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Readings Specifically for Today

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.



Readings for Next Lecture

SIMD Processing
Basic GPU Architecture
Other execution models: VLIW, Dataflow

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

Stay tuned for more readings...



Review: Summary ot OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch




OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?



Dataflow Graph for Our Example

MUL R3 € R1, R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7, R10
ADD RS5 € R5,R11




State of RAT and RS 1n Cycle 7
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Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

a ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies “who” should receive the result
An instruction can “fire” whenever all operands are received



Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?
o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer
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Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Memory Dependence Handling (T)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known
until a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine
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Memory Dependence Handling (II)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on the/any unknown address store
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Handling of Store-.oad Dependencies

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWAGO O N

xlisp e

compress [
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‘A no speculatlon B naive sﬁécullation.." ;;erfect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance
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Food for Thought for You

Many other design choices

Should reservation stations be centralized or distributed?
2 What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Exactly when does an instruction broadcast its tag?
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More Food for Thought for You

How can you implement branch prediction in an out-of-
order execution machine?

o Think about branch history register and PHT updates

o Think about recovery from mispredictions
= How to do this fast?

How can you combine superscalar execution with out-of-
order execution?

o These are different concepts
o Concurrent renaming of instructions
o Concurrent broadcast of tags

How can you combine superscalar + out-of-order + branch
prediction?
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Recommended Readings

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Boggs et al., "The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

Yeager, "The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

Tendler et al., "POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.
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Other Approaches to Concurrency
(or Instruction Level Parallelism)




Approaches to (Instruction-l.evel) Concurrency

Pipelining

Out-of-order execution
Dataflow (at the ISA level)
SIMD Processing

VLIW

Systolic Arrays
Decoupled Access Execute

21



Data Flow:
Exploiting Irregular Parallelism




Remember: State of RAT and RS in Cycle 7
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Review: More on Data Flow

In a data flow machine, a program consists of data flow
nodes

o A data flow node fires (fetched and executed) when all it
inputs are ready
i.e. when all inputs have tokens

Data flow node and its ISA representation

S % R ARG1 R ARG2 Dest. Of Result
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Data Flow Nodes
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Datatlow Nodes (II)

A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops Switch Merge
A *(i) T T ?
U
AR s
?

+




Datatlow Graphs
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Example Data Flow Program

OuT
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Control Flow vs. Data Flow
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Figure 2. A comparison of control flow and dataflow programs. On the
left a control flow program for a computer with memory-to-memory
instructions. The arcs point to the locations of data that are to be used or
created. Control flow arcs are indicated with dashed arrows; usually most
of them are implicit. In the equivalent dataflow program on the right only
one memory is involved. Each instruction contains pointers to all instruc-
tions that consume its results.
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Data Flow Characteristics

Data-driven execution of instruction-level graphical code

o Nodes are operators
o Arcs are data (I/0)
o As opposed to control-driven execution

Only real dependencies constrain processing

No sequential I-stream
o No program counter

Operations execute asynchronously
Execution triggered by the presence of data
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A Dataflow Processor

Token =

l

Matching
Area

1
i

Instruction
Fetch Area

|

Data1 + Tag + Destination

.~
.
~
.

Pool of
Unmatched Tokens

I\
N \New One

N\ \

Execution Package = Data1 + Data2 + 05Code“,

|

+Tag + Destination

Data Flow
Proc. Element

l

Token = Data + Tag + Destination
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MIT Tagged Token Data Flow Architecture

= Wait—Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

o Success: Both
tokens forwarded

o Fail: Incoming
token ——>
Waiting Token
Mem, bubble (no-

From network op forwarded)

To network
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TTDA Data Flow Example

Conceptual

|
My, o

Encoding of token:
A "packet" containing:

] Iﬁ_]

=0 =

Encoding of graph

Program memory:

Re-entrancy ("dynamic" dataflow):

® Each invocation of a function or loop iteration gets
its own, unique, "Context"

® Tokens destined for same instruction in different
invocations are distinguished by a context identifier

120R Destination instruction address, Left/Right port
Ctxt Context Identifier

E-:Ed-e Destination(s)
109 [opl [ 120L |
113 [op2 | 120R |
120 [ + 141, 159
141 [op3 |
159 [opd | ..., |

6.847 Value

120R Destination instruction address, Left/Right port

6.847 Value
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TTDA Data Flow Example

120R,c, 6.847

120L,c, 6.001
120,c, 6.001,6.847

141,159L,c, +,6.001,6.847

o

141,159L,c, 12.848

e |

1-!41,.!:‘.*.I 12.848
159L,c, 12.848
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TTDA Data Flow Example

