchical Rings 

 HiRD: A Low-Complexity, Energy-Efficient 
Hierarchical Ring Interconnect. 
SAFARI Technical Report No. 2012-004. December 13, 
2012.  

 

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring 
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Mesh 

 O(N) cost 

 Average latency: O(sqrt(N)) 

 Easy to layout on-chip: regular and equal-length links 

 Path diversity: many ways to get from one node to another 

 

 Used in Tilera 100-core 

 And many on-chip network 

   prototypes 
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Torus 

 Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle 

 Torus avoids this problem 

+ Higher path diversity (and bisection bandwidth) than mesh 

- Higher cost 

- Harder to lay out on-chip 

  - Unequal link lengths 
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Torus, continued 

 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 

Latency: O(logN) 

Good for local traffic 

+ Cheap: O(N) cost 

+ Easy to Layout 

- Root can become a bottleneck 

  Fat trees avoid this problem (CM-5) 

 

Trees 
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CM-5 Fat Tree 

 Fat tree based on 4x2 switches 

 Randomized routing on the way up 

 Combining, multicast, reduction operators supported in 
hardware 

 Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992. 
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Hypercube 

 

 

 

 

 Latency: O(logN) 

 Radix: O(logN) 

 #links: O(NlogN) 

+ Low latency 

- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 

 64-node message passing 
machine 

 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Handling Contention 

 

 

 

 

 

 

 Two packets trying to use the same link at the same time 

 What do you do? 

 Buffer one 

 Drop one 

 Misroute one (deflection) 

 Tradeoffs? 
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Destination 

Bufferless Deflection Routing 

 Key idea: Packets are never buffered in the network. When 
two packets contend for the same link, one is deflected.1 
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1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964. 

New traffic can be injected 
whenever there is a free 
output link. 



Bufferless Deflection Routing 

 Input buffers are eliminated: packets are buffered in 
pipeline latches and on network links 
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Routing Algorithm 

 Types 

 Deterministic: always chooses the same path for a 
communicating source-destination pair 

 Oblivious: chooses different paths, without considering 
network state 

 Adaptive: can choose different paths, adapting to the state 
of the network 

 

 How to adapt 

 Local/global feedback 

 Minimal or non-minimal paths 
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Deterministic Routing 

 All packets between the same (source, dest) pair take the 
same path 

 

 Dimension-order routing 

 E.g., XY routing (used in Cray T3D, and many on-chip 
networks) 

 First traverse dimension X, then traverse dimension Y 

 

+ Simple 

+ Deadlock freedom (no cycles in resource allocation) 

- Could lead to high contention 

- Does not exploit path diversity 
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Deadlock 

 No forward progress 

 Caused by circular dependencies on resources 

 Each packet waits for a buffer occupied by another packet 
downstream 
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Handling Deadlock 

 Avoid cycles in routing 

 Dimension order routing 

 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 

 

 

 Avoid deadlock by adding more buffering (escape paths) 

 

 

 Detect and break deadlock 

 Preemption of buffers 
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Turn Model to Avoid Deadlock 

 Idea 

 Analyze directions in which packets can turn in the network 

 Determine the cycles that such turns can form 

 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 
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Oblivious Routing: Valiant’s Algorithm 

 An example of oblivious algorithm 

 Goal: Balance network load  

 Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination 

 Between source-intermediate and intermediate-dest, can use 
dimension order routing 

 

+ Randomizes/balances network load 

- Non minimal (packet latency can increase) 

 

 Optimizations: 

 Do this on high load 

 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 

 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 

- Minimality restricts achievable link utilization (load balance) 

 

 Non-minimal (fully) adaptive 

 “Misroute” packets to non-productive output ports based on 
network state 

+ Can achieve better network utilization and load balance 

- Need to guarantee livelock freedom 
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On-Chip Networks 
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On-chip Networks 
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On-Chip vs. Off-Chip Interconnects 

 On-chip advantages 

 Low latency between cores 

 No pin constraints 

 Rich wiring resources 

 Very high bandwidth 

 Simpler coordination 

 

 On-chip constraints/disadvantages 

 2D substrate limits implementable topologies 

 Energy/power consumption a key concern 

 Complex algorithms undesirable 

 Logic area constrains use of wiring resources 
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On-Chip vs. Off-Chip Interconnects (II) 

 Cost 

 Off-chip: Channels, pins, connectors, cables 

 On-chip: Cost is storage and switches (wires are plentiful) 

 Leads to networks with many wide channels, few buffers 

 

 Channel characteristics 

 On chip short distance  low latency 

 On chip RC lines  need repeaters every 1-2mm 

 Can put logic in repeaters 

 

 Workloads 

 Multi-core cache traffic vs. supercomputer interconnect traffic 
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Motivation for Efficient Interconnect 

 In many-core chips, on-chip interconnect (NoC)    
consumes significant power 

 Intel Terascale: ~28% of chip power 

 Intel SCC:    ~10%  

 MIT RAW:    ~36% 
 

 

 

 

 

 

 Recent work1 uses bufferless deflection routing to 
reduce power and die area 
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1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009. 



Research Topics in Interconnects 

 Plenty of topics in interconnection networks. Examples: 
 

 Energy/power efficient and proportional design 

 Reducing Complexity: Simplified router and protocol designs 

 Adaptivity: Ability to adapt to different access patterns 

 QoS and performance isolation 

 Reducing and controlling interference, admission control 

 Co-design of NoCs with other shared resources 

 End-to-end performance, QoS, power/energy optimization 

 Scalable topologies to many cores, heterogeneous systems 

 Fault tolerance 

 Request prioritization, priority inversion, coherence, … 

 New technologies (optical, 3D) 
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One Example: Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 
 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 
 

 Better policies in a multi-core environment 

 Use application characteristics 

 Minimize energy 
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