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Execution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)



Execution-based Prefetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)



Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.




Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled
When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback



Thread-Based Pre-Execution Issues

Read

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

o Many issues in software-based pre-execution discussed

(a) Multiple Pointer Chains {b) Non-Affine Array Accesses

> Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths




An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; i< trips; ){
I loap over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
! the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tips; )|
I/l loop over ‘trips™ lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[/l inveke a pre-execution starting
/ at END_FOR
PreExecute StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktajlkmark,

/f traverse the list starting with
I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
}
/f terminate this pre-execution after
I/l prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
!l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 1", starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i's value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop. the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.
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Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{ ) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{ ). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)



Results on a Multithreaded Processor

(a) Execution Time Normalized to the Original Case
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Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_ tail; misprediction
int ito = ifrom/2; .
heap_tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itec]->cost))
struct s heap *temp ptr = heap[itc];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 &8 & 8 &

= &
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Fork Point for Prefetching Thread

Figure 3. The node teo heap function, which serves as
the fork point for the slice that covers add _to heap.

void node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+———— fork point

hptr = alloc heap data();
hptr->cost = cost;

add to heap (hptr);

11



Pre-execution Thread Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe

un-opfimized slice. Figure 5. Slice consiructed for example problem instructions.
node_to_iiiap:k . 20 instructs Ny Much smaller than the original code, the slice contains a loop
- = J_PE- - INSTruCTtions - - - -
. Bt a1, 252(gp) # &heap tail that mimics the loop in the original code.
2 1d1 t2, 0(sl) # ifrom = heap tail ,
1 1ldg t5, -76(sl) # &heap[0] slice:
3 cmplt +t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl  t2, 0xl, t6 # heap tail +4| 2 1d1 $3, 252(gp) # ito = heap tail
1 sBaddg t2, t5, t3 # &heapl[heap tail] slice loop:
4 stl t6, 0(sl) # store heap tail 3 11 sra §3, 0x1, $3 # ito /= 2
1 stqg s0, 0(t3) # heaplheap tail] Er 8add 53' 56 r$lﬁ # gh Lt
3 addl t2, t4, t4 # see note soadaq >-. r eaplito]
3 sra t4, 0x1, t4 # ito = ifrom/2 6 1dgq $18, 0(516) # heap[ito]
5 ble td, return # (ito < 1) G lds 5f1, a(518) ¢ heap[ito]->cost
loop: [ cmptle $f1,5f17,5f31 & (heap[ito]=->cost
6 sBaddg t2, t5, al # &heap[ifrom] # < cost) PRED
6 sBaddg t4, t5, t7 # &heap[ito] ,
11 cmplt +t4, 0, t9 # see note br slice loop
10 move t4, t2 # ifrom = ito .
6 ldg a2z, 0(a0) # heap[ifrom] ## Annotations
& ldg a4, 0(t7) # heap[ito] fork: on first instruction of node to heap
11 addl t‘!r th- ta # see note live_in: $£1?{cﬂst}r gP
11 sra t9, 0x1l, t4 # ito = ifrom/2 max loop iteratioms: 4
6 1ld= sfo, 4(az) # heap[ifrom]->cost
[i] 1ds 5f1, 4(a4q) ¥ heap[ito]=>cost
6 cmptlt S$f0,5f1,5f0 # (heap[ifrom]->cost
6 fheq 5f0, returm ¥ < heap[ito]->cost)
B stg a2, 0(t7) # heap[ito]
9 stg ad, 0(ald) # heap[ifrom]
5 bgt td4, loop #F (ito = 1)
return:
/* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 12




Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1

Runahead: :
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

14



Multiprocessors and
Issues 1n Multiprocessing




Readings: Multiprocessing

Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

Recommended

o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.
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Readings: Cache Coherence

Required
a Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.
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Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

18



Why Parallel Computers?