200,c, A
Conceptual:
Heap Memory
200,c, A
207,c, Fetch,A -

Encoding of graph:

Program memory:

Opcode Destination(s) 207,c, v Fetch, A, 207,c
200 [Fefch| 207 ] reteh, A, 207.¢ mr:.c, v
N C el )
207 1 - T *
Fetch, A, 207,c 207,¢, v
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Manchester Data Flow Machine

Manchester

- v

|

Token

| Queue

Matching

|

Store

L

Overflow
Unit

J

l

v
Node

Store

Matching Store: Pairs
together tokens
destined for the same
Instruction

Large data set -
overflow in overflow
unit

Paired tokens fetch the
appropriate instruction
from the node store
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Data Flow Advantages/Disadvantages

Advantages
a Very good at exploiting irregular parallelism
o Only real dependencies constrain processing

Disadvantages

o No precise state
Interrupt/exception handling is difficult
Debugging very difficult

o Bookkeeping overhead (tag matching)

o Too much parallelism? (Parallelism control needed)
Overflow of tag matching tables

o Implementing dynamic data structures difficult
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Data Flow Summary

Availability of data determines order of execution
A data flow node fires when its sources are ready
Programs represented as data flow graphs (of nodes)

Data Flow at the ISA level has not been (as) successful

Data Flow implementations under the hood (while

preserving sequential ISA semantics) have been very
successful

o Out of order execution

o Hwu and Patt, "HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.
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Further Reading on Data Flow

ISA level dataflow

Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

Microarchitecture-level dataflow:

Hwu and Patt, "HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.
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Vector Processing:
Exploiting Regular (Data) Parallelism




Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
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Data Parallelism

Concurrency arises from performing the same operations
on different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits instruction-level parallelism
o Multiple instructions concurrent: instructions happen to be the same
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SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps
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Array vs. Vector Processors

Instruction Stream

LD VR €< A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
)
ADO| AD1 [AD2 AD3 LD1 | ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
—
Different ops @ same space AD3 JMU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—> €——Space—>
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SIMD Array Processing vs. VLIW

VLIW

Program
ounter

add r1.r2.r3 load r4.r5+4 mov ré.r2 mul r7.r8.r9

Instruction
Execution
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SIMD Array Processing vs. VLIW

Array processor

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution . . .
PE PE PE PE
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Vector Processors

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)

Cli] = (Ali] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
o Need to load/store vectors - vector registers (contain vectors)

o Need to operate on vectors of different lengths - vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory - vector stride register (VSTR)

Stride: distance between two elements of a vector

48



Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies - no hardware interlocking
within a vector

o No control flow within a vector
o Known stride allows prefetching of vectors into cache/memory

49



Vector Processor Advantages

+ No dependencies within a vector
o Pipelining, parallelization work well
o Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
o Reduces instruction fetch bandwidth

+ Highly regular memory access pattern
o Interleaving multiple banks for higher memory bandwidth
o Prefetching

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

50



Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. °!



Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks
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Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK
Vector Mask Register (VMASK)
o Indicates which elements of vector to operate on
o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)
Maximum VLEN can be N
o Maximum number of elements stored in a vector register

M-bit wide M-bit wide
V0,0 V1,0
V0,1 V1,1

VO,N-1 VI,N-1
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Vector Functional Units

Use deep pipeline (=> fast
clock) to execute element
operations

Simplifies control of deep
pipeline because elements in
vector are independent

Six stage multiply pipeline

Slide credit: Krste Asanovic

V 'V |V
1 2 3
V]
L]
L
1
\ \\ // N

V3 <-vl *¥v2
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Vector Machine Organization (CRAY-1)

VECTOR REGISTERS

1111111

uuuuuu

51| FLOATING

MEMOR |

s} POINT

B

INSTRUCTION BUFFERS

ADDRESS

FUNCTIONAL UNITS

CRAY-1

Russell, “The CRAY-1
computer system,”
CACM 1978.

Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers
8 24-bit address registers
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Memory Banking

Example: 16 banks; can start one bank access per cycle

Bank latency: 11 cycles

Can sustain 16 parallel accesses if they go to different banks

Bank Bank Bank
0 1 2
MDR MAR | MDR MAR | MDR MAR

A

A

................... Bank

15

MDR MAR

Data bus

Slide credit: Derek Chiou

A

Address bus

CPU
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Vector Memory System

Bas .
Vector Registers e l Sf[/de
\ 3 3
Address | l
Generator
0(1/12|3/4/5|6|7|8]9 BIC|D F
Memory Bank

Slide credit: Krste Asanovic
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Scalar Code Example

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code
MOVI RO = 50 1
MOVARL = A 1 304 dynamic instructions
MOVAR2 =B 1
MOVA R3 =C 1
X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11

DECBNZ --R0, X 2 :decrement and branch if NZ
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Scalar Code Execution Time

Scalar execution time on an in-order processor with 1 bank

o First two loads in the loop cannot be pipelined: 2*11 cycles
o 4 + 50*40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved)

o First two loads in the loop can be pipelined
o 4+ 50*%30 = 1504 cycles

Why 16 banks?
o 11 cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

59



Vectorizable Loops

A loop is vectorizable if each iteration is independent of any
other

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2 7 dynamic instructions
Vectorized loop:
MOVI VLEN = 50 1
MOVI VSTR =1 1
VLD VO = A 11 + VLN - 1
VLD V1 =B 11 + VLN -1
VADD V2 =V0 + V1 4 + VLN -1
VSHFR V3 =V2 >> 1 1+ VLN -1

VST C =V3 11 + VLN -1
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Vector Code Performance

No chaining

o i.e., output of a vector functional unit cannot be used as the
input of another (i.e., no vector data forwarding)

One memory port (one address generator)
16 memory banks (word-interleaved)

VO=A[0.49] |  V1=B[0.49] | ADD

1 1 11 49 11 49 4 49 1 49 11 49

285 cycles
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Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

<

V V IV V
LV vl\ 1 2 1|3 4
MULV v3,vl,v2
ADDV v5,\‘v3, v4
Chain Chain
Load y ‘:\\\\1

Unit I I

Memory

Slide credit: Krste Asanovic




Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector
functional unit to another

1 1 11 49 11 49

Strict assumption:

Each memory bank
has a single port
(memory bandwidth

bottleneck)

These two VLDs cannot be
pipelined. WHY? E

v11 49

VLD and VST cannot be &

= 182 cycles pipelined. WHY?
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Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

E 1 11 49

79 cycles L |
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Questions (1)

What if # data elements > # elements in a vector register?

o Need to break loops so that each iteration operates on #
elements in a vector register

E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Use indirection to combine elements into vector registers
o Called scatter/gather operations
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Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
i<N; i++)

for (i=0;
Ali]

B[i] + C[D[1i]]

Indexed load instruction (Gather)

LV vD, rD
LVI vC, r
LV vB, rB
ADDV.D vA
SV vA, rA

#
C, vD #
#
,VB,vC #
#

Load indices in D vector
Load indirect from rC base
Load B vector

Do add

Store result

06



Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse matrices

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Index Vector Data Vector Equivalent
1 3.14 3.14
3 6.5 0.0
7 71.2 6.5
8 2.71 0.0
0.0
0.0
0.0
71.2

2.7



Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] '= 0) then b[i]=ali]*Db[i]

goto loop

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o Does this look familiar? This is essentially predicated execution.
68



Another Example with Masking

for (i=0;i < 64; ++i)

if (a[i] >= b[i]) then c[i] = a[i]

else c[i] = b[i]
A B
1 2
2 2
3 2
4 10
-5 -4
0 -3
6 5
-7 -8

VMASK

PRPPRPOORPR

Steps to execute loop

1. Compare A, B to get
VMASK

2. Masked store of Ainto C
3. Complement VMASK

4. Masked store of B into C

09



Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off — scan mask vector and only execute
result writeback according to mask elements with non-zero masks
M[7]1=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M[6]=0 T~ A7l BL7]
M[5]=1 A[5] B[5] M[5]=1 l !
M[4]=1 A[4] B[4] M[4]=1\ \ S
M[3]=0 A[3] B[3] M[3]=0\ Cl51 |
! l/ M[2]=0 C[4] /
o - M[1]=1 | "
M[2]=0 | C[2] L M[O]=0\
M[1]=1 C[1] / C[1]

] Write data port

M[0]=0 _l C[O]
Write Enable  Write data port

Slide credit: Krste Asanovic 70



Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

Storage of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column
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Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
a They exploit data parallelism in both time and space

73



Remember: Array vs. Vector Processors

Instruction Stream

LD VR €< A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time

po| b1 [LD2 b3 LDO
)
ADO| AD1 [AD2 AD3 LD1 | ADO
MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
—
Different ops @ same space AD3 JMU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—> €——Space—>
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Vector Instruction Execution

A[6] B[6]
A[5]  B[5]
A[4] B[4]
A[3] B[3]

