
18-447

Computer Architecture

Lecture 25: Main Memory Wrap-Up

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/2/2014

Memory Interference and Scheduling

in Multi-Core Systems

Review: PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance  too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

3

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

5

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

6

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

7

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

8

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

9

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

higher
MPKI

T
α < 10%

ClusterThreshold

Intensive
clusterαT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM: Quantum-Based Operation

10

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity  higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

11

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

12

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

13

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss

FRFCFS

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

14

Other Ways of Handling Interference

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

16

 Memory Channel Partitioning

 Idea: Map badly-interfering applications’ pages to different
channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications

 Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity

Memory Channel Partitioning

17

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

12345

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

12345

Channel 1

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

18

Hardware

System

Software

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

19

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

20Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

21

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores (sources),
not at the shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

22

23

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)

2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource contention

 Disadvantages

- Requires interference/slowdown estimations

- Thresholds can become difficult to optimize  throughput loss
24

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

25

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

26

Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

27

More on DRAM Controllers

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 State transitions incur latency during which the chip cannot
be accessed

29

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem

30

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

31

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

32

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design  It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

33Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

34

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0   < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values

 Schedule command with highest estimated long-term value in each
state

 Continuously update state-action values based on feedback from
system

35

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

36

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

37

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

❖ State attributes

• Number of
reads, writes, and
load misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

38

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

39

DRAM Refresh

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Read and close each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

41

DRAM Refresh: Performance

 Implications of refresh on performance

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

42

Distributed Refresh

 Distributed refresh eliminates long pause times

 How else can we reduce the effect of refresh on
performance/QoS?

 Does distributed refresh reduce refresh impact on energy?

 Can we reduce the number of refreshes?

43

Refresh Today: Auto Refresh

44

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are

periodically refreshed

via the auto-refresh command

Refresh Overhead: Performance

45

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

46

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional Refresh

 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

47

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the
worst-case rate

 Can we exploit this to reduce refresh operations at low cost?

48

Reducing DRAM Refresh Operations

 Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

 (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

 e.g., a bin for 64-128ms, another for 128-256ms, …

 Observation: Only very few rows need to be refreshed very
frequently [64-128ms]  Have only a few bins  Low HW

overhead to achieve large reductions in refresh operations

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

49

1. Profiling: Profile the retention time of all DRAM rows

 can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time

 use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

 probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

50

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

51

2. Binning

 How to efficiently and scalably store rows into retention
time bins?

 Use Hardware Bloom Filters [Bloom, CACM 1970]

52Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter

 [Bloom, CACM 1970]

 Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

 Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

 Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

 Some elements map to the bits also mapped to other elements

 Operations: 1) insert, 2) test, 3) remove all elements

53Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

54Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

55

Bloom Filter Operation Example

56

Bloom Filter Operation Example

57

Bloom Filter Operation Example

58

Benefits of Bloom Filters as Bins

 False positives: a row may be declared present in the
Bloom filter even if it was never inserted

 Not a problem: Refresh some rows more frequently than
needed

 No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

 Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

 Efficient: No need to store info on a per-row basis; simple
hardware  1.25 KB for 2 filters for 32 GB DRAM system

59

Use of Bloom Filters in Hardware

 Useful when you can tolerate false positives in set
membership tests

 See the following recent examples for clear descriptions of
how Bloom Filters are used

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

60

3. Refreshing (RAIDR Refresh Controller)

61

3. Refreshing (RAIDR Refresh Controller)

62

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

63

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

64

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

65

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
 System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

 RAIDR hardware cost: 1.25 kB (2 Bloom filters)

 Refresh reduction: 74.6%

 Dynamic DRAM energy reduction: 16%

 Idle DRAM power reduction: 20%

 Performance improvement: 9%

 Benefits increase as DRAM scales in density

66

DRAM Refresh: More Questions

 What else can you do to reduce the impact of refresh?

 What else can you do if you know the retention times of
rows?

