
18-447

Computer Architecture

Lecture 28: Multiprocessors

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/14/2013

Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context (think fine-grained
multithreading)

 On the same thread context in idle cycles (during cache misses)

2

Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

3

Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

4

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

5

Thread-Based Pre-Execution Issues

 Read

 Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed

6

An Example

7

Example ISA Extensions

8

Results on a Multithreaded Processor

9

Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

10

Fork Point for Prefetching Thread

11

Pre-execution Thread Construction

12

Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

13

Review: Runahead Execution (Mutlu et al., HPCA 2003)

14

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Multiprocessors and

Issues in Multiprocessing

Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

 Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

16

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Recommended:

 Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

17

Remember: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

18

Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why?

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space
19

Types of Parallelism and How to Exploit

Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)
20

Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task

21

Multiprocessing Fundamentals

22

Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization
23

Main Issues in Tightly-Coupled MP

 Shared memory synchronization

 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning

 Communication: Interconnection networks

 Load imbalance

24

Aside: Hardware-based Multithreading

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading)

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving execution unit utilization

25

Parallel Speedup Example

 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?

 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

26

27

28

Speedup with 3 Processors

29

Revisiting the Single-Processor Algorithm

30

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

31

Superlinear Speedup

 Can speedup be greater than P with P processing
elements?

 Cache effects

 Working set effects

 Happens in two ways:

 Unfair comparisons

 Memory effects

32

Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing

 R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

 Efficiency

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R
33

Utilization of a Multiprocessor

34

35

Caveats of Parallelism (I)

36

Amdahl’s Law

37

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

38

Amdahl’s Law Implication 2

39

Caveats of Parallelism (II)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
40

Speedup =
1

+1 - f
f

N

Sequential Bottleneck

41

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

 Parallel machines have the
sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data
and spawns parallel tasks
(usually sequential)

42

Another Example of Sequential Bottleneck

43

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

44

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

45

Memory Ordering in

Multiprocessors

46

Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware
designer’s life difficult
 Especially if the goal is to design a high performance processor: Load-store

queues in out of order execution

47

Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

 Advantages: 1) Architectural state is precise within an execution. 2)

Architectural state is consistent across different runs of the program 

Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces

performance
48

Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if
they have no dependency

 Advantage: Lots of parallelism  high performance

 Disadvantage: Order can change across runs of the same
program  Very hard to debug

49

Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations
concurrently

 How does the memory see the order of operations from all
processors?

 In other words, what is the ordering of operations across
different processors?

50

Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times
have the same order of execution

 Correctness

 Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

51

Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

52

Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented

 We will assume this

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct
synchronization

 If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

53

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

54

Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),

which means P2 should not enter the critical section.

A Question

 Can the two processors be in the critical section at the
same time given that they both obey the von Neumann
model?

 Answer: yes

55

56

Both Processors in Critical Section

57

58

How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

59

Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA

60

Programmer’s Abstraction

 Memory is a switch that services one load or store at a time
form any processor

 All processors see the currently serviced load or store at the
same time

 Each processor’s operations are serviced in program order

61

Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on
implementation and dynamic latencies

62

Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)

63

Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about a enforcing a global order only at the boundaries
of synchronization?

 Relaxed memory models

 Acquire-release consistency model

64

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors

65

Weaker Memory Consistency

 The ordering of operations is important when the order
affects operations on shared data  i.e., when processors

need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before
fence is executed

 All memory operations after the fence must wait for the fence to
complete

 Fences complete in program order

 All synchronization operations act like a fence

66

Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory
operations

 Enables the hardware implementation of performance

enhancement techniques to be simpler

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the
“fences” correct)

 Another example of the programmer-microarchitect tradeoff

67

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors

68

Cache Coherence

69

Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

70

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence

 Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

71

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

72

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

73

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

74

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

75

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes
to it

76

A Very Simple Coherence Scheme

 Caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate it from their caches.

 A simple protocol:

77

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

 need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

78

Maintaining Coherence

 Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

 Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent global order seen
by all processors

 Need a global point of serialization for this store ordering
79

Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory
location to all other processors

 Another cache that has the location either updates or
invalidates its local copy

80

Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

 On a Read:

 If local copy isn’t valid, put out request

 (If another node has a copy, it returns it, otherwise
memory does)

81

Coherence: Update vs. Invalidate (II)��

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written
data to sharers

 (Other nodes update their caches if data was present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation
of address to sharers

 (Other nodes clear block from cache)

82

Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,

updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid

mutual invalidation-reacquire)

83

Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks ownership (sharer set) for each block

 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

84

Directory Based

Cache Coherence

85

Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the
block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

86

Directory Based Coherence Example (I)

87

Directory Based Coherence Example (I)

88

Snoopy Cache Coherence

89

Snoopy Cache Coherence

 Idea:

 All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

 Each cache block has “coherence metadata” associated with it
in the tag store of each cache

 Easy to implement if all caches share a common bus

 Each cache broadcasts its read/write operations on the bus

 Good for small-scale multiprocessors

 What if you would like to have a 1000-node multiprocessor?