'
\ /

\ <}

]

\ <

1

\ <

-

C[0]

Slide credit: Krste Asanovic

Execution using
one pipelined
functional unit

ADDV C,A,B

A[24] B[24]
A[20] B[20]
A[16] B[16]
A[12] B[12]
! !
‘\ 4

e
2

Execution using
four pipelined
functional units

A[25]
A[21]
A[17]
A[13]

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

|
\

| |
|

B[27]
B[23]
B[19]
B[15]

| |
|

<} \

|
/

<} \

o]

\C[lO] /

<

\C[ll] /

Iy

ECIN

<

1

A T

C[0]

C[1]

C[2]

C[3]
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Vector Unit Structure

Vector
Registe

Lane

Functional Unit
/

(—T—

A 4

| == | - | - | -
ol | |
[I—— 1 ; [I—— [I——
Elements O, Elements 1, Elements 2, Elements 3,
4,8, .. 5,0, .. 6, 10, ... 7,11, ...

Memory Subsystem

Slide credit: Krste Asanovic




Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o example machine has 32 elements per vector register and 8 lanes
o Complete 24 operations/cycle while issuing 1 short instruction/cycle

Load Unit Multiply Unit Add Unit
oooooﬁ-ﬁﬂ
o000 AlA AAA[p A
time ©@e0ee o0 d|aaiairjikd aenEEEEE
——\N0 00000 opAsAAAdAAiiEEEEEEEE
OOCOOF="NAAAAAAAANEEEEEEN
@@@Q@(L—n-;lfj/'AAAAA4..A. EEEEEEEN
olololojoo]o[0]alalalaa[3dd fme/m E E[EEE
0000000 0C|A/AAA|AAAAEE EEENNN
AAAAAAAANEEEEEEE
. EEEEEEEN
Instruction

issue

Slide credit: Krste Asanovic
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Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + B[i]; .
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 78



Vector/SIMD Processing Summary

Vector/SIMD machines good at exploiting regular data-level
parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance

o Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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SIMD Operations in Modern ISAs




Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o Ala array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63

8

7

0

(a)
63

16 15

(b)
63

-32 31

(c)
63

(d)

Figure 1. MMX technology data types: packed byte (a),
packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.
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MMX Example: Image Overlaying (I)

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

MM1

MM3

MM1

B!ue.

Blue Blue Blue Blue Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | X0=blue
0x0000 | Ox0000 | OxFFFF [ OxFFFF | Ox0000 | Ox0000 | OxFFFF OXFFFF

Bitmask

Figure 9. Generating the selection bit mask.
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MMX Example: Image Overlaying (1I)

PANDN MM1, MM3

PAND MM4, MM1 |
Mal Y, [ Ys | Yo [ Yo Yo [ Y, | Y, [ Y, | MM1[0x0000]0x0000[0xFFFF [0xFFFF [0>0000]0x0000[0xFFFFJ0xFFFF|

MM1 [0x0000] 0x0000[0xFFFF [O<FFFF[0x0000[0x0000[OxFFFFJOFFFF] MM3[ Xz | Xo [ X5 | X4 [ X5 | X | X X, |
M4 [0<0000[0x0000] Y5 | Y. 0x0000[0x0000] Yy | Yo |MMI[ X, | X, [0x0000[0x0000] X, | X, [0x0000[0x000

\ POR MM4, MM1 /

MMal X T X% | Yo | Yo X[ X% | Yi[ Yol

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg B -mm3, memi /" Load _é.ighl pixels from
o woman's image
‘Movg. ~ mmd4, mem2 /" Load eight pixels from the
' IR ‘blossom image
~Pempeqb mm1, mm3. ' R

Pand  mm4, mm1
Pandn  mm1, mm3

Por - mmd4, mmt -

Figure 11. MMX code sequence for performing a condi-
tional select.
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Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)




High-Level View ot a GPU

;’ (PC, Mask) H

' I-Cache

Shader| |Shader| | Shader| ,,, | Shader *

Core Core Core Core
Decode

N IR N o s o
Interconnection Network l\‘ g :
! : £ |ilglle g g
i I
Memory | | Memory Memory | | :-;;.—':l -:au' -;,—E‘! .;,—q |
Controller| |Controller Controller|] % | ! % % % % |
¢ t ses t i :m @ ||| @]
‘| 1 SIMD Execution !
GDDR3 GDDR3 GDDR3 | - ===




Concept of “Thread Warps” and SIMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same kernel
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3

