
18-447 

Computer Architecture 

Lecture 28: Multiprocessors  

 
 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Spring 2014, 4/14/2013 

 

 

 



Agenda Today 

 Wrap up Prefetching 

 

 Start Multiprocessing 

2 



Prefetching Buzzwords (Incomplete) 

 What, when, where, how 

 

 Hardware, software, execution based 

 

 Accuracy, coverage, timeliness, bandwidth consumption, 
cache pollution 

 

 Aggressiveness (prefetch degree, prefetch distance), 
throttling 

 

 Prefetching for arbitrary access/address patterns 

3 



Execution-based Prefetchers (I) 

 Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data  

 Only need to distill pieces that lead to cache misses 

 

 Speculative thread: Pre-executed program piece can be 
considered a “thread” 

 

 Speculative thread can be executed  

 On a separate processor/core 

 On a separate hardware thread context (think fine-grained 
multithreading) 

 On the same thread context in idle cycles (during cache misses) 

 

 
4 



Execution-based Prefetchers (II) 

 How to construct the speculative thread: 

 Software based pruning and “spawn” instructions 

 Hardware based pruning and “spawn” instructions 

 Use the original program (no construction), but  

 Execute it faster without stalling and correctness constraints 

 

 Speculative thread 

 Needs to discover misses before the main program 

 Avoid waiting/stalling and/or compute less 

 To get ahead, uses 

 Perform only address generation computation, branch prediction, 
value prediction (to predict “unknown” values)  

 Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect 

5 



Thread-Based Pre-Execution 

 Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998. 

 

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),” 
ISCA 1999. 

 

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001. 

 

 
6 



Thread-Based Pre-Execution Issues 

 Where to execute the precomputation thread? 

1. Separate core (least contention with main thread) 

2. Separate thread context on the same core (more contention) 

3. Same core, same context  

 When the main thread is stalled 

 When to spawn the precomputation thread? 

1. Insert spawn instructions well before the “problem” load 

 How far ahead?  

 Too early: prefetch might not be needed 

 Too late: prefetch might not be timely 

2. When the main thread is stalled 

 When to terminate the precomputation thread? 

1. With pre-inserted CANCEL instructions 

2. Based on effectiveness/contention feedback (recall throttling) 

 7 



Thread-Based Pre-Execution Issues 

 Read 

 Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,” 
ISCA 2001. 

 Many issues in software-based pre-execution discussed 

 

 

8 



An Example 

9 



Example ISA Extensions 

 

10 



Results on a Multithreaded Processor 

 

11 



Problem Instructions 

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 
2001. 

 Zilles and Sohi, ”Understanding the backward slices of performance degrading 
instructions,” ISCA 2000. 

 

 

12 



Fork Point for Prefetching Thread 

 

13 



Pre-execution Thread Construction 

 

14 



Review: Runahead Execution 

 A simple pre-execution method for prefetching purposes 

 

 When the oldest instruction is a long-latency cache miss: 

 Checkpoint architectural state and enter runahead mode 

 In runahead mode: 

 Speculatively pre-execute instructions 

 The purpose of pre-execution is to generate prefetches 

 L2-miss dependent instructions are marked INV and dropped 

 Runahead mode ends when the original miss returns 

 Checkpoint is restored and normal execution resumes 

 

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003. 

 15 



Review: Runahead Execution (Mutlu et al., HPCA 2003) 

 

16 

Compute 

Compute 

Load 1 Miss 

Miss 1 

Stall Compute 

Load 2 Miss 

Miss 2 

Stall 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Hit 

Miss 1 

Miss 2 

Compute 

Load 1 Hit 

Saved Cycles 

Small Window: 

Runahead: 



Runahead as an Execution-based Prefetcher 

 Idea of an Execution-Based Prefetcher: Pre-execute a piece 
of the (pruned) program solely for prefetching data  

 

 Idea of Runahead: Pre-execute the main program solely for 
prefetching data  

 

17 



Multiprocessors and 

Issues in Multiprocessing 

 

 

 

 



Readings: Multiprocessing 

 Required 

 Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967.  

 Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979 

 

 Recommended 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 

 

19 



Readings: Cache Coherence 

 Required 

 Culler and Singh, Parallel Computer Architecture 

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

 P&H, Computer Organization and Design 

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

 

 Recommended: 

 Papamarcos and Patel, “A low-overhead coherence solution 
for multiprocessors with private cache memories,” ISCA 1984. 

 

20 



Remember: Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 

21 



Why Parallel Computers? 

 Parallelism: Doing multiple things at a time 

 Things: instructions, operations, tasks 

 

 Main Goal 

 Improve performance (Execution time or task throughput) 
 Execution time of a program governed by Amdahl’s Law 

 

 Other Goals 

 Reduce power consumption 

 (4N units at freq F/4) consume less power than (N units at freq F) 

 Why?  