= Parallelism: Doing multiple things at a time
= Things: instructions, operations, tasks

= Main Goal

a Improve performance (Execution time or task throughput)
= Execution time of a program governed by Amdahl’ s Law

= Other Goals

o Reduce power consumption

= (4N units at freq F/4) consume less power than (N units at freq F)
= Why?
a Improve cost efficiency and scalability, reduce complexity
= Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

19



I'ypes of Parallelism and How to Exploit

.
1 Qe . .
]%nslgrluctlon Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism
o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)
20



Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
21



Multiprocessing Fundamentals

22



Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
23



Main Issues in Tightly-Coupled MP

Shared memory synchronization
o Locks, atomic operations

Cache consistency
o More commonly called cache coherence

Ordering of memory operations
o What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

24



Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading)

Fine grained
o Cycle by cycle
o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

25



Parallel Speedup Example

adx? + a3x3 + a2x? + alx + a0

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

26
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Speedup with 3 Processors

Ty =5 cycles
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Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s‘%\e’—pmaésa‘ a\smwn:
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Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.
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Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel

Speedup
4

Cache effects | ‘
Working set effects | Superlinear

P Typical
Success

Happens in two ways:
o Unfair comparisons
o Memory effects

Sublinear

— # Processors

32



Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
33



Utilization of a Multiprocessor
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Caveats of Parallelism (I)
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Amdahl’s Law
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Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.
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Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Caveats of Parallelism (II)

Amdahl’ s Law

a f: Parallelizable fraction of a program
a N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
40
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Sequential Bottleneck
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Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

= Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

= Single thread prepares data
and spawns parallel tasks
(usually sequential)

42



Another Example of Sequential Bottleneck

LEGEND

e A,E: Amdahl’s serial part
InitPriorityQueue(PQ); @ B: Parallel Portion

SpawnThreads(); C1,C2: Critical Sections

D: Qutside critical sectign
ForEach Thread:

while (problem not solved)

Lock (X)
SubProblem = PQ.remove()
Unlock(X);

Solve(SubProblem);

lf(problem solved) break;

NewSubProblems = Partition(SubProblem);
Lock(X)

PQ.insert(NewSubProble
Unlock(X) ( rﬂ'

N J

PrintSqution()@




Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
44



Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
45



Memory Ordering in
Multiprocessors

46



Ordering of Operations

Operations: A, B, C, D
o In what order should the hardware execute (and report the
results of) these operations?

A contract between programmer and microarchitect
o Specified by the ISA

Preserving an “expected” (more accurately, “agreed upon”)

order simplifies programmer’s life
o Ease of debugging; ease of state recovery, exception handling

Preserving an “expected” order usually makes the hardware

designer’s life difficult

o Especially if the goal is to design a high performance processor: Load-store
queues in out of order execution

47



Memory Ordering in a Single Processor

Specified by the von Neumann model
Sequential order

o Hardware executes the load and store operations in the order
specified by the sequential program

Out-of-order execution does not change the semantics

o Hardware retires (reports to software the results of) the load

and store operations in the order specified by the sequential
program

Advantages: 1) Architectural state is precise within an execution. 2)

Architectural state is consistent across different runs of the program -
Easier to debug programs

Disadvantage: Preserving order adds overhead, reduces
performance

48



Memory Ordering in a Dataflow Processor

A memory operation executes when its operands are ready
Ordering specified only by data dependencies

Two operations can be executed and retired in any order if
they have no dependency

Advantage: Lots of parallelism = high performance

Disadvantage: Order can change across runs of the same
program - Very hard to debug

49



Memory Ordering in a MIMD Processor

Each processor’'s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

Multiple processors execute memory operations
concurrently

How does the memory see the order of operations from all
processors?

o In other words, what is the ordering of operations across
different processors?

50



Why Does This Even Matter?

Ease of debugging

o It is nice to have the same execution done at different times
have the same order of execution

Correctness |

o Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

Performance and overhead

o Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)
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Protecting Shared Data

Threads are not allowed to update shared data concurrently
o For correctness purposes

Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

Only one thread can execute a critical section at
a given time
o Mutual exclusion principle

A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to

protect shared data
52



Supporting Mutual Exclusion

Programmer needs to make sure mutual exclusion
(synchronization) is correctly implemented

o We will assume this

o But, correct parallel programming is an important topic

o Reading: Dijkstra, “"Cooperating Sequential Processes,” 1965.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWDQ1xx/EWD
123.html

See Dekker’s algorithm for mutual exclusion

Programmer relies on hardware primitives to support correct
synchronization

If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

If hardware primitives are correct but not easy to reason about

or use, programmer’s life is still tough
53
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| Lm Protecting Shared Data
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Assume P1 is in critical section. : A Sechrn
Intuitively, it must have executed A, G+ oy qeven
which means F1 must be 1 (as A happens before B), Fonne_
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A Question

Can the two processors be in the critical section at the
same time given that they both obey the von Neumann

model?

