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Midterm I Next Week 

 March 5, during class time 

 We will likely take the entire 2 hours: 12:30-2:30pm 

 Please come early 

 

 Closed book, closed notes 

 No electronic devices allowed 

 You can bring one letter-sized cheat sheet 

 

 The exam will test understanding, not memorization 
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Lab 4 Reminder 

 Lab 4a out 

 Branch handling and branch predictors 

 

 Lab 4b out 

 Fine-grained multithreading 

 

 Due March 21st 

 

 You have 4 weeks! 

 Get started very early – Exam and S. Break are on the way 

 Finish Lab 4a first and check off 

 Finish Lab 4b next and check off 

 Do the extra credit 
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GPU Readings 

 Required 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008. 

 

 Recommended 

 Narasiman et al., “Improving GPU Performance via Large 
Warps and Two-Level Warp Scheduling,” MICRO 2011. 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 

 Jog et al., “Orchestrated Scheduling and Prefetching for 
GPGPUs,” ISCA 2013. 
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Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 

 

 

 

 

 



High-Level View of a GPU 
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Concept of “Thread Warps” and SIMT 

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak) 

 All threads run the same code 
 Warp: The threads that run lengthwise in a woven fabric … 
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Loop Iterations as Threads 

 

8 

for (i=0; i < N; i++) 
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 Same instruction in different threads uses thread id to 
index and access different data elements 

 

SIMT Memory Access 

Let’s assume N=16, blockDim=4  4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 
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Latency Hiding with “Thread Warps” 

 Warp: A set of threads that 
execute the same instruction 
(on different data elements) 

 

 Fine-grained multithreading 

 One instruction per thread in 
pipeline at a time (No branch 
prediction) 

 Interleave warp execution to 
hide latencies 

 Register values of all threads stay 
in register file 

 FGMT enables long latency 
tolerance 

 Graphics has millions of pixels 
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Warp-based SIMD vs. Traditional SIMD 
 Traditional SIMD contains a single thread  

 Lock step 

 Programming model is SIMD (no threads)  SW needs to know vector 

length 

 ISA contains vector/SIMD instructions 

 

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 

 Does not have to be lock step 

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD 

 SW does not need to know vector length 

 Enables memory and branch latency tolerance 

 ISA is scalar  vector instructions formed dynamically 

 Essentially, it is SPMD programming model implemented on SIMD 
hardware 
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SPMD 
 Single procedure/program, multiple data  

 This is a programming model rather than computer organization 

 

 Each processing element executes the same procedure, except on 
different data elements 

 Procedures can synchronize at certain points in program, e.g. barriers 

 

 Essentially, multiple instruction streams execute the same 
program 

 Each program/procedure can 1) execute a different control-flow path, 
2) work on different data, at run-time 

 Many scientific applications are programmed this way and run on MIMD 
computers (multiprocessors) 

 Modern GPUs programmed in a similar way on a SIMD computer 
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Branch Divergence Problem in Warp-based SIMD 

 SPMD Execution on SIMD Hardware  

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 
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Control Flow Problem in GPUs/SIMD 

 GPU uses SIMD 
pipeline to save area 
on control logic. 

 Group scalar threads into 
warps 

 

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch Divergence Handling (I) 

 

17 

- G 1111 TOS 

B 

C D 

E 

F 

A 

G 

Thread Warp Common PC 

Thread 

2 

Thread 

3 

Thread 

4 

Thread 

1 

B/1111 

C/1001 D/0110 

E/1111 

A/1111 

G/1111 

- A 1111 TOS 
E D 0110 
E C 1001 TOS 

- E 1111 
E D 0110 TOS 
- E 1111 

A D G A 

Time 

C B E 

- B 1111 TOS - E 1111 TOS 
Reconv. PC Next PC Active Mask 

Stack 

E D 0110 
E E 1001 TOS 

- E 1111 

Slide credit: Tor Aamodt 



Branch Divergence Handling (II) 
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Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 Form new warp at divergence 

 Enough threads branching to each path to create full new 
warps 
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Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 

 

 

 

 

 

 

 

 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 
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Dynamic Warp Formation Example 
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What About Memory Divergence? 