 How can you accurately measure the retention time of
DRAM rows?

 Recommended reading:

 Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

67

We will likely not cover the following

slides in lecture. These are for your

benefit.

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"

16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file:\\localhost\Users\omutlu\Documents\presentations\CMU\SNU Lectures June 18-20 2012\previous talks\kim_hpca10_talk.pptx

Rethinking Memory Scheduling

A thread alternates between two states (episodes)

 Compute episode: Zero outstanding memory requests  High IPC

Memory episode: Non-zero outstanding memory requests  Low IPC

70

Goal: Minimize time spent in memory episodes

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

Memory episode Compute episode

How to Minimize Memory Episode Time

 Minimizes time spent in memory episodes across all threads

 Supported by queueing theory:

 Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

Prioritize thread whose memory episode will end the soonest

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

How much longer?

71

Predicting Memory Episode Lengths

Large attained service  Large expected remaining service

Q: Why?

A: Memory episode lengths are Pareto distributed…

72

We discovered: past is excellent predictor for future

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Remaining service
FUTURE

Attained service
PAST

Pareto Distribution of Memory Episode Lengths

73

401.bzip2

Favoring least-attained-service memory episode

= Favoring memory episode which will end the soonest

P
r{

M
em

.
ep

is
o
d

e
>

 x
}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
 The longer it will last further

Prioritize the job with
shortest-remaining-processing-time

Provably optimal
 Remaining service: Correlates with attained service

 Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

74

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

Long-Term Thread Behavior

75

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

Quantum-Based Attained Service of a Thread

76

Time
O

u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s
Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

…

Quantum (millions of cycles)

LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi

High αMore bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

77

ATLAS Scheduling Algorithm

ATLAS
 Adaptive per-Thread Least Attained Service

 Request prioritization order

1. Prevent starvation: Over threshold request

2. Maximize performance: Higher LAS rank

3. Exploit locality: Row-hit request

4. Tie-breaker: Oldest request

78

How to coordinate MCs to agree upon a consistent ranking?

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 t

h
ro

u
gh

p
u

t

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

79

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of memory controllers

0

2

4

6

8

10

12

14

4 8 16 24 32

Cores

Sy
st

em
 t

h
ro

u
gh

p
u

t

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases  ATLAS performance benefit increases

80

1.1%
3.5%

4.0%

8.4%

10.8%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of cores

ATLAS Pros and Cons

 Upsides:

 Good at improving performance

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest ranked threads get delayed significantly  high

unfairness

81

Emerging Non-Volatile Memory

Technologies

Aside: Non-Volatile Memory

 If memory were non-volatile…

 there would be no need for refresh…

 we would not lose data on power loss…

 Problem: non-volatile has traditionally been much slower
than DRAM

 Think hard disks… Even flash memory…

 Opportunity: there are some emerging memory
technologies that are relatively fast, and non-volatile.

 And, they seem more scalable than DRAM

 Question: Can we have emerging technologies as part of
main memory?

83

Emerging Memory Technologies

 Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?

84

Emerging Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors

 Inject current to change atomic structure

 Resistance determined by atom distance

85

What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

86

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance

 amorphous/crystalline

87

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system

88

PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

 How to partition/migrate data between PCM and DRAM

89

PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

 How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

90

PCM-Based Memory Systems: Research Challenges

 Partitioning

 Should DRAM be a cache or main memory, or configurable?

 What fraction? How many controllers?

 Data allocation/movement (energy, performance, lifetime)

 Who manages allocation/movement?

 What are good control algorithms?

 How do we prevent degradation of service due to wearout?

 Design of cache hierarchy, memory controllers, OS

 Mitigate PCM shortcomings, exploit PCM advantages

 Design of PCM/DRAM chips and modules

 Rethink the design of PCM/DRAM with new requirements

91

An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm

92

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

93

Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at

cache block or word

granularity

 Reduces unnecessary wear

94

DRAM PCM

Results: Architected PCM as Main Memory

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
95

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

97