90

91

A Simple Snoopy Cache Coherence Protocol

 Caches “snoop” (observe) each other’s write/read
operations

 A simple protocol:

92

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

A More Sophisticated Protocol: MSI

 Extend single valid bit per block to three states:

 M(odified): cache line is only copy and is dirty

 S(hared): cache line is one of several copies

 I(nvalid): not present

 Read miss makes a Read request on bus, transitions to S

 Write miss makes a ReadEx request, transitions to M state

 When a processor snoops ReadEx from another writer, it
must invalidate its own copy (if any)

 SM upgrade can be made without re-reading data from

memory (via Invalidations)

93

MSI State Machine

94

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI

 A block is in no cache to begin with

 Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

 Why is this a problem?

 Suppose the cache that read the block wants to write to it at
some point

 It needs to broadcast “invalidate” even though it has the only
cached copy!

 If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache  saves unnecessary broadcasts of invalidations

95

The Solution: MESI

 Idea: Add another state indicating that this is the only
cached copy and it is clean.

 Exclusive state

 Block is placed into the exclusive state if, during BusRd, no
other cache had it

 Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

 Silent transition ExclusiveModified is possible on write!

 MESI is also called the Illinois protocol [Papamarcos and
Patel, ISCA 1984]

96

97

98

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

99

M

E

S

I

[Culler/Singh96]

MESI State Machine from Lab 7

100

A transition from a single-owner state (Exclusive or Modified) to Shared is called a

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an

upgrade, because the transition grants the ability to the owner (the cache which contains

the respective block) to write to the block.

MESI State Machine from Lab 7

101

Intel Pentium Pro

102Slide credit: Yale Patt

Snoopy Invalidation Tradeoffs

 Should a downgrade from M go to S or I?

 S: if data is likely to be reused (before it is written to by another
processor)

 I: if data is likely to be not reused (before it is written to by another)

 Cache-to-cache transfer

 On a BusRd, should data come from another cache or memory?

 Another cache

 may be faster, if memory is slow or highly contended

 Memory

 Simpler: no need to wait to see if cache has data first

 Less contention at the other caches

 Requires writeback on M downgrade

 Writeback on Modified->Shared: necessary?

 One possibility: Owner (O) state (MOESI protocol)

 One cache owns the latest data (memory is not updated)

 Memory writeback happens when all caches evict copies

103

The Problem with MESI

 Shared state requires the data to be clean

 i.e., all caches that have the block have the up-to-date copy
and so does the memory

 Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

 Why is this a problem?

 Memory can be updated unnecessarily  some other

processor may write to the block while it is cached

104

Improving on MESI

 Idea 1: Do not transition from MS on a BusRd. Invalidate

the copy and supply the modified block to the requesting
processor directly without updating memory

 Idea 2: Transition from MS, but designate one cache as

the owner (O), who will write the block back when it is
evicted

 Now “Shared” means “Shared and potentially dirty”

 This is a version of the MOESI protocol

105

Tradeoffs in Sophisticated Cache Coherence Protocols

 The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

 However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)

-- Provide diminishing returns

106

Revisiting Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks ownership (sharer set) for each block

 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

107

Snoopy Cache vs. Directory Coherence

 Snoopy Cache

+ Critical path is short: miss  bus transaction to memory

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches:

 single point of serialization (bus): not scalable

 Directory

- Adds indirection to critical path: request  directory  mem

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK)

- Protocols and race conditions are more complex

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)

108

Revisiting Directory-Based

Cache Coherence

109

Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

110

Remember: Directory Based Coherence

Example

111

Directory-Based Protocols

 Required when scaling past the capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

112

Directory: Data Structures

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all
possible

113

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?

114

MESI Directory Transaction: Read

115

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

116

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

117

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 

3. RdEx4. Invl

5a. Rev

5b. DatEx



Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 (Or some combination thereof)

 Fairness

 Which requestor should be preferred in a conflict?

 Interconnect delivery order, and distance, both matter

 Ping-ponging is a higher-level issue

 With solutions like combining trees (for locks/barriers) and
better shared-data-structure design

118

Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

119