 Modern GPUs have caches 

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other) 

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache. 

 

 Need techniques to  

 Tolerate memory divergence 

 Integrate solutions to branch and memory divergence 
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NVIDIA GeForce GTX 285 

 NVIDIA-speak: 

 240 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 30 cores 

 8 SIMD functional units per core 
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NVIDIA GeForce GTX 285 “core” 
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NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  

for thread contexts 

(registers) 

 Groups of 32 threads share instruction stream (each group is 
a Warp) 

 Up to 32 warps are simultaneously interleaved 

 Up to 1024 thread contexts can be stored    

 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

… … … 

… … … 

… … … 

… … … 

… … … 

… … … 

… … … 

… … … 

… … … 

… … … 

26 

30 cores on the GTX 285: 30,720 threads 
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VLIW and DAE 

 

 

 

 

 

 



Remember: SIMD/MIMD Classification of Computers 

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD? Multiple instructions operate on single data element 

 Closest form: systolic array processor? 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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SISD Parallelism Extraction Techniques 

 We have already seen 

 Superscalar execution 

 Out-of-order execution 

 

 Are there simpler ways of extracting SISD parallelism? 

 VLIW (Very Long Instruction Word) 

 Decoupled Access/Execute 
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VLIW 

 

 

 

 

 

 



VLIW (Very Long Instruction Word) 

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler 

 Packed instructions can be logically unrelated (contrast with 
SIMD) 

 

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction 

 

 Traditional Characteristics 

 Multiple functional units 

 Each instruction in a bundle executed in lock step 

 Instructions in a bundle statically aligned to be directly fed 
into the functional units 
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VLIW Concept 
 

 

 

 

 

 

 

 

 

 

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983. 

 ELI: Enormously longword instructions (512 bits) 
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SIMD Array Processing vs. VLIW 

 Array processor 
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VLIW Philosophy 

 Philosophy similar to RISC (simple instructions and hardware) 

 Except multiple instructions in parallel 

 

 RISC (John Cocke, 1970s, IBM 801 minicomputer) 

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals) 

 And, to reorder simple instructions for high performance 

 Hardware does little translation/decoding  very simple 

 

 VLIW (Fisher, ISCA 1983) 

 Compiler does the hard work to find instruction level parallelism  

 Hardware stays as simple and streamlined as possible 

 Executes each instruction in a bundle in lock step 

 Simple  higher frequency, easier to design 
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VLIW Philosophy (II) 

35 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Commercial VLIW Machines 

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide) 

 Cydrome Cydra 5, Bob Rau 

 Transmeta Crusoe: x86 binary-translated into internal VLIW 

 TI C6000, Trimedia, STMicro (DSP & embedded processors) 

 Most successful commercially 

 

 Intel IA-64 

 Not fully VLIW, but based on VLIW principles 

 EPIC (Explicitly Parallel Instruction Computing) 

 Instruction bundles can have dependent instructions 

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones 
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VLIW Tradeoffs 

 Advantages 

+ No need for dynamic scheduling hardware  simple hardware 

+ No need for dependency checking within a VLIW instruction  

simple hardware for multiple instruction issue + no renaming 

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware 

 

 Disadvantages 

-- Compiler needs to find N independent operations 

 -- If it cannot, inserts NOPs in a VLIW instruction 

 -- Parallelism loss AND code size increase 

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing) 

-- Lockstep execution causes independent operations to stall 

 -- No instruction can progress until the longest-latency instruction completes 
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VLIW Summary 

 VLIW simplifies hardware, but requires complex compiler 
techniques 

 Solely-compiler approach of VLIW has several downsides 
that reduce performance 

-- Too many NOPs (not enough parallelism discovered) 

-- Static schedule intimately tied to microarchitecture 

 -- Code optimized for one generation performs poorly for next 

-- No tolerance for variable or long-latency operations (lock step) 

 

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation) 

 Enable code optimizations 

++ VLIW successful in embedded markets, e.g. DSP 
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DAE 

 

 

 

 

 

 



Decoupled Access/Execute 

 Motivation: Tomasulo’s algorithm too complex to 
implement  

 1980s before HPS, Pentium Pro 

 

 Idea: Decouple operand  

    access and execution via  

    two separate instruction  

    streams that communicate  

    via ISA-visible queues.  

