
18-447

Computer Architecture

Lecture 17: GPUs, VLIW, Systolic Arrays

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/26/2014

Midterm I Next Week

 March 5, during class time

 We will likely take the entire 2 hours: 12:30-2:30pm

 Please come early

 Closed book, closed notes

 No electronic devices allowed

 You can bring one letter-sized cheat sheet

 The exam will test understanding, not memorization

2

Lab 4 Reminder

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b out

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
3

GPU Readings

 Required

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008.

 Recommended

 Narasiman et al., “Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

 Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” ISCA 2013.

4

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

High-Level View of a GPU

6

Concept of “Thread Warps” and SIMT

 Warp: A set of threads that execute the same instruction
(on different data elements) SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

7

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Loop Iterations as Threads

8

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, blockDim=4 4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

11 Slide credit: Hyesoon Kim

Latency Hiding with “Thread Warps”

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No branch
prediction)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 FGMT enables long latency
tolerance

 Graphics has millions of pixels

12

Decode

R
 F

R
 F

R
 F

A
 L U

A
 L U

A
 L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Lock step

 Programming model is SIMD (no threads) SW needs to know vector

length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different
warp) programming model not SIMD

 SW does not need to know vector length

 Enables memory and branch latency tolerance

 ISA is scalar vector instructions formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

13

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

 Many scientific applications are programmed this way and run on MIMD
computers (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD computer

14

Branch Divergence Problem in Warp-based SIMD

 SPMD Execution on SIMD Hardware

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”)

execution

15

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD

 GPU uses SIMD
pipeline to save area
on control logic.

 Group scalar threads into
warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

16

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

17

- G 1111 TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

18

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

 B;

} else {

 C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Form new warp at divergence

 Enough threads branching to each path to create full new
warps

19

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

20

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

21

A A B B G G A A C C D D E E F F

Time

A A B B G G A A C D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
A A

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

What About Memory Divergence?

 Modern GPUs have caches

 Ideally: Want all threads in the warp to hit (without
conflicting with each other)

 Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

 Need techniques to

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence

22

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

23
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

24

…

= instruction stream decode = SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for fragment

contexts (registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

25

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

26

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

28

SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute

29

VLIW

VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with
SIMD)

 Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed
into the functional units

31

VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
32

SIMD Array Processing vs. VLIW

 Array processor

33

VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple higher frequency, easier to design
34

VLIW Philosophy (II)

35 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

36

VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware simple hardware

+ No need for dependency checking within a VLIW instruction

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units simple hardware

 Disadvantages

-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction

 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

 -- No instruction can progress until the longest-latency instruction completes

37

VLIW Summary

 VLIW simplifies hardware, but requires complex compiler
techniques

 Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

38

DAE

Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before HPS, Pentium Pro

 Idea: Decouple operand

 access and execution via

 two separate instruction

 streams that communicate

 via ISA-visible queues.

 Smith, “Decoupled Access/Execute

 Computer Architectures,” ISCA 1982,

 ACM TOCS 1984.

 40

Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)

41

Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E

 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling

 -- Branch instructions require synchronization between A and E

 -- Multiple instruction streams (can be done with a single one,
though)

42

Astronautics ZS-1

 Single stream
steered into A and
X pipelines

 Each pipeline in-
order

 Smith et al., “The

ZS-1 central
processor,”
ASPLOS 1987.

 Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

43

Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities

 44

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size

45

Systolic Arrays

46

Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and regular)

 High concurrency high performance

 Balanced computation and I/O (memory access)

47

Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

48

Memory: heart

PEs: cells

Memory pulses

data through

cells

Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a
piece of the instruction)

49

Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

 Many image processing tasks

50

Systolic Computation Example: Convolution

 y1 = w1x1 +
w2x2 + w3x3

 y2 = w1x2 +
w2x3 + w3x4

 y3 = w1x3 +
w2x4 + w3x5

51

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

52

 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution

53

More Programmability

Pipeline Parallelism

54

File Compression Example

55

Systolic Array

 Advantages

 Makes multiple uses of each data item reduced need for

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose need software, programmer

support to be a general purpose model

56

The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

57

The WARP Computer

58

The WARP Computer

59

Systolic Arrays vs. SIMD

 Food for thought…

60

Some More Recommended Readings

 Recommended:

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

 Russell, “The CRAY-1 computer system,” CACM 1978.

 Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

61

