
18-447

Computer Architecture

Lecture 17: GPUs, VLIW, Systolic Arrays

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/26/2014

Midterm I Next Week

 March 5, during class time

 We will likely take the entire 2 hours: 12:30-2:30pm

 Please come early

 Closed book, closed notes

 No electronic devices allowed

 You can bring one letter-sized cheat sheet

 The exam will test understanding, not memorization

2

Lab 4 Reminder

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b out

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
3

GPU Readings

 Required

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008.

 Recommended

 Narasiman et al., “Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

 Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” ISCA 2013.

4

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

High-Level View of a GPU

6

Concept of “Thread Warps” and SIMT

 Warp: A set of threads that execute the same instruction
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

7

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Loop Iterations as Threads

8

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, blockDim=4  4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

11 Slide credit: Hyesoon Kim

Latency Hiding with “Thread Warps”

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No branch
prediction)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 FGMT enables long latency
tolerance

 Graphics has millions of pixels

12

Decode

R
 F

R
 F

R
 F

A
 L U

A
 L U

A
 L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Lock step

 Programming model is SIMD (no threads)  SW needs to know vector

length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different
warp)  programming model not SIMD

 SW does not need to know vector length

 Enables memory and branch latency tolerance

 ISA is scalar  vector instructions formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

13

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

 Many scientific applications are programmed this way and run on MIMD
computers (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD computer

14

Branch Divergence Problem in Warp-based SIMD

 SPMD Execution on SIMD Hardware

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”)

execution

15

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD

 GPU uses SIMD
pipeline to save area
on control logic.

 Group scalar threads into
warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

16

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

17

- G 1111 TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

18

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

 B;

} else {

 C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Form new warp at divergence

 Enough threads branching to each path to create full new
warps

19

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

20

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

21

A A B B G G A A C C D D E E F F

Time

A A B B G G A A C D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
A A

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

What About Memory Divergence?

 Modern GPUs have caches

 Ideally: Want all threads in the warp to hit (without
conflicting with each other)

 Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

 Need techniques to

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence

22

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

23
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

24

…

= instruction stream decode = SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for fragment

contexts (registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

25

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

26

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

28

SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute

29

VLIW

VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with
SIMD)

 Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed
into the functional units

31

VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
32

SIMD Array Processing vs. VLIW

 Array processor

33

VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding  very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple  higher frequency, easier to design
34

VLIW Philosophy (II)

35 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

36

VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware  simple hardware

+ No need for dependency checking within a VLIW instruction 

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units  simple hardware

 Disadvantages

-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction

 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

 -- No instruction can progress until the longest-latency instruction completes

37

VLIW Summary

 VLIW simplifies hardware, but requires complex compiler
techniques

 Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

38

DAE

Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before HPS, Pentium Pro

 Idea: Decouple operand

 access and execution via

 two separate instruction

 streams that communicate

 via ISA-visible queues.

 Smith, “Decoupled Access/Execute

 Computer Architectures,” ISCA 1982,

 ACM TOCS 1984.

 40

Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)

41

Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E

 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling

 -- Branch instructions require synchronization between A and E

 -- Multiple instruction streams (can be done with a single one,
though)

42

Astronautics ZS-1

 Single stream
steered into A and
X pipelines

 Each pipeline in-
order

 Smith et al., “The

ZS-1 central
processor,”
ASPLOS 1987.

 Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

43

Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities

 44

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size

45

Systolic Arrays

46

Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and regular)

 High concurrency  high performance

 Balanced computation and I/O (memory access)

47

Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

48

Memory: heart

PEs: cells

Memory pulses

data through

cells

Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a
piece of the instruction)

49

Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

 Many image processing tasks

50

Systolic Computation Example: Convolution

 y1 = w1x1 +
w2x2 + w3x3

 y2 = w1x2 +
w2x3 + w3x4

 y3 = w1x3 +
w2x4 + w3x5

51

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

52

 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution

53

More Programmability

Pipeline Parallelism

54

File Compression Example

55

Systolic Array

 Advantages

 Makes multiple uses of each data item  reduced need for

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer

support to be a general purpose model

56

The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

57

The WARP Computer

58

The WARP Computer

59

Systolic Arrays vs. SIMD

 Food for thought…

60

Some More Recommended Readings

 Recommended:

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

 Russell, “The CRAY-1 computer system,” CACM 1978.

 Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

61

