
18-447

Computer Architecture

Lecture 22: Main Memory

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/26/2014

Enabling High Bandwidth Memories

Multiple Instructions per Cycle

 Can generate multiple cache accesses per cycle

 How do we ensure the cache can handle multiple accesses
in the same clock cycle?

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)

3

Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same
time?

 Peripheral logic needs to handle this

4

Peripheral Logic for True Multiporting

5

Peripheral Logic for True Multiporting

6

Handling Multiple Accesses per Cycle (I)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?

7

Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a
bottleneck

 Area proportional to “ports”

8

Port 1

Load

Store

Port 1

Data

Cache
Copy 2Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses

to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?

9

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do
you interleave data across banks?)

10

Further Readings on Caching and MLP

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas
Session, 1998.

11

Main Memory

Main Memory in the System

13

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

The Memory Chip/System Abstraction

14

Review: Memory Bank Organization
 Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines

• For next access

15

Review: SRAM (Static Random Access Memory)

16

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m diff pairs

2n
n

m

1

row select

b
it
lin

e

_
b
it
lin

e

n+m

Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines

(entire row is read together)

4. diff. sensing and col. select

(data is ready)

5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3

Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

Review: DRAM (Dynamic Random Access Memory)

17

row enable
_
b
it
lin

e

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m

2n
n

m

1

RAS

CAS

A DRAM die comprises
of multiple such arrays

Bits stored as charges on node

capacitance (non-restorative)

- bit cell loses charge when read

- bit cell loses charge over time

Read Sequence

1~3 same as SRAM

4. a “flip-flopping” sense amp
amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Refresh: A DRAM controller must

periodically read all rows within the

allowed refresh time (10s of ms)

such that charge is restored in cells

Review: DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)

18

Some Fundamental Concepts (I)

 Physical address space

 Maximum size of main memory: total number of uniquely
identifiable locations

 Physical addressability

 Minimum size of data in memory can be addressed

 Byte-addressable, word-addressable, 64-bit-addressable

 Addressability depends on the abstraction level of the
implementation

 Alignment

 Does the hardware support unaligned access transparently to
software?

 Interleaving
19

Some Fundamental Concepts (II)

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do
you interleave data across banks?)

20

Interleaving

21

Interleaving Options

22

Some Questions/Concepts

 Remember CRAY-1 with 16 banks

 11 cycle bank latency

 Consecutive words in memory in consecutive banks (word
interleaving)

 1 access can be started (and finished) per cycle

 Can banks be operated fully in parallel?

 Multiple accesses started per cycle?

 What is the cost of this?

 We have seen it earlier (today)

 Modern superscalar processors have L1 data caches with
multiple, fully-independent banks

23

The Bank Abstraction

24

25

Rank

The DRAM Subsystem

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

27

The DRAM Bank Structure

28

Page Mode DRAM

 A DRAM bank is a 2D array of cells: rows x columns

 A “DRAM row” is also called a “DRAM page”

 “Sense amplifiers” also called “row buffer”

 Each address is a <row,column> pair

 Access to a “closed row”

 Activate command opens row (placed into row buffer)

 Read/write command reads/writes column in the row buffer

 Precharge command closes the row and prepares the bank for
next access

 Access to an “open row”

 No need for activate command

29

DRAM Bank Operation

30

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

The DRAM Chip

 Consists of multiple banks (2-16 in Synchronous DRAM)

 Banks share command/address/data buses

 The chip itself has a narrow interface (4-16 bits per read)

31

128M x 8-bit DRAM Chip

32

DRAM Rank and Module

 Rank: Multiple chips operated together to form a wide
interface

 All chips comprising a rank are controlled at the same time

 Respond to a single command

 Share address and command buses, but provide different data

 A DRAM module consists of one or more ranks

 E.g., DIMM (dual inline memory module)

 This is what you plug into your motherboard

 If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

33

A 64-bit Wide DIMM (One Rank)

34

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

Command Data

A 64-bit Wide DIMM (One Rank)

 Advantages:
 Acts like a high-

capacity DRAM chip
with a wide
interface

 Flexibility: memory
controller does not
need to deal with
individual chips

 Disadvantages:
 Granularity:

