
18-447

Computer Architecture

Lecture 30: Interconnection Networks

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/28/2014

Lab 7: Multi-Core Cache Coherence

 Last submission accepted on May 9, 11:59:59 pm

 Cycle-level modeling of the MESI cache coherence protocol

 Since this is the last lab

 An automatic extension of 7 days granted for everyone

 No other late days accepted

2

Midterm 2 Grade Distribution

3

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

Midterm 2 Grade Distribution

Midterm 2 Statistics

 MAX 90.71

 MIN 22.86

 MEDIAN 48.01

 MEAN 42.5

 STD 16.24

4

Final Exam: May 6

 May 6, 8:30-11:30am, Hamerschlag Hall B103

 Comprehensive (over all topics in course)

 Three cheat sheets allowed

 We might have a review session

 Remember this is 25% of your grade

 I will take into account your improvement over the course

 Know all concepts, especially the previous midterm concepts

 Same advice as before for Midterms I and II

5

A Note on 742, Research, Jobs
 I am teaching Parallel Computer Architecture next semester

(Fall 2014)

 Deep dive into many topics we covered

 And, many topics we did not cover

 Research oriented with an open-ended research project

 Cutting edge research and topics in HW/SW interface

 If you are enjoying 447 and are doing well, you can take it

 no need to have taken 640/740

 talk with me

 If you are excited about Computer Architecture research or
looking for a job/internship in this area

 talk with me

6

Last Two Lectures

 Multiprocessors

 Bottlenecks in parallel processing

 Multiprocessor correctness

 Sequential consistency

 Weaker consistency

 Cache coherence

 Software vs. hardware

 Update vs. invalidate

 Snoopy cache vs. directory based

 VI MSI MESI MOESI …

 7

Today

 Wrap up cache coherence

 Interconnection networks

8

Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

 Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

9

Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

10

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

 11

Cache Coherence

12

Review: MESI State Machine from Lab 7

13

Review: Intel Pentium Pro

14 Slide credit: Yale Patt

Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: request bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

 single point of serialization (bus): not scalable

 need a virtual bus (or a totally-ordered interconnect)

 Directory

- Adds indirection to miss latency (critical path): request dir. mem.

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
15

Revisiting Directory-Based

Cache Coherence

16

Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

17

Remember: Directory Based Coherence

Example

18

Directory-Based Protocols

 Required when scaling past the capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

19

Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?

20

MESI Directory Transaction: Read

21

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

22

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

23

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

3. RdEx 4. Invl

5a. Rev

5b. DatEx

Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 Or some combination thereof

 Fairness

 Which requestor should be preferred in a conflict?

 Both interconnect delivery order and distance matter

 Preventing ping-ponging is important

 Can be achieved with better synchronization mechanisms or
better prediction mechanisms

 24

Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

 Can we get the best of snooping and directory protocols?

 Think heterogeneity

25

Directory: Data Structures

 Required to support invalidation and cache block requests

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all
possible

 26

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Interconnection Network Basics

27

Where Is Interconnect Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

28

Interconnection network

Why Is It Important?

 Affects the scalability of the system

 How large of a system can you build?

 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?

 How long are the latencies to memory?

 How much energy is spent on communication?

29

Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy

 30

Topology

 Bus (simplest)

 Point-to-point connections (ideal and most costly)

 Crossbar (less costly)

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …

31

Metrics to Evaluate Interconnect Topology

 Cost

 Latency (in hops, in nanoseconds)

 Contention

 Many others exist you should think about

 Energy

 Bandwidth

 Overall system performance

32

Bus

+ Simple

+ Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading reduced frequency)

- High contention fast saturation

33

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7

Point-to-Point

Every node connected to every other

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is not an issue

-- Highest cost

 O(N) connections/ports

 per node

 O(N2) links

-- Not scalable

-- How to lay out on chip?

 34

0

1

2

3

4

5

6

7

Crossbar

 Every node connected to every other (non-blocking) except
one can be using the connection at any given time

 Enables concurrent transfers to non-conflicting destinations

 Could be cost-effective for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II

35

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Another Crossbar Design

36

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

37

Bufferless and Buffered Crossbars

38

Output

Arbiter

Output

Arbiter

Output

Arbiter

Output

Arbiter

Flow

Control

Flow

Control

Flow

Control

Flow

Control

NI

NI

NI

NI

Buffered

Crossbar

0

1

2

3

NI

NI

NI

NI

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?

 Yet still have low contention compared to a bus?

 Idea: Multistage networks

39

Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches
between terminals/nodes

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:

40

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

conflict

Multistage Networks (Circuit Switched)

 Multistage has more restrictions on feasible concurrent Tx-Rx pairs

 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly

 41

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Networks (Packet Switched)

 Packets “hop” from router to router, pending availability of
the next-required switch and buffer

42

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Aside: Circuit vs. Packet Switching

 Circuit switching sets up full path

 Establish route then send data

 Noone else can use those links

+ faster arbitration

-- setting up and bringing down links takes time

 Packet switching routes per packet

 Route each packet individually (possibly via different paths)

 If link is free, any packet can use it

-- potentially slower --- must dynamically switch

+ no setup, bring down time

+ more flexible, does not underutilize links

43

Switching vs. Topology

 Circuit/packet switching choice independent of topology

 It is a higher-level protocol on how a message gets sent to
a destination

 However, some topologies are more amenable to circuit vs.
packet switching

44

Another Example: Delta Network

 Single path from source to
destination

 Each stage has different
routers

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

45

8x8 Delta network

Another Example: Omega Network

 Single path from source to
destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer - Designing
an MIMD Shared Memory
Parallel Computer,” IEEE
Trans. On Comp., 1983.

