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Midterm I Next Week 

 March 5, during class time 

 We will likely take the entire 2 hours: 12:30-2:30pm 

 Please come early 

 

 Closed book, closed notes 

 No electronic devices allowed 

 You can bring one letter-sized cheat sheet 

 

 The exam will test understanding, not memorization 
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Lab 4 Reminder 

 Lab 4a out 

 Branch handling and branch predictors 

 

 Lab 4b out 

 Fine-grained multithreading 

 

 Due March 21st 

 

 You have 4 weeks! 

 Get started very early – Exam and S. Break are on the way 

 Finish Lab 4a first and check off 

 Finish Lab 4b next and check off 

 Do the extra credit 
3 



GPU Readings 

 Required 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008. 

 

 Recommended 

 Narasiman et al., “Improving GPU Performance via Large 
Warps and Two-Level Warp Scheduling,” MICRO 2011. 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 

 Jog et al., “Orchestrated Scheduling and Prefetching for 
GPGPUs,” ISCA 2013. 
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Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 

 

 

 

 

 



High-Level View of a GPU 
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Concept of “Thread Warps” and SIMT 

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak) 

 All threads run the same code 
 Warp: The threads that run lengthwise in a woven fabric … 
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Loop Iterations as Threads 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 
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Slide credit: Krste Asanovic 



 Same instruction in different threads uses thread id to 
index and access different data elements 

 

SIMT Memory Access 

Let’s assume N=16, blockDim=4  4 blocks  
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+ + + + 

Slide credit: Hyesoon Kim 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 
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Latency Hiding with “Thread Warps” 

 Warp: A set of threads that 
execute the same instruction 
(on different data elements) 

 

 Fine-grained multithreading 

 One instruction per thread in 
pipeline at a time (No branch 
prediction) 

 Interleave warp execution to 
hide latencies 

 Register values of all threads stay 
in register file 

 FGMT enables long latency 
tolerance 

 Graphics has millions of pixels 
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Warp-based SIMD vs. Traditional SIMD 
 Traditional SIMD contains a single thread  

 Lock step 

 Programming model is SIMD (no threads)  SW needs to know vector 

length 

 ISA contains vector/SIMD instructions 

 

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 

 Does not have to be lock step 

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD 

 SW does not need to know vector length 

 Enables memory and branch latency tolerance 

 ISA is scalar  vector instructions formed dynamically 

 Essentially, it is SPMD programming model implemented on SIMD 
hardware 
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SPMD 
 Single procedure/program, multiple data  

 This is a programming model rather than computer organization 

 

 Each processing element executes the same procedure, except on 
different data elements 

 Procedures can synchronize at certain points in program, e.g. barriers 

 

 Essentially, multiple instruction streams execute the same 
program 

 Each program/procedure can 1) execute a different control-flow path, 
2) work on different data, at run-time 

 Many scientific applications are programmed this way and run on MIMD 
computers (multiprocessors) 

 Modern GPUs programmed in a similar way on a SIMD computer 
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Branch Divergence Problem in Warp-based SIMD 

 SPMD Execution on SIMD Hardware  

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 
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Control Flow Problem in GPUs/SIMD 

 GPU uses SIMD 
pipeline to save area 
on control logic. 

 Group scalar threads into 
warps 

 

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch Divergence Handling (I) 
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Branch Divergence Handling (II) 
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Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 Form new warp at divergence 

 Enough threads branching to each path to create full new 
warps 

 

19 



Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 

 

 

 

 

 

 

 

 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 
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Dynamic Warp Formation Example 
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What About Memory Divergence? 

 Modern GPUs have caches 

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other) 

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache. 