Accesses cannot be
smaller than the
interface width

35

Multiple DIMMs

36

 Advantages:

 Enables even
higher capacity

 Disadvantages:

 Interconnect
complexity and
energy
consumption
can be high

DRAM Channels

 2 Independent Channels: 2 Memory Controllers (Above)

 2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not Shown above)

37

Generalized Memory Structure

38

Generalized Memory Structure

39

The DRAM Subsystem

The Top Down View

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

41

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Breaking down a Chip

C
h

ip
 0

<0
:7

>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B

Row-buffer

1B

...
<0

:7
>

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

49

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS if row is “open” OR

 RAS + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → CPU transfer time (through controller)

57

Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)

58

How Multiple Banks/Channels Help

59

Multiple Channels

 Advantages

 Increased bandwidth

 Multiple concurrent accesses (if independent channels)

 Disadvantages

 Higher cost than a single channel

 More board wires

 More pins (if on-chip memory controller)

60

Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel

 How about random accesses? Strided accesses?
61

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

Bank Mapping Randomization

 DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

62

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?

63

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in
DRAM

 Operating system can control which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference

64

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many issues are similar in the design of controllers for
other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

66

DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to improve performance

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

67

DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s
importance in the processing core)

68

DRAM Controller (II)

69

70

A Modern DRAM Controller

DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

71

DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

72

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

73

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

74

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Predicting the future?

75

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

76

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

77

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 State transitions incur latency during which the chip cannot
be accessed

78

DRAM Refresh

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Read and close each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

80

DRAM Refresh: Performance

 Implications of refresh on performance

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

81

Distributed Refresh

 Distributed refresh eliminates long pause times

 How else can we reduce the effect of refresh on
performance/QoS?

 Does distributed refresh reduce refresh impact on energy?

 Can we reduce the number of refreshes?

82

Refresh Today: Auto Refresh

83

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are

periodically refreshed

via the auto-refresh command

Refresh Overhead: Performance

84

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

85

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional Refresh

 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

86

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the
worst-case rate

 Can we exploit this to reduce refresh operations at low cost?

87

Reducing DRAM Refresh Operations

 Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

 (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

 e.g., a bin for 64-128ms, another for 128-256ms, …

 Observation: Only very few rows need to be refreshed very
frequently [64-128ms]  Have only a few bins  Low HW

overhead to achieve large reductions in refresh operations

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

88

1. Profiling: Profile the retention time of all DRAM rows

 can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time

 use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

 probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

89

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

90

2. Binning

 How to efficiently and scalably store rows into retention
time bins?

 Use Hardware Bloom Filters [Bloom, CACM 1970]

91Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter

 [Bloom, CACM 1970]

 Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

 Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

 Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a
subset of those bits

 Some elements map to the bits also mapped to other elements

 Operations: 1) insert, 2) test, 3) remove all elements

92Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

93Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970.

Bloom Filter Operation Example

94

Bloom Filter Operation Example

95

Bloom Filter Operation Example

96

Bloom Filter Operation Example

97

Benefits of Bloom Filters as Bins

 False positives: a row may be declared present in the
Bloom filter even if it was never inserted

 Not a problem: Refresh some rows more frequently than
needed

 No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

 Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

 Efficient: No need to store info on a per-row basis; simple
hardware  1.25 KB for 2 filters for 32 GB DRAM system

98

Use of Bloom Filters in Hardware

 Useful when you can tolerate false positives in set
membership tests

 See the following recent examples for clear descriptions of
how Bloom Filters are used

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”
PACT 2012.

99

3. Refreshing (RAIDR Refresh Controller)

100

3. Refreshing (RAIDR Refresh Controller)

101

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Baseline Design

102

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

103

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

104

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR: Results and Takeaways
 System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

 RAIDR hardware cost: 1.25 kB (2 Bloom filters)

 Refresh reduction: 74.6%

 Dynamic DRAM energy reduction: 16%

 Idle DRAM power reduction: 20%

 Performance improvement: 9%

 Benefits increase as DRAM scales in density

105

DRAM Refresh: More Questions

 What else can you do to reduce the impact of refresh?

 What else can you do if you know the retention times of
rows?

 How can you accurately measure the retention time of
DRAM rows?

 Recommended reading:

 Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.

106