-’ ‘I Thread Warp 8
4
Thread Warp Common PC i :
Scalan Scalar| Scalar Scalan ! Thread Warp 7
ThreadThread Thread+ * * |Threac : ¢
W X Y Z

SIMD Pipeline
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Loop Iterations as Threads

for (i=0; i < N; i++)
C[i] = A[i] + B[i]; _
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

Slide credit: Krste Asanovic 87



SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, blockDim=4 - 4 blocks

10 11 12 13 14 15

10 11 12 13 14 15

Slide credit: Hyesoon Kim



Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; i < 100; ++ii) {
Clii] = A[ii] + BI[ii];

¥
CUDA code I

[// there are 100 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

W J

Slide credit: Hyesoon Kim



Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

( float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int ] = blockldx.y * blockDim.y + threadldx.y;
int index =1+ j*N;
if (1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock( blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);

}

Slide credit: Hyesoon Kim 90



Latency Hiding with " Thread Warps

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No branch
prediction)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

No OS context switching
Memory latency hiding
o Graphics has millions of pixels

Slide credit: Tor Aamodt

L 2

Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

Warps available
for scheduling

SIMD Pipeline

A 2

I-Fetch
v

Decode

NV (€ 3

<NV ¢ 3 (€

NV ¢ 9 €

D-Cache

'_

Al Hit?l

£ Data

v

Writeback

Warps accessing

memory hierarchy
Miss?

Thread Warp 1
Thread Warp 2

| Thread Warp 6 |
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Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Lock step

o Programming model is SIMD (no threads) - SW needs to know vector
length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different
warp) = programming model not SIMD

SW does not need to know vector length
Enables memory and branch latency tolerance
o ISAis scalar - vector instructions formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
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SPMD

Single procedure/program, multiple data
o This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

o Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD computer
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Branch Divergence Problem in Warp-based SIMD

SPMD Execution on SIMD Hardware

2 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT")
execution

Slide credit: Tor Aamodt

Thread Warp Common PC
Thread| Thread|Thread | Thread
1 2 3 4
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Control Flow Problem in GPUs/SIMD

GPU uses SIMD
pipeline to save area
on control logic.

o Group scalar threads into
warps

Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

Slide credit: Tor Aamodt

RRRRRRY
SRRRRRY

Branch
; Path A

Patﬂ

P
Pl

SRRRRRY
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Branch Divergence Handling (I)

Stack
A/1111 Reconv. PC Next PC Active Mask
TOS— - E 1111
TOS— E D 0110
B/1111 TOS— E E 1001

C/1001| |D/0110| |F

\/ Thread Warp Common PC

E/1111 Thread | Thread | Thread | Thread
4

=
N
w

G/1111

B C D A
B B S S S

| > .l .l .l |
eeo oo | I 11} i | el
e B/ — 1l — 1 —>
[od ina NG ing ind Ing | ing

. > Time

Slide credit: Tor Aamodt 96



Branch Dlvergence Handling (1I)

§1f (some condition) {;

. B; One per warp

é} else { é \\\\\

. C; Control Flow Stack

];, Next PC_Recv PC _Amask

L etrsnen s llll .................... TOS = D 1111
B D 1110
D D 0001

Execution Sequence
A C B D

1110 1
11(0 1
110 1
1] [1 1

OR Rk

Slide credit: Tor Aamodt 97



Dynamic Warp Formation

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warp at divergence

o Enough threads branching to each path to create full new
warps

oy \ - EEEREEER
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Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RN RER
F EERERRY

RN REY

EXRRRRR

v ¢ N A

W oy T ! '

Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.
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Dynamic Warp Formation Example

x/1111
A y/1111
Legend
x/1110 A A
B y/0011 Ir__:l Execution of Warp x Ir_’| Execution of Warp y
I_>| at Basic Block A I_>| at Basic Block A
¢ %/1000] [ 5 x/0110] [ = x/0001 = =
y/0010 y/0001 y/1100 D
v A new warp created from scalar
E x/1110 3| threads of both Warp x and y
y/0011 —»| executing at Basic Block D
x/1111
G y/1111
A A B E_
<t o
- > > >
Baseline °°°:1||1|:—>|:1 :1I
— 441 Z —1
| ‘/
Dynamic A A B B E E G
5 r5 > > > >||I'>
Warp oool"ll_}l > >l > > |—>I
: A B Il Bl Bd Bl —> |
Formation >[5 |> > |l[=> > |l >,

Slide credit: Tor Aamodt



What About Memory Divergence?

Modern GPUs have caches

Ideally: Want all threads in the warp to hit