 

 Need techniques to  

 Tolerate memory divergence 

 Integrate solutions to branch and memory divergence 
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NVIDIA GeForce GTX 285 

 NVIDIA-speak: 

 240 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 30 cores 

 8 SIMD functional units per core 
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NVIDIA GeForce GTX 285 “core” 
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… 

= instruction stream decode = SIMD functional unit, control  

   shared across 8 units 
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Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  

for thread contexts 

(registers) 

 Groups of 32 threads share instruction stream (each group is 
a Warp) 

 Up to 32 warps are simultaneously interleaved 

 Up to 1024 thread contexts can be stored    

 
Slide credit: Kayvon Fatahalian 
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 



VLIW and DAE 

 

 

 

 

 

 



Remember: SIMD/MIMD Classification of Computers 

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD? Multiple instructions operate on single data element 

 Closest form: systolic array processor? 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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SISD Parallelism Extraction Techniques 

 We have already seen 

 Superscalar execution 

 Out-of-order execution 

 

 Are there simpler ways of extracting SISD parallelism? 

 VLIW (Very Long Instruction Word) 

 Decoupled Access/Execute 
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VLIW 

 

 

 

 

 

 



VLIW (Very Long Instruction Word) 

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler 

 Packed instructions can be logically unrelated (contrast with 
SIMD) 

 

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction 

 

 Traditional Characteristics 

 Multiple functional units 

 Each instruction in a bundle executed in lock step 

 Instructions in a bundle statically aligned to be directly fed 
into the functional units 
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VLIW Concept 
 

 

 

 

 

 

 

 

 

 

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983. 

 ELI: Enormously longword instructions (512 bits) 
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SIMD Array Processing vs. VLIW 

 Array processor 
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VLIW Philosophy 

 Philosophy similar to RISC (simple instructions and hardware) 

 Except multiple instructions in parallel 

 

 RISC (John Cocke, 1970s, IBM 801 minicomputer) 

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals) 

 And, to reorder simple instructions for high performance 

 Hardware does little translation/decoding  very simple 

 

 VLIW (Fisher, ISCA 1983) 

 Compiler does the hard work to find instruction level parallelism  

 Hardware stays as simple and streamlined as possible 

 Executes each instruction in a bundle in lock step 

 Simple  higher frequency, easier to design 
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VLIW Philosophy (II) 

35 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Commercial VLIW Machines 

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide) 

 Cydrome Cydra 5, Bob Rau 

 Transmeta Crusoe: x86 binary-translated into internal VLIW 

 TI C6000, Trimedia, STMicro (DSP & embedded processors) 

 Most successful commercially 

 

 Intel IA-64 

 Not fully VLIW, but based on VLIW principles 

 EPIC (Explicitly Parallel Instruction Computing) 

 Instruction bundles can have dependent instructions 

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones 
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VLIW Tradeoffs 

 Advantages 

+ No need for dynamic scheduling hardware  simple hardware 

+ No need for dependency checking within a VLIW instruction  

simple hardware for multiple instruction issue + no renaming 

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware 

 

 Disadvantages 

-- Compiler needs to find N independent operations 

 -- If it cannot, inserts NOPs in a VLIW instruction 

 -- Parallelism loss AND code size increase 

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing) 

-- Lockstep execution causes independent operations to stall 

 -- No instruction can progress until the longest-latency instruction completes 
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VLIW Summary 

 VLIW simplifies hardware, but requires complex compiler 
techniques 

 Solely-compiler approach of VLIW has several downsides 
that reduce performance 

-- Too many NOPs (not enough parallelism discovered) 

-- Static schedule intimately tied to microarchitecture 

 -- Code optimized for one generation performs poorly for next 

-- No tolerance for variable or long-latency operations (lock step) 

 

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation) 

 Enable code optimizations 

++ VLIW successful in embedded markets, e.g. DSP 
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DAE 

 

 

 

 

 

 



Decoupled Access/Execute 

 Motivation: Tomasulo’s algorithm too complex to 
implement  

 1980s before HPS, Pentium Pro 

 

 Idea: Decouple operand  

    access and execution via  

    two separate instruction  

    streams that communicate  

    via ISA-visible queues.  

