
18-447

Computer Architecture

Lecture 28: Multiprocessors

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/14/2013

Agenda Today

 Wrap up Prefetching

 Start Multiprocessing

2

Prefetching Buzzwords (Incomplete)

 What, when, where, how

 Hardware, software, execution based

 Accuracy, coverage, timeliness, bandwidth consumption,
cache pollution

 Aggressiveness (prefetch degree, prefetch distance),
throttling

 Prefetching for arbitrary access/address patterns

3

Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context (think fine-grained
multithreading)

 On the same thread context in idle cycles (during cache misses)

4

Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

 Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

5

Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

6

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)

 7

Thread-Based Pre-Execution Issues

 Read

 Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed

8

An Example

9

Example ISA Extensions

10

Results on a Multithreaded Processor

11

Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

12

Fork Point for Prefetching Thread

13

Pre-execution Thread Construction

14

Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 15

Review: Runahead Execution (Mutlu et al., HPCA 2003)

16

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead as an Execution-based Prefetcher

 Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

 Idea of Runahead: Pre-execute the main program solely for
prefetching data

17

Multiprocessors and

Issues in Multiprocessing

Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

 Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

19

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Recommended:

 Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

20

Remember: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

21

Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why?

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space

 22

Types of Parallelism and How to Exploit

Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)

 23

Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task

24

Multiprocessing Fundamentals

25

Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization

26

Main Issues in Tightly-Coupled MP

 Shared memory synchronization

 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning

 Communication: Interconnection networks

 Load imbalance

27

Aside: Hardware-based Multithreading

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading)

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving execution unit utilization

28

Parallel Speedup Example

 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?

 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

29

30

31

Speedup with 3 Processors

32

Revisiting the Single-Processor Algorithm

33

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

34

Superlinear Speedup

 Can speedup be greater than P with P processing
elements?

 Cache effects

 Working set effects

 Happens in two ways:

 Unfair comparisons

 Memory effects

35

Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing

 R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

 Efficiency

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R

36

Utilization of a Multiprocessor

37

38

Caveats of Parallelism (I)

39

Amdahl’s Law

40

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

41

Amdahl’s Law Implication 2

42

Caveats of Parallelism (II)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

43

Speedup =
1

+ 1 - f
f

N

Sequential Bottleneck

44

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6

1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

 Parallel machines have the
sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
 for (i = 0 ; i < N; i++)

 A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data
and spawns parallel tasks
(usually sequential)

45

Another Example of Sequential Bottleneck

46

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

 47

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

48

