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Agenda Today 

 Wrap up Prefetching 

 

 Start Multiprocessing 

2 



Prefetching Buzzwords (Incomplete) 

 What, when, where, how 

 

 Hardware, software, execution based 

 

 Accuracy, coverage, timeliness, bandwidth consumption, 
cache pollution 

 

 Aggressiveness (prefetch degree, prefetch distance), 
throttling 

 

 Prefetching for arbitrary access/address patterns 
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Execution-based Prefetchers (I) 

 Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data  

 Only need to distill pieces that lead to cache misses 

 

 Speculative thread: Pre-executed program piece can be 
considered a “thread” 

 

 Speculative thread can be executed  

 On a separate processor/core 

 On a separate hardware thread context (think fine-grained 
multithreading) 

 On the same thread context in idle cycles (during cache misses) 
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Execution-based Prefetchers (II) 

 How to construct the speculative thread: 

 Software based pruning and “spawn” instructions 

 Hardware based pruning and “spawn” instructions 

 Use the original program (no construction), but  

 Execute it faster without stalling and correctness constraints 

 

 Speculative thread 

 Needs to discover misses before the main program 

 Avoid waiting/stalling and/or compute less 

 To get ahead, uses 

 Perform only address generation computation, branch prediction, 
value prediction (to predict “unknown” values)  

 Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect 
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Thread-Based Pre-Execution 

 Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998. 

 

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),” 
ISCA 1999. 

 

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001. 
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Thread-Based Pre-Execution Issues 

 Where to execute the precomputation thread? 

1. Separate core (least contention with main thread) 

2. Separate thread context on the same core (more contention) 

3. Same core, same context  

 When the main thread is stalled 

 When to spawn the precomputation thread? 

1. Insert spawn instructions well before the “problem” load 

 How far ahead?  

 Too early: prefetch might not be needed 

 Too late: prefetch might not be timely 

2. When the main thread is stalled 

 When to terminate the precomputation thread? 

1. With pre-inserted CANCEL instructions 

2. Based on effectiveness/contention feedback (recall throttling) 
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Thread-Based Pre-Execution Issues 

 Read 

 Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,” 
ISCA 2001. 

 Many issues in software-based pre-execution discussed 
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An Example 
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Example ISA Extensions 
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Results on a Multithreaded Processor 
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Problem Instructions 

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 
2001. 

 Zilles and Sohi, ”Understanding the backward slices of performance degrading 
instructions,” ISCA 2000. 
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Fork Point for Prefetching Thread 
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Pre-execution Thread Construction 
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Review: Runahead Execution 

 A simple pre-execution method for prefetching purposes 

 

 When the oldest instruction is a long-latency cache miss: 

 Checkpoint architectural state and enter runahead mode 

 In runahead mode: 

 Speculatively pre-execute instructions 

 The purpose of pre-execution is to generate prefetches 

 L2-miss dependent instructions are marked INV and dropped 

 Runahead mode ends when the original miss returns 

 Checkpoint is restored and normal execution resumes 

 

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003. 
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Review: Runahead Execution (Mutlu et al., HPCA 2003) 
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Runahead as an Execution-based Prefetcher 

 Idea of an Execution-Based Prefetcher: Pre-execute a piece 
of the (pruned) program solely for prefetching data  

 

 Idea of Runahead: Pre-execute the main program solely for 
prefetching data  
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Multiprocessors and 

Issues in Multiprocessing 

 

 

 

 



Readings: Multiprocessing 

 Required 

 Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967.  

 Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979 

 

 Recommended 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 
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Readings: Cache Coherence 

 Required 

 Culler and Singh, Parallel Computer Architecture 

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

 P&H, Computer Organization and Design 

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

 

 Recommended: 

 Papamarcos and Patel, “A low-overhead coherence solution 
for multiprocessors with private cache memories,” ISCA 1984. 
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Remember: Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Why Parallel Computers? 

 Parallelism: Doing multiple things at a time 

 Things: instructions, operations, tasks 

 

 Main Goal 

 Improve performance (Execution time or task throughput) 
 Execution time of a program governed by Amdahl’s Law 

 

 Other Goals 

 Reduce power consumption 

 (4N units at freq F/4) consume less power than (N units at freq F) 

 Why?  