 
 Smith, “Decoupled Access/Execute  

     Computer Architectures,” ISCA 1982,  

     ACM TOCS 1984. 
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Decoupled Access/Execute (II) 

 Compiler generates two instruction streams (A and E) 
 Synchronizes the two upon control flow instructions (using branch queues) 
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Decoupled Access/Execute (III) 

 Advantages: 

+ Execute stream can run ahead of the access stream and vice 
versa 

 + If A takes a cache miss, E can perform useful work 

    + If A hits in cache, it supplies data to lagging E 

 + Queues reduce the number of required registers 

+ Limited out-of-order execution without wakeup/select complexity 

 

 Disadvantages: 

 -- Compiler support to partition the program and manage queues 

        -- Determines the amount of decoupling 

 -- Branch instructions require synchronization between A and E 

 -- Multiple instruction streams (can be done with a single one, 
though) 
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Astronautics ZS-1 

 Single stream 
steered into A and 
X pipelines 

 Each pipeline in-
order 

 
 Smith et al., “The 

ZS-1 central 
processor,” 
ASPLOS 1987. 

 

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989. 
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Astronautics ZS-1 Instruction Scheduling 

 Dynamic scheduling 

 A and X streams are issued/executed independently 

 Loads can bypass stores in the memory unit (if no conflict) 

 Branches executed early in the pipeline 

 To reduce synchronization penalty of A/X streams 

 Works only if the register a branch sources is available 

 

 Static scheduling 

 Move compare instructions as early as possible before a branch 

 So that branch source register is available when branch is decoded 

 Reorder code to expose parallelism in each stream 

 Loop unrolling: 

 Reduces branch count + exposes code reordering opportunities 
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Loop Unrolling 

 

 

 

 

 

 

 

 Idea: Replicate loop body multiple times within an iteration 

+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 

 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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Systolic Arrays 
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Why Systolic Architectures? 

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory 

 

 Similar to an assembly line 

 Different people work on the same car 

 Many cars are assembled simultaneously 

 Can be two-dimensional 

 

 Why? Special purpose accelerators/architectures need 

 Simple, regular designs (keep # unique parts small and regular) 

 High concurrency  high performance 

 Balanced computation and I/O (memory access) 
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Systolic Architectures 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 
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Memory: heart 
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Systolic Architectures 

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements 

 

 

 

 

 Differences from pipelining: 

 Array structure can be non-linear and multi-dimensional  

 PE connections can be multidirectional (and different speed) 

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction) 
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Systolic Computation Example 

 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
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Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 

 

 y2 = w1x2 + 
w2x3 + w3x4 

 

 y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

 

 

 

 

 

 

 

 

 

 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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 Each PE in a systolic array 

 Can store multiple “weights” 

 Weights can be selected on the fly 

 Eases implementation of, e.g., adaptive filtering 

 

 Taken further 

 Each PE can have its own data and instruction memory 

 Data memory  to store partial/temporary results, constants 

 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 
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More Programmability 



Pipeline Parallelism 
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File Compression Example 
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Systolic Array 

 Advantages 

 Makes multiple uses of each data item  reduced need for 

fetching/refetching 

 High concurrency 

 Regular design (both data and control flow) 

 

 Disadvantages 

 Not good at exploiting irregular parallelism 

 Relatively special purpose  need software, programmer 

support to be a general purpose model 
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The WARP Computer 

 HT Kung, CMU, 1984-1988 

 

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor 

 Attached to a general purpose host machine 

 HLL and optimizing compiler to program the systolic array 

 Used extensively to accelerate vision and robotics tasks 

 

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986.  

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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The WARP Computer  
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Systolic Arrays vs. SIMD 

 Food for thought… 
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Some More Recommended Readings 

 Recommended: 

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983. 

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000. 

 

 Russell, “The CRAY-1 computer system,” CACM 1978. 

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993. 

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001. 
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