Answer: yes
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Both Processors 1n Critical Section
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How Can We Solve The Problem?

Idea: Sequential consistency

All processors see the same order of operations to memory

i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.
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Sequential Consistency

Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

A multiprocessor system is sequentially consistent if:

o the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

o the operations of each individual processor appear in this
sequence in the order specified by its program

This is @ memory ordering model, or memory model
o Specified by the ISA
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Programmer’s Abstraction

Memory is a switch that services one load or store at a time
form any processor

All processors see the currently serviced load or store at the
same time

Each processor’s operations are serviced in program order
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Sequentially Consistent Operation Orders

Potential correct global orders (all are correct):

ABXY
AXBY
AXYB
XABY
XAYB
XYAB

Which order (interleaving) is observed depends on
implementation and dynamic latencies
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Consequences of Sequential Consistency

Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

- No correctness issue
- Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

- Debugging is still difficult (as order changes across runs)
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Issues with Sequential Consistency?

Nice abstraction for programming, but two issues:
o Too conservative ordering requirements

o Limits the aggressiveness of performance enhancement
techniques

Is the total global order requirement too strong?

o Do we need a global order across all operations and all
processors?
o How about a global order only across all stores?
Total store order memory model; unique store order model

o How about a enforcing a global order only at the boundaries
of synchronization?
Relaxed memory models
Acquire-release consistency model
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Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

Out-of-order execution

o Loads happen out-of-order with respect to each other and
with respect to independent stores

Caching
o A memory location is now present in multiple places
o Prevents the effect of a store to be seen by other processors
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Weaker Memory Consistency

The ordering of operations is important when the order
affects operations on shared data = i.e., when processors
need to synchronize to execute a “program region”

Weak consistency

o Idea: Programmer specifies regions in which memory
operations do not need to be ordered

o "Memory fence” instructions delineate those regions

All memory operations before a fence must complete before
fence is executed

All memory operations after the fence must wait for the fence to
complete

Fences complete in program order
o All synchronization operations act like a fence
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Tradeoffs: Weaker Consistency

Advantage

o No need to guarantee a very strict order of memory
operations

- Enables the hardware implementation of performance
enhancement techniques to be simpler

- Can be higher performance than stricter ordering

Disadvantage

a More burden on the programmer or software (need to get the
“fences” correct)

Another example of the programmer-microarchitect tradeoff
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Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

Out-of-order execution

o Loads happen out-of-order with respect to each other and
with respect to independent stores

Caching
o A memory location is now present in multiple places
o Prevents the effect of a store to be seen by other processors

068



Cache Coherence
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Shared Memory Model

Many parallel programs communicate through shared memory
Proc 0 writes to an address, followed by Proc 1 reading
o This implies communication between the two

Proc O Proc 1
Mem[A] =1

Print Mem[A]

Each read should receive the value last written by anyone
o This requires synchronization (what does last written mean?)
What if Mem[A] is cached (at either end)?
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Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?
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X

Main Memory
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?
o What if the ISA provided a cache flush instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’ s local cache.

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

Hardware
o Simplifies software’ s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
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A Very Simple Coherence Scheme

Caches “snoop” (observe) each other’ s write/read
operations. If a processor writes to a block, all others
invalidate it from their caches.