 Improve cost efficiency and scalability, reduce complexity 

 Harder to design a single unit that performs as well as N simpler units  

 Improve dependability: Redundant execution in space 
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Types of Parallelism and How to Exploit 

Them 
 Instruction Level Parallelism 

 Different instructions within a stream can be executed in parallel 

 Pipelining, out-of-order execution, speculative execution, VLIW 

 Dataflow 

 

 Data Parallelism 

 Different pieces of data can be operated on in parallel 

 SIMD: Vector processing, array processing 

 Systolic arrays, streaming processors 

 

 Task Level Parallelism 

 Different “tasks/threads” can be executed in parallel 

 Multithreading 

 Multiprocessing (multi-core) 
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Task-Level Parallelism: Creating Tasks 

 Partition a single problem into multiple related tasks 
(threads) 

 Explicitly: Parallel programming 

 Easy when tasks are natural in the problem 

 Web/database queries 

 Difficult when natural task boundaries are unclear 

 

 Transparently/implicitly: Thread level speculation 

 Partition a single thread speculatively 

 

 Run many independent tasks (processes) together 

 Easy when there are many processes 

 Batch simulations, different users, cloud computing workloads 

 Does not improve the performance of a single task 
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Multiprocessing Fundamentals 
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Multiprocessor Types 

 Loosely coupled multiprocessors 

 No shared global memory address space 

 Multicomputer network 

 Network-based multiprocessors 

 Usually programmed via message passing 

 Explicit calls (send, receive) for communication 

 

 Tightly coupled multiprocessors 

 Shared global memory address space 

 Traditional multiprocessing: symmetric multiprocessing (SMP) 

 Existing multi-core processors, multithreaded processors 

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except 

 Operations on shared data require synchronization 
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Main Issues in Tightly-Coupled MP  

 Shared memory synchronization 

 Locks, atomic operations 

 

 Cache consistency 

 More commonly called cache coherence 

 

 Ordering of memory operations  

 What should the programmer expect the hardware to provide? 

 

 Resource sharing, contention, partitioning 

 Communication: Interconnection networks 

 Load imbalance 
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Aside: Hardware-based Multithreading 

 Coarse grained 

 Quantum based 

 Event based (switch-on-event multithreading) 

 

 Fine grained 

 Cycle by cycle 

 Thornton, “CDC 6600: Design of a Computer,” 1970. 

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 
1978. 

 

 Simultaneous 

 Can dispatch instructions from multiple threads at the same time 

 Good for improving execution unit utilization 
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Parallel Speedup Example 

 a4x4 + a3x3 + a2x2 + a1x + a0 

 

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor 

 

 How fast is this with a single processor? 

 Assume no pipelining or concurrent execution of instructions 

 

 How fast is this with 3 processors?  
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Speedup with 3 Processors 
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Revisiting the Single-Processor Algorithm 

33 

Horner, “A new method of solving numerical equations of all orders, by continuous  

approximation,” Philosophical Transactions of the Royal Society, 1819. 
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Superlinear Speedup 

 Can speedup be greater than P with P processing 
elements? 

 

 Cache effects 

 Working set effects 

 

 Happens in two ways: 

 Unfair comparisons 

 Memory effects 
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Utilization, Redundancy, Efficiency 

 Traditional metrics 

 Assume all P processors are tied up for parallel computation 

 

 Utilization: How much processing capability is used  

 U = (# Operations in parallel version) / (processors x Time) 

 

 Redundancy: how much extra work is done with parallel 
processing 

 R = (# of operations in parallel version) / (# operations in best 
single processor algorithm version) 

 

 Efficiency  

 E = (Time with 1 processor) / (processors x Time with P processors) 

 E = U/R 
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Utilization of a Multiprocessor 
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Caveats of Parallelism (I) 
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Amdahl’s Law 

40 

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.  



Amdahl’s Law Implication 1 
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Amdahl’s Law Implication 2 
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Caveats of Parallelism (II) 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Speedup = 
1 

+ 1 - f 
f 

N 



Sequential Bottleneck 
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Why the Sequential Bottleneck? 

 Parallel machines have the 
sequential bottleneck 

 

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops) 
 for ( i = 0 ; i < N; i++) 

    A[i] = (A[i] + A[i-1]) / 2 

 

 Single thread prepares data 
and spawns parallel tasks 
(usually sequential) 
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Another Example of Sequential Bottleneck 
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Bottlenecks in Parallel Portion 

 Synchronization: Operations manipulating shared data 
cannot be parallelized 

 Locks, mutual exclusion, barrier synchronization 

 Communication: Tasks may need values from each other 

- Causes thread serialization when shared data is contended 

 

 Load Imbalance: Parallel tasks may have different lengths 

 Due to imperfect parallelization or microarchitectural effects 

- Reduces speedup in parallel portion 

 

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 

 Replicating all resources (e.g., memory) expensive 

- Additional latency not present when each task runs alone 

 47 



Difficulty in Parallel Programming 

 Little difficulty if parallelism is natural 

 “Embarrassingly parallel” applications 

 Multimedia, physical simulation, graphics 

 Large web servers, databases? 

 

 Difficulty is in  

 Getting parallel programs to work correctly 

 Optimizing performance in the presence of bottlenecks 

 

 Much of parallel computer architecture is about 

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency 

 Making programmer’s job easier in writing correct and high-
performance parallel programs 
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