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Agenda Today

= Wrap up Prefetching

= Start Multiprocessing




Pretetching Buzzwords (Incomplete)

What, when, where, how
Hardware, software, execution based

Accuracy, coverage, timeliness, bandwidth consumption,
cache pollution

Aggressiveness (prefetch degree, prefetch distance),
throttling

Prefetching for arbitrary access/address patterns



Execution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)



Execution-based Prefetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect



Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999,

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.




Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled
When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)



Thread-Based Pre-Execution Issues

Read

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

o Many issues in software-based pre-execution discussed

(a) Multiple Pointer Chains {b) Non-Affine Array Accesses

> Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths




An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; i< trips; ){
I loap over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
! the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tips; )|
I/l loop over ‘trips™ lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[/l inveke a pre-execution starting
/ at END_FOR
PreExecute StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktajlkmark,

/f traverse the list starting with
I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
}
/f terminate this pre-execution after
I/l prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
!l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 1", starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i's value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop. the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

9



Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{ ) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{ ). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)
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Results on a Multithreaded Processor

100

50

Normalized Execution Time

100

(a) Execution Time Normalized to the Original Case

load L2-miss stall
load L2-hit stall
other stall

busy

8]

Compress

92
i
O  PX o PX

11



Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_ tail; misprediction
int ito = ifrom/2; .
heap_tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itec]->cost))
struct s heap *temp ptr = heap[itc];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 &8 & 8 &

= &
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Fork Point for Prefetching Thread

Figure 3. The node teo heap function, which serves as
the fork point for the slice that covers add _to heap.

void node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+———— fork point

hptr = alloc heap data();
hptr->cost = cost;

add to heap (hptr);

13



Pre-execution Thread Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe

un-opfimized slice. Figure 5. Slice consiructed for example problem instructions.
node_to_iiiap:k . 20 instructs Ny Much smaller than the original code, the slice contains a loop
- = J_PE- - INSTruCTtions - - - -
. Bt a1, 252(gp) # &heap tail that mimics the loop in the original code.
2 1d1 t2, 0(sl) # ifrom = heap tail ,
1 1ldg t5, -76(sl) # &heap[0] slice:
3 cmplt +t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl  t2, 0xl, t6 # heap tail +4| 2 1d1 $3, 252(gp) # ito = heap tail
1 sBaddg t2, t5, t3 # &heapl[heap tail] slice loop:
4 stl t6, 0(sl) # store heap tail 3 11 sra §3, 0x1, $3 # ito /= 2
1 stqg s0, 0(t3) # heaplheap tail] Er 8add 53' 56 r$lﬁ # gh Lt
3 addl t2, t4, t4 # see note soadaq >-. r eaplito]
3 sra t4, 0x1, t4 # ito = ifrom/2 6 1dgq $18, 0(516) # heap[ito]
5 ble td, return # (ito < 1) G lds 5f1, a(518) ¢ heap[ito]->cost
loop: [ cmptle $f1,5f17,5f31 & (heap[ito]=->cost
6 sBaddg t2, t5, al # &heap[ifrom] # < cost) PRED
6 sBaddg t4, t5, t7 # &heap[ito] ,
11 cmplt +t4, 0, t9 # see note br slice loop
10 move t4, t2 # ifrom = ito .
6 ldg a2z, 0(a0) # heap[ifrom] ## Annotations
& ldg a4, 0(t7) # heap[ito] fork: on first instruction of node to heap
11 addl t‘!r th- ta # see note live_in: $£1?{cﬂst}r gP
11 sra t9, 0x1l, t4 # ito = ifrom/2 max loop iteratioms: 4
6 1ld= sfo, 4(az) # heap[ifrom]->cost
[i] 1ds 5f1, 4(a4q) ¥ heap[ito]=>cost
6 cmptlt S$f0,5f1,5f0 # (heap[ifrom]->cost
6 fheq 5f0, returm ¥ < heap[ito]->cost)
B stg a2, 0(t7) # heap[ito]
9 stg ad, 0(ald) # heap[ifrom]
5 bgt td4, loop #F (ito = 1)
return:
/* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 14




Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 -

Runahead: :
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

16



Runahead as an Execution-based Prefetcher

= Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

= Idea of Runahead: Pre-execute the main program solely for
prefetching data

17



Multiprocessors and
Issues 1n Multiprocessing




Readings: Multiprocessing

Required

o Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

o Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

Recommended

o Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

a Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

o Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.
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Readings: Cache Coherence

Required
a Culler and Singh, Parallel Computer Architecture
Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)

o P&H, Computer Organization and Design
Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Recommended:

o Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.
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Remember: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
21



Why Parallel Computers?

= Parallelism: Doing multiple things at a time
= Things: instructions, operations, tasks

= Main Goal

a Improve performance (Execution time or task throughput)
= Execution time of a program governed by Amdahl’ s Law

= Other Goals

o Reduce power consumption

= (4N units at freq F/4) consume less power than (N units at freq F)
=  Why?
a Improve cost efficiency and scalability, reduce complexity
= Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

22



I'ypes of Parallelism and How to Exploit

.
1 Qe . .
]%nslgrluctlon Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism
o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)
23



Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
o Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together
o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task
24



Multiprocessing Fundamentals
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Multiprocessor Types

Loosely coupled multiprocessors
a No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
26



Main Issues in Tightly-Coupled MP

Shared memory synchronization
o Locks, atomic operations

Cache consistency
o More commonly called cache coherence

Ordering of memory operations
o What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

27



Aside: Hardware-based Multithreading

Coarse grained
o Quantum based
o Event based (switch-on-event multithreading)

Fine grained
o Cycle by cycle
a Thornton, “CDC 6600: Design of a Computer,” 1970.

o Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

Simultaneous

o Can dispatch instructions from multiple threads at the same time
o Good for improving execution unit utilization

28



Parallel Speedup Example

adx? + a3x3 + a2x? + alx + a0

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

29
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Speedup with 3 Processors

Ty =5 cycles
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Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s‘%\e’—pmaésa‘ a\smwn:

28
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Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

33






Superlinear Speedup

Can speedup be greater than P with P processing
elements?

Parallel

Speedup
4

Cache effects |
Working set effects | Superlinear

P Typical
Success

Happens in two ways:
o Unfair comparisons
o Memory effects

Sublinear

— # Processors
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Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

o E=U/R
36



Utilization of a Multiprocessor
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Caveats of Parallelism (I)
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Amdahl’s Law

5puduf> — Tf Sl 1 —
'rh
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Speeohip

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.
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Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2

| * p‘: Tre beacff (spedup)
+ / ' i5 srmall il @L’X.i.
!

42



Caveats of Parallelism (II)

Amdahl’ s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
43



Sequential Bottleneck

—N=10

—N=100

N=1000

e —
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Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

= Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

= Single thread prepares data
and spawns parallel tasks
(usually sequential)

45



Another Example of Sequential Bottleneck

LEGEND

o A,E: Amdahl’s serial part
InitPriorityQueue(PQ); @ B: Parallel Portion

SpawnThreads(); C1,C2: Critical Sections

D: Qutside critical sectign
ForEach Thread:

while (problem not solved)

Lock (X)
SubProblem = PQ.remove()
Unlock(X);

Solve(SubProblem);

lf(problem solved) break;

NewSubProblems = Partition(SubProblem);
Lock(X)

PQ.insert(NewSubProble
Unlock(X) ( rﬂ'

N J

PrintSqution()@




Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
47



Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
a Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
48