A simple protocol:

PrRd/-- PAWT / BUsWr Wr_ite-through, no-
write-allocate

cache
@ Actions: PrRd,

BusWr PrWr, BusRd,
PrRd / BusRd BusWr

Q Prwr / BusWr
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(Non-)Solutions to Cache Coherence

No hardware based coherence
o Keeping caches coherent is software’s responsibility
+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software

All caches are shared between all processors
+ No need for coherence
-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way
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Maintaining Coherence

Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

Writes to location A by PO should be seen by P1
(eventually), and all writes to A should appear in some
order

Coherence needs to provide:
o Write propagation: guarantee that updates will propagate

o Write serialization: provide a consistent global order seen
by all processors

Need a global point of serialization for this store ordering
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Hardware Cache Coherence

Basic idea:

o A processor/cache broadcasts its write/update to a memory
location to all other processors

o Another cache that has the location either updates or
invalidates its local copy
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Coherence: Update vs. Invalidate

How can we safely update replicated data?
o Option 1 (Update protocol): push an update to all copies

o Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

On a Read:
a If local copy isn't valid, put out request

a (If another node has a copy, it returns it, otherwise
memory does)
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Coherence: Update vs. Invalidate (1I)

On a Write:

o Read block into cache as before
Update Protocol:

o Write to block, and simultaneously broadcast written
data to sharers

o (Other nodes update their caches if data was present)
Invalidate Protocol:

o Write to block, and simultaneously broadcast invalidation
of address to sharers

a (Other nodes clear block from cache)
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Update vs. Invalidate Tradeotfs

Which do we want?
o Write frequency and sharing behavior are critical

Update

+ If sharer set is constant and updates are infrequent, avoids
the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,
updates were useless

- Write-through cache policy = bus becomes bottleneck
Invalidate

+ After invalidation broadcast, core has exclusive access rights
+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid
mutual invalidation-reacquire)
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Two Cache Coherence Methods

o How do we ensure that the proper caches are updated?

o Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
Bus-based, single point of serialization for all requests

Processors observe other processors’ actions

0 E.g.: P1 makes “read-exclusive” request for A on bus, PO sees this
and invalidates its own copy of A

o Directory [Censier and Feautrier, IEEE ToC 1978]
Single point of serialization per block, distributed among nodes
Processors make explicit requests for blocks
Directory tracks ownership (sharer set) for each block

Directory coordinates invalidation appropriately

o E.g.: P1 asks directory for exclusive copy, directory asks PO to
invalidate, waits for ACK, then responds to P1
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Directory Based Coherence

Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

An example mechanism:

o For each cache block in memory, store P+1 bits in directory
One bit for each cache, indicating whether the block is in cache

Exclusive bit: indicates that a cache has the only copy of the
block and can update it without notifying others

o On a read: set the cache’s bit and arrange the supply of data

o On a write: invalidate all caches that have the block and reset
their bits

o Have an “exclusive bit” associated with each block in each
cache
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Directory Based Coherence Example (I)

- Exomple dnvedoy bused sdemne -

| E"‘bg}:
C No  codke hos e blede

Fy Toles a read miss o bleck B

+1
pbﬂs -

blecea
0

Pk

O

O

6

0

|

o,

G

G

@. P3 hkes a read miss

%o

OW

- O 6———

87




@ PJ_ hkes a e rias \L I
| — Mveldale P, & Pa's cadkes .
— wrile fegestr — Pp hes e olo|4|0]1
,qou) Sel- he Erocksive bi— .
— P, con now vpdale +he bleck. th{"”ﬁ
anry thre~ prresse o fh—eakvr_dwy

—y Pz veeds Yheve a b m s (cobe Molccd-nvi :
j& con poforn eXicIvENE Y pdelel by hof o )ecke

— pmak./e'nd&swb L ppe— ot bblock

@ pshksaw@cnﬂ:&& ‘ L

Codvtlle— requests dorepe D st |
- A e ¥ . ]0J0 O "! \
—3 Mem Cohviflle~ gnes blcmhﬁ/) |
— P2 nvdydees s cgoy J/ |

S P, hies a read —as

—3 P2 Susp\Ves (& FO Gl l'Ol




Snoopy Cache Coherence




Snoopy Cache Coherence

Idea:

a All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

o Each cache block has “coherence metadata” associated with it
in the tag store of each cache

Easy to implement if all caches share a common bus

o Each cache broadcasts its read/write operations on the bus
o Good for small-scale multiprocessors

o What if you would like to have a 1000-node multiprocessor?
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A Simple Snoopy Cache Coherence Protocol

