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Reminders

 Lab 4: Due March 21 (today!)

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with 
the TAs and me if you are concerned about your 
performance.
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Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3 

 Memory/cache chapters from Hamacher+: 8.1-8.7 

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965. 
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Cache Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is 
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E 

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the 
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory 
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate
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What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches
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Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes
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Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them 
individually to next level

+ Simpler because write misses can be treated the same way as 
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate)
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Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read? 

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads
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Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches)

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

 First level caches are almost always split 

 Mainly for the last reason above

 Second and higher levels are almost always unified

11



Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter
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Virtual Memory and Cache Interaction



Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or 
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data
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Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why? 

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why? 

 Different pages can share the same physical frame within or 
across processes

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

 Do homonyms and synonyms create problems when we 
have a cache?

 Is the cache virtually or physically addressed?

15



Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only 
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?
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Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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An Exercise

 Problem 5 from 

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf
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An Exercise (I)
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An Exercise (II)
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An Exercise (Concluded)

27



Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your 
homeworks…

28

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf


Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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Some Questions to Ponder

 At what cache level should we worry about the synonym 
and homonym problems?

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page 
coloring?
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Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in 
DRAM

 Operating system can control which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference
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Cache Performance



Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy
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Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data                                                    
the executing application references 

 Within a time interval 
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Block Size

 Block size is the data that is associated with an address tag 

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed
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Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first 

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth 

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?
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Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?
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Classification of Cache Misses

 Compulsory miss 

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is 
displaced for the reasons below

 dominates when locality is poor

 Capacity miss 

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity           

 Conflict miss 

 defined as any miss that is neither a compulsory nor a capacity 
miss
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How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the 
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each 
“phase” fits in cache
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Improving Cache “Performance”

 Remember 

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other)

-- Increases miss latency if accessed serially with L2
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Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions  

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and 
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 
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Skewed Associative Caches (I)

 Basic 2-way associative cache structure
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Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function
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Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index 
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.
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Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
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Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



More on Data Structure Layout

 Pointer based traversal 
(e.g., of a linked list)

 Assume a huge linked 
list (1M nodes) and 
unique keys

 Why does the code on 
the left have poor cache 
hit rate?

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed!
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struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}



How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure

 Who should do this?

 Programmer

 Compiler 

 Profiling vs. dynamic

 Hardware?

 Who can determine what 
is frequently used?
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struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}



Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of 
computation

 Essentially: Divide the working set so that each piece fits in 
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Memory Level Parallelism (MLP) 

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
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isolated miss parallel miss



Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss 
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time 

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss

53



54

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance
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Saved 
cycles

Cache



MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week
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Enabling Multiple Outstanding Misses



Handling Multiple Outstanding Accesses 

 Non-blocking or lockup-free caches

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache 
Organization," ISCA 1981.

 Question: If the processor can generate multiple cache 
accesses, can the later accesses be handled while a 
previous miss is outstanding?

 Idea: Keep track of the status/data of misses that are being 
handled in Miss Status Handling Registers (MSHRs)

 A cache access checks MSHRs to see if a miss to the same 
block is already pending.

 If pending, a new request is not generated

 If pending and the needed data available, data forwarded to later 
load

 Requires buffering of outstanding miss requests
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Non-Blocking Caches (and MLP)

 Enable cache access when there is a pending miss

 Enable multiple misses in parallel

 Memory-level parallelism (MLP)

 generating and servicing multiple memory accesses in parallel

 Why generate multiple misses? 

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, runahead, prefetching

59

time

A
C

B

isolated miss parallel miss



Miss Status Handling Register

 Also called “miss buffer”

 Keeps track of

 Outstanding cache misses

 Pending load/store accesses that refer to the missing cache 
block

 Fields of a single MSHR entry

 Valid bit

 Cache block address (to match incoming accesses)

 Control/status bits (prefetch, issued to memory, which 
subblocks have arrived, etc)

 Data for each subblock

 For each pending load/store

 Valid, type, data size, byte in block, destination register or store 
buffer entry address

60



Miss Status Handling Register Entry
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MSHR Operation

 On a cache miss:

 Search MSHRs for a pending access to the same block

 Found: Allocate a load/store entry in the same MSHR entry

 Not found: Allocate a new MSHR

 No free entry: stall

 When a subblock returns from the next level in memory

 Check which loads/stores waiting for it

 Forward data to the load/store unit

 Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

 If last subblock, dellaocate MSHR (after writing the block in 
cache)
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Non-Blocking Cache Implementation

 When to access the MSHRs? 

 In parallel with the cache?

 After cache access is complete?

 MSHRs need not be on the critical path of hit requests

 Which one below is the common case?

 Cache miss, MSHR hit

 Cache hit
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Enabling High Bandwidth Caches 

(and Memories in General)



Multiple Instructions per Cycle

 Can generate multiple cache accesses per cycle

 How do we ensure the cache can handle multiple accesses 
in the same clock cycle? 

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)
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Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same 
time?

 Peripheral logic needs to handle this
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Peripheral Logic for True Multiporting
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Peripheral Logic for True Multiporting
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Handling Multiple Accesses per Cycle (I)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?
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Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a 
bottleneck

 Area proportional to “ports”
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Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses 

to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?
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General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do 
you interleave data across banks?)
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