46

Ring

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

 - Bisection bandwidth remains constant

Used in Intel Haswell, Intel Larrabee, IBM Cell, many
commercial systems today

47

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring

 Simple topology and implementation

 Reasonable performance if N and performance needs
(bandwidth & latency) still moderately low

 O(N) cost

 N/2 average hops; latency depends on utilization

48

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

49

Hierarchical Rings

+ More scalable

+ Lower latency

- More complex

50

More on Hierarchical Rings

 HiRD: A Low-Complexity, Energy-Efficient
Hierarchical Ring Interconnect.
SAFARI Technical Report No. 2012-004. December 13,
2012.

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring

51

https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf
https://www.ece.cmu.edu/~safari/tr/tr-2012-004.pdf

Mesh

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

 prototypes

52

Torus

 Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

 - Unequal link lengths

53

Torus, continued

 Weave nodes to make inter-node latencies ~constant

54

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

 Fat trees avoid this problem (CM-5)

Trees

55

Fat Tree

CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in
hardware

 Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

56

Hypercube

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

57

00

00

01

01

01

00

00

01

00

11

00

10

01

10

01

11

10

00

11

01

11

00

10

01

10

11

10

10

11

10

11

11

Caltech Cosmic Cube

 64-node message passing
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

58

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Tradeoffs?

59

Destination

Bufferless Deflection Routing

 Key idea: Packets are never buffered in the network. When
two packets contend for the same link, one is deflected.1

60
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.

Bufferless Deflection Routing

 Input buffers are eliminated: packets are buffered in
pipeline latches and on network links

61

North

South

East

West

Local

North

South

East

West

Local

Deflection Routing Logic

Input Buffers

Routing Algorithm

 Types

 Deterministic: always chooses the same path for a
communicating source-destination pair

 Oblivious: chooses different paths, without considering
network state

 Adaptive: can choose different paths, adapting to the state
of the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths

62

Deterministic Routing

 All packets between the same (source, dest) pair take the
same path

 Dimension-order routing

 E.g., XY routing (used in Cray T3D, and many on-chip
networks)

 First traverse dimension X, then traverse dimension Y

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

63

Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet
downstream

64

Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

65

Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

66

Oblivious Routing: Valiant’s Algorithm

 An example of oblivious algorithm

 Goal: Balance network load

 Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)

67

Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom

68

On-Chip Networks

69

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

• Connect cores, caches, memory
controllers, etc

– Buses and crossbars are not scalable

• Packet switched

• 2D mesh: Most commonly used
topology

• Primarily serve cache misses and
memory requests

On-chip Networks

70

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

R

P

E
R

P

E
R

P

E
R

P

E

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Router

P

E
Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

On-Chip vs. Off-Chip Interconnects

 On-chip advantages

 Low latency between cores

 No pin constraints

 Rich wiring resources

 Very high bandwidth

 Simpler coordination

 On-chip constraints/disadvantages

 2D substrate limits implementable topologies

 Energy/power consumption a key concern

 Complex algorithms undesirable

 Logic area constrains use of wiring resources

 71

On-Chip vs. Off-Chip Interconnects (II)

 Cost

 Off-chip: Channels, pins, connectors, cables

 On-chip: Cost is storage and switches (wires are plentiful)

 Leads to networks with many wide channels, few buffers

 Channel characteristics

 On chip short distance low latency

 On chip RC lines need repeaters every 1-2mm

 Can put logic in repeaters

 Workloads

 Multi-core cache traffic vs. supercomputer interconnect traffic

72

Motivation for Efficient Interconnect

 In many-core chips, on-chip interconnect (NoC)
consumes significant power

 Intel Terascale: ~28% of chip power

 Intel SCC: ~10%

 MIT RAW: ~36%

 Recent work1 uses bufferless deflection routing to
reduce power and die area

73

Core L1

L2 Slice Router

1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009.

Research Topics in Interconnects

 Plenty of topics in interconnection networks. Examples:

 Energy/power efficient and proportional design

 Reducing Complexity: Simplified router and protocol designs

 Adaptivity: Ability to adapt to different access patterns

 QoS and performance isolation

 Reducing and controlling interference, admission control

 Co-design of NoCs with other shared resources

 End-to-end performance, QoS, power/energy optimization

 Scalable topologies to many cores, heterogeneous systems

 Fault tolerance

 Request prioritization, priority inversion, coherence, …

 New technologies (optical, 3D)

74

One Example: Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

 Minimize energy

75