 Improve cost efficiency and scalability, reduce complexity 

 Harder to design a single unit that performs as well as N simpler units  

 Improve dependability: Redundant execution in space 

 22 



Types of Parallelism and How to Exploit 

Them 
 Instruction Level Parallelism 

 Different instructions within a stream can be executed in parallel 

 Pipelining, out-of-order execution, speculative execution, VLIW 

 Dataflow 

 

 Data Parallelism 

 Different pieces of data can be operated on in parallel 

 SIMD: Vector processing, array processing 

 Systolic arrays, streaming processors 

 

 Task Level Parallelism 

 Different “tasks/threads” can be executed in parallel 

 Multithreading 

 Multiprocessing (multi-core) 

 23 



Task-Level Parallelism: Creating Tasks 

 Partition a single problem into multiple related tasks 
(threads) 

 Explicitly: Parallel programming 

 Easy when tasks are natural in the problem 

 Web/database queries 

 Difficult when natural task boundaries are unclear 

 

 Transparently/implicitly: Thread level speculation 

 Partition a single thread speculatively 

 

 Run many independent tasks (processes) together 

 Easy when there are many processes 

 Batch simulations, different users, cloud computing workloads 

 Does not improve the performance of a single task 

 

 

24 



Multiprocessing Fundamentals 

25 



Multiprocessor Types 

 Loosely coupled multiprocessors 

 No shared global memory address space 

 Multicomputer network 

 Network-based multiprocessors 

 Usually programmed via message passing 

 Explicit calls (send, receive) for communication 

 

 Tightly coupled multiprocessors 

 Shared global memory address space 

 Traditional multiprocessing: symmetric multiprocessing (SMP) 

 Existing multi-core processors, multithreaded processors 

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except 

 Operations on shared data require synchronization 

 

 

26 



Main Issues in Tightly-Coupled MP  

 Shared memory synchronization 

 Locks, atomic operations 

 

 Cache consistency 

 More commonly called cache coherence 

 

 Ordering of memory operations  

 What should the programmer expect the hardware to provide? 

 

 Resource sharing, contention, partitioning 

 Communication: Interconnection networks 

 Load imbalance 

27 



Aside: Hardware-based Multithreading 

 Coarse grained 

 Quantum based 

 Event based (switch-on-event multithreading) 

 

 Fine grained 

 Cycle by cycle 

 Thornton, “CDC 6600: Design of a Computer,” 1970. 

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 
1978. 

 

 Simultaneous 

 Can dispatch instructions from multiple threads at the same time 

 Good for improving execution unit utilization 

28 



Parallel Speedup Example 

 a4x4 + a3x3 + a2x2 + a1x + a0 

 

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor 

 

 How fast is this with a single processor? 

 Assume no pipelining or concurrent execution of instructions 

 

 How fast is this with 3 processors?  

 

29 



30 



31 



Speedup with 3 Processors 

32 



Revisiting the Single-Processor Algorithm 

33 

Horner, “A new method of solving numerical equations of all orders, by continuous  

approximation,” Philosophical Transactions of the Royal Society, 1819. 



34 



Superlinear Speedup 

 Can speedup be greater than P with P processing 
elements? 

 

 Cache effects 

 Working set effects 

 

 Happens in two ways: 

 Unfair comparisons 

 Memory effects 

 

 

35 



Utilization, Redundancy, Efficiency 

 Traditional metrics 

 Assume all P processors are tied up for parallel computation 

 

 Utilization: How much processing capability is used  

 U = (# Operations in parallel version) / (processors x Time) 

 

 Redundancy: how much extra work is done with parallel 
processing 

 R = (# of operations in parallel version) / (# operations in best 
single processor algorithm version) 

 

 Efficiency  

 E = (Time with 1 processor) / (processors x Time with P processors) 

 E = U/R 

 
36 



Utilization of a Multiprocessor 

37 



38 



Caveats of Parallelism (I) 

39 



Amdahl’s Law 

40 

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.  



Amdahl’s Law Implication 1 

41 



Amdahl’s Law Implication 2 

42 



Caveats of Parallelism (II) 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 

 
43 

Speedup = 
1 

+ 1 - f 
f 

N 



Sequential Bottleneck 

 

44 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

0
 

0
.0

4
 

0
.0

8
 

0
.1

2
 

0
.1

6
 

0
.2

 

0
.2

4
 

0
.2

8
 

0
.3

2
 

0
.3

6
 

0
.4

 

0
.4

4
 

0
.4

8
 

0
.5

2
 

0
.5

6
 

0
.6

 

0
.6

4
 

0
.6

8
 

0
.7

2
 

0
.7

6
 

0
.8

 

0
.8

4
 

0
.8

8
 

0
.9

2
 

0
.9

6
 

1
 

N=10 

N=100 

N=1000 

f (parallel fraction)  



Why the Sequential Bottleneck? 

 Parallel machines have the 
sequential bottleneck 

 

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops) 
 for ( i = 0 ; i < N; i++) 

    A[i] = (A[i] + A[i-1]) / 2 

 

 Single thread prepares data 
and spawns parallel tasks 
(usually sequential) 

 

45 



Another Example of Sequential Bottleneck 

46 



Bottlenecks in Parallel Portion 

 Synchronization: Operations manipulating shared data 
cannot be parallelized 

 Locks, mutual exclusion, barrier synchronization 

 Communication: Tasks may need values from each other 

- Causes thread serialization when shared data is contended 

 

 Load Imbalance: Parallel tasks may have different lengths 

 Due to imperfect parallelization or microarchitectural effects 

- Reduces speedup in parallel portion 

 

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 

 Replicating all resources (e.g., memory) expensive 

- Additional latency not present when each task runs alone 

 47 



Difficulty in Parallel Programming 

 Little difficulty if parallelism is natural 

 “Embarrassingly parallel” applications 

 Multimedia, physical simulation, graphics 

 Large web servers, databases? 

 

 Difficulty is in  

 Getting parallel programs to work correctly 

 Optimizing performance in the presence of bottlenecks 

 

 Much of parallel computer architecture is about 

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency 

 Making programmer’s job easier in writing correct and high-
performance parallel programs 

48 