Caches “snoop” (observe) each other’ s write/read

operations
A simple protocol:

PrRd/-- PrWr / BusWr

Q PrWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
PrWr, BusRd,
BusWr
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A More Sophisticated Protocol: MSI

Extend single valid bit per block to three states:
o M(odified): cache line is only copy and is dirty

o S(hared): cache line is one of several copies

o I(nvalid): not present

Read miss makes a Read request on bus, transitions to S
Write miss makes a ReadEx request, transitions to M state

When a processor snoops ReadEx from another writer, it
must invalidate its own copy (if any)

S—->M upgrade can be made without re-reading data from
memory (via Invalidations)
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MSI State Machine

BusRd/Flush
Prwr/BusRdX

PrWr/BusRdX
BusRdX/Flush

PrRd/BusRd

PrRd/--
BusRd/--

BusRdX/--

ObservedEvent/Action [Culler/Singh96]
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The Problem with MSI

A block is in no cache to begin with

Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

Why is this a problem?

o Suppose the cache that read the block wants to write to it at
some point

o It needs to broadcast “invalidate” even though it has the only
cached copy!

a If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache = saves unnecessary broadcasts of invalidations
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The Solution: MESI

Idea: Add another state indicating that this is the only
cached copy and it is clean.

o Exclusive state

Block is placed into the exclusive state if, during BusRd, no
other cache had it

o Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

Silent transition Exclusive=>Modlfied is possible on write!

MESI is also called the f/inois protoco/ [Papamarcos and
Patel, ISCA 1984]
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MESI State Machine
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MESI State Machine

PrWr/BusRdX

BusRd/Flush

BusRd/ $ Transfer PrWr/BusRdX
PrRd (S’ )/BusRd

PrRd (S)/BusRd

BusRdX/Flush (all incoming)

[Culler/Singh96]
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MESI State Machine from Lab 7

cache fill (to multiple)

— T i 1. multiple owners
(potentially)
Invalid ~___invalidation _~ Shared . 2. read-only access
i 3. clean data

invalidation
downgrade
i 1. single owner > ; i 1. single owner ;
i 2. read-write access | Modified - Exclusive ! 2. read-write access |
i 3. dirty data ; i 3. clean data ;

A transition from a single-owner state (Exclusive or Modified) to Shared is called a
downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an
upgrade, because the transition grants the ability to the owner (the cache which contains
the respective block) to write to the block.
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MESI State Machine from Lab 7

cache miss ( > 1 requester)

’fﬂ_—nther ::Iach:-‘ﬁk\
Invalid " (validate Shared

E‘&Cﬁ
€ ’??:‘35 0 write

(upgrade
and inval, other cache
other cache Py others) has read-miss
has write-miss | %' & {downgrade)
(invalidate) O 2
Mo h‘ﬂ.
\S
(i, ffe::?
Modified 0 Exclusi
odaine XClusive
~ -

write (mark dirty)

101



Intel Pentium Pro

F wrvor - -

B g

Pz DR

SHAEED
(CLeAn
- Weire AcocaTe

- L] Caw Have Dara Mot /[uw L2

- Hir © Jomeowe Has /v Creaw
/J/Tn: ..S-OM(OA/( :441: T DILT/

MODIFIED

/’Il) /w’/\

C.

Slide credit: Yale Patt 102



Snoopy Invalidation Tradeotfs

Should a downgrade from M go to S or I?

o S: if data is likely to be reused (before it is written to by another
processor)

o I if data is likely to be not reused (before it is written to by another)
Cache-to-cache transfer
o On a BusRd, should data come from another cache or memory?
o Another cache
may be faster, if memory is slow or highly contended
o Memory
Simpler: no need to wait to see if cache has data first
Less contention at the other caches
Requires writeback on M downgrade
Writeback on Modified->Shared: necessary?
o One possibility: Owner (O) state (MOESI protocol)
One cache owns the latest data (memory is not updated)
Memory writeback happens when all caches evict copies
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The Problem with MESI

Shared state requires the data to be clean

o i.e., all caches that have the block have the up-to-date copy
and so does the memory

Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

Why is this a problem?

o Memory can be updated unnecessarily = some other
processor may write to the block while it is cached
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Improving on MESI

Idea 1: Do not transition from M-S on a BusRd. Invalidate
the copy and supply the modified block to the requesting
processor directly without updating memory

Idea 2: Transition from M-S, but designate one cache as
the owner (O), who will write the block back when it is
evicted

o Now “Shared” means “Shared and potentially dirty”
a This is a version of the MOESI protocol
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Tradeoftts in Sophisticated Cache Coherence Protocols

The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)

-- Provide diminishing returns
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Revisiting Two Cache Coherence Methods

o How do we ensure that the proper caches are updated?

o Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
Bus-based, single point of serialization for all requests

Processors observe other processors’ actions

0 E.g.: P1 makes “read-exclusive” request for A on bus, PO sees this
and invalidates its own copy of A

o Directory [Censier and Feautrier, IEEE ToC 1978]
Single point of serialization per block, distributed among nodes
Processors make explicit requests for blocks
Directory tracks ownership (sharer set) for each block

Directory coordinates invalidation appropriately

o E.g.: P1 asks directory for exclusive copy, directory asks PO to
invalidate, waits for ACK, then responds to P1
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Snoopy Cache vs. Directory Coherence

Snoopy Cache

+ Critical path is short: miss - bus transaction to memory

+ Global serialization is easy: bus provides this already (arbitration)
+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches:

- single point of serialization (bus): not scalable

Directory
- Adds indirection to critical path: request = directory > mem
- Requires extra storage space to track sharer sets

Can be approximate (false positives are OK)
- Protocols and race conditions are more complex

+ Exactly as scalable as interconnect and directory storage
(much more scalable than bus)
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Revisiting Directory-Based
Cache Coherence
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Remember: Directory Based Coherence

Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

An example mechanism:

o For each cache block in memory, store P+1 bits in directory
One bit for each cache, indicating whether the block is in cache

Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

o On a read: set the cache’s bit and arrange the supply of data

o On a write: invalidate all caches that have the block and reset
their bits

o Have an “exclusive bit” associated with each block in each
cache
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Directory-Based Protocols

Required when scaling past the capacity of a single bus

Distributed, but:

a Coherence still requires single point of serialization (for write
serialization)

o Serialization location can be different for every block (striped
across nodes)

We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

Directory receives Read and ReadEx requests, and sends
Invirequests: invalidation is explicit (as opposed to snoopy
buses)
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Directory: Data Structures

0x00 Shared: {PO, P1, P2}
0x04

0x08 Exclusive: P2

0x0C

Key operation to support is set inclusion test

o False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

o False positive rate determines performance
Most accurate (and expensive): full bit-vector

Compressed representation, linked list, Bloom filters are all
possible
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Directory: Basic Operations

Follow semantics of snoop-based system
o but with explicit request, reply messages

Directory:

o Receives Read, ReadEx, Upgrade requests from nodes
o Sends Inval/Downgrade messages to sharers if needed
o Forwards request to memory if needed

o Replies to requestor and updates sharing state

Protocol design is flexible
o Exact forwarding paths depend on implementation

o For example, do cache-to-cache transfer?
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MESI Directory Transaction: Read

PO acquires an address for reading:

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16
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RdEx with Former Owner

1. RdEx

3b. DatEx
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Contention Resolution (for Write)

1a. RdEX 1b. RdEx
4, InvI$ 3-RdEx
@ PO Home P1 @
5a. Rev
2a. DatEx b NACK

5b. DatEx
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Issues with Contention Resolution

Need to escape race conditions by:

o NACKing requests to busy (pending invalidate) entries
Original requestor retries

o OR, queuing requests and granting in sequence
o (Or some combination thereof)

Fairness
o Which requestor should be preferred in a conflict?
o Interconnect delivery order, and distance, both matter

Ping-ponging is a higher-level issue
o With solutions like combining trees (for locks/barriers) and
better shared-data-structure design
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Scaling the Directory: Some Questions

How large is the directory?
How can we reduce the access latency to the directory?

How can we scale the system to thousands of nodes?
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