 
 Smith, “Decoupled Access/Execute  

     Computer Architectures,” ISCA 1982,  

     ACM TOCS 1984. 
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Decoupled Access/Execute (II) 

 Compiler generates two instruction streams (A and E) 
 Synchronizes the two upon control flow instructions (using branch queues) 
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Decoupled Access/Execute (III) 

 Advantages: 

+ Execute stream can run ahead of the access stream and vice 
versa 

 + If A takes a cache miss, E can perform useful work 

    + If A hits in cache, it supplies data to lagging E 

 + Queues reduce the number of required registers 

+ Limited out-of-order execution without wakeup/select complexity 

 

 Disadvantages: 

 -- Compiler support to partition the program and manage queues 

        -- Determines the amount of decoupling 

 -- Branch instructions require synchronization between A and E 

 -- Multiple instruction streams (can be done with a single one, 
though) 
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Astronautics ZS-1 

 Single stream 
steered into A and 
X pipelines 

 Each pipeline in-
order 

 
 Smith et al., “The 

ZS-1 central 
processor,” 
ASPLOS 1987. 

 

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989. 
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Astronautics ZS-1 Instruction Scheduling 

 Dynamic scheduling 

 A and X streams are issued/executed independently 

 Loads can bypass stores in the memory unit (if no conflict) 

 Branches executed early in the pipeline 

 To reduce synchronization penalty of A/X streams 

 Works only if the register a branch sources is available 

 

 Static scheduling 

 Move compare instructions as early as possible before a branch 

 So that branch source register is available when branch is decoded 

 Reorder code to expose parallelism in each stream 

 Loop unrolling: 

 Reduces branch count + exposes code reordering opportunities 
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Loop Unrolling 

 

 

 

 

 

 

 

 Idea: Replicate loop body multiple times within an iteration 

+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 

 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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Systolic Arrays 
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Why Systolic Architectures? 

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory 

 

 Similar to an assembly line 

 Different people work on the same car 

 Many cars are assembled simultaneously 

 Can be two-dimensional 

 

 Why? Special purpose accelerators/architectures need 

 Simple, regular designs (keep # unique parts small and regular) 

 High concurrency  high performance 

 Balanced computation and I/O (memory access) 
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Systolic Architectures 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 
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Systolic Architectures 

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements 

 

 

 

 

 Differences from pipelining: 

 Array structure can be non-linear and multi-dimensional  

 PE connections can be multidirectional (and different speed) 

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction) 
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Systolic Computation Example 

 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
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Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 

 

 y2 = w1x2 + 
w2x3 + w3x4 

 

 y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

 

 

 

 

 

 

 

 

 

 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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 Each PE in a systolic array 

 Can store multiple “weights” 

 Weights can be selected on the fly 

 Eases implementation of, e.g., adaptive filtering 

 

 Taken further 

 Each PE can have its own data and instruction memory 

 Data memory  to store partial/temporary results, constants 

 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 
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More Programmability 



Pipeline Parallelism 
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File Compression Example 
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Systolic Array 

 Advantages 

 Makes multiple uses of each data item  reduced need for 

fetching/refetching 

 High concurrency 

 Regular design (both data and control flow) 

 

 Disadvantages 

 Not good at exploiting irregular parallelism 

 Relatively special purpose  need software, programmer 

support to be a general purpose model 
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The WARP Computer 

 HT Kung, CMU, 1984-1988 

 

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor 

 Attached to a general purpose host machine 

 HLL and optimizing compiler to program the systolic array 

 Used extensively to accelerate vision and robotics tasks 

 

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986.  

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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The WARP Computer  
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Systolic Arrays vs. SIMD 

 Food for thought… 
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Some More Recommended Readings 

 Recommended: 

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983. 

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000. 

 

 Russell, “The CRAY-1 computer system,” CACM 1978. 

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993. 

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001. 
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