
18-447

Computer Architecture

Lecture 25: Main Memory Wrap-Up

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/2/2014

Upcoming Seminar on DRAM (April 3)

 April 3, Thursday, 4pm, this room (CIC Panther Hollow)

 Prof. Rajeev Balasubramonian, Univ. of Utah

 Memory Architectures for Emerging Technologies and
Workloads

 The memory system will be a growing bottleneck for many
workloads running on high-end servers. Performance improvements
from technology scaling are also expected to decline in the coming
decade. Therefore, new capabilities will be required in memory
devices and memory controllers to achieve the next big leaps in
performance and energy efficiency. Some of these capabilities will
be inspired by emerging workloads (e.g., in-memory big-data,
approximate computing, co-scheduled VMs), some will be inspired by
new memory technologies (e.g., 3D stacking). The talk will discuss
multiple early-stage projects in the Utah Arch lab that focus on
DRAM parameter variation, near-data processing, and memory
security.

2

Cloud Workshop All Day on April 4

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html

 You need to register to attend. Gates 6115. Many talks:
 Keynote: Prof. Onur Mutlu – Carnegie Mellon – "Rethinking Memory System Design for Data-

Intensive Computing"

 Prof. Rajeev Balasubramonian – Utah – “Practical Approaches to Memory Security in the Cloud”

 Bryan Chin – Cavium – “Head in the Clouds - Building a Chip for Scale-out Computing”

 Dr. Joon Kim - SK Hynix – “The Future of NVM Memories”

 Prof. Andy Pavlo - Carnegie Mellon – “OLTP on NVM: YMMV"

 Dr. John Busch – SanDisk – “The Impact of Flash Memory on the Future of Cloud Computing”

 Keynote: Prof. Greg Ganger – Carnegie Mellon – “Scheduling Heterogeneous Resources in Cloud
Datacenters”

 Paul Rad – Rackspace – “OpenStack-Based High Performance Cloud Architecture”

 Charles Butler – Ubuntu – “Cloud Service Orchestration with JuJu”

 Prof. Mor Harchol-Balter - Carnegie Mellon – “Dynamic Power Management in Data Centers”

 Prof. Eric Xing – Carnegie Mellon – “Petuum: A New Platform for Cloud-based Machine Learning to
Efficiently Solve Big Data Problems”

 Majid Bemanian – Imagination Technologies – “Security in the Cloud and Virtualized Mobile Devices”

 Robert Broberg – Cisco – “Cloud Security Challenges and Solutions”

3

http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html

Cloud Career Fair on April 4

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html

 Gates 6121, 11am-3pm

 Runs in Room 6121 in parallel to the Tech Forum, from
11am to 3PM. IAP members will have
informational/recruiting tables on site. During the breaks in
the technical presentations and lunch, the Tech Forum
attendees can network on lining up an internship or that
first full-time engineering job. Students who are only
interested and/or able to attend the Career Fair are
welcome to do so, but please indicate this specific interest
on your registration application (see the “Register Here”
button below).

4

http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html

Memory Interference and Scheduling

in Multi-Core Systems

Review: PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

6

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

8

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

9

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread B thread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

10

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

11

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

12

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad
 higher

MPKI

T
α < 10%

ClusterThreshold

Intensive
cluster αT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM: Quantum-Based Operation

13

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

14

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

15

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

16

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss
 FRFCFS

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

17

Other Ways of

Handling Memory Interference

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

19

Observation: Modern Systems Have Multiple Channels

A new degree of freedom

Mapping data across multiple channels

20

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

21

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

22

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

23 Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

24

Map data of low and high memory-intensity applications
to different channels

1 2 3 4 5
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

1 2 3 4 5

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

25

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0 R1

R0 R2 R3 R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4 R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2 R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
Cycles Map data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

26

Hardware

System

Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

27

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

28

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

29 Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

30

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores (sources),
not at the shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

31

32

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 (limit injection rate and parallelism)

 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource contention

 Disadvantages

- Requires interference/slowdown estimations

- Thresholds can become difficult to optimize throughput loss
33

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

 Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

34

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 35

Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

36

More on DRAM Controllers

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 State transitions incur latency during which the chip cannot
be accessed

38

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem

39

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

40

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

41

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

42 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

43

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0 < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values

 Schedule command with highest estimated long-term value in each
state

 Continuously update state-action values based on feedback from
system

44

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

45

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

46

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

47

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

 1) What system variables might be useful

 2) What target to optimize, but not how to optimize it

 Disadvantages

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

48

DRAM Refresh

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Read and close each row every N ms

 Typical N = 64 ms

 Downsides of refresh

 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

50

DRAM Refresh: Performance

 Implications of refresh on performance

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

 51

Distributed Refresh

 Distributed refresh eliminates long pause times

 How else can we reduce the effect of refresh on
performance/QoS?

 Does distributed refresh reduce refresh impact on energy?

 Can we reduce the number of refreshes?

52

Refresh Today: Auto Refresh

53

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are

periodically refreshed

via the auto-refresh command

Refresh Overhead: Performance

54

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

55

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional Refresh

 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

56

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the
worst-case rate

 Can we exploit this to reduce refresh operations at low cost?

57

Reducing DRAM Refresh Operations

 Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

 (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

 e.g., a bin for 64-128ms, another for 128-256ms, …

 Observation: Only very few rows need to be refreshed very
frequently [64-128ms] Have only a few bins Low HW

overhead to achieve large reductions in refresh operations

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

58

1. Profiling: Profile the retention time of all DRAM rows

 can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time

 use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

 probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

59

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

60

2. Binning

 How to efficiently and scalably store rows into retention
time bins?

 Use Hardware Bloom Filters [Bloom, CACM 1970]

61 Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter

 [Bloom, CACM 1970]

 Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

 Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

 Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

 Some elements map to the bits other elements also map to

 Operations: 1) insert, 2) test, 3) remove all elements

62 Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

63 Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

64

Bloom Filter Operation Example

65

Bloom Filter Operation Example

66

Bloom Filter Operation Example

67

Benefits of Bloom Filters as Bins

 False positives: a row may be declared present in the
Bloom filter even if it was never inserted

 Not a problem: Refresh some rows more frequently than
needed

 No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

 Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

 Efficient: No need to store info on a per-row basis; simple
hardware 1.25 KB for 2 filters for 32 GB DRAM system

68

Use of Bloom Filters in Hardware

 Useful when you can tolerate false positives in set
membership tests

 See the following recent examples for clear descriptions of
how Bloom Filters are used

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

69

3. Refreshing (RAIDR Refresh Controller)

70

3. Refreshing (RAIDR Refresh Controller)

71

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

72

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

73

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

74

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
 System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

 RAIDR hardware cost: 1.25 kB (2 Bloom filters)

 Refresh reduction: 74.6%

 Dynamic DRAM energy reduction: 16%

 Idle DRAM power reduction: 20%

 Performance improvement: 9%

 Benefits increase as DRAM scales in density

75

DRAM Refresh: More Questions

 What else can you do to reduce the impact of refresh?

 What else can you do if you know the retention times of
rows?

 How can you accurately measure the retention time of
DRAM rows?

 Recommended reading:

 Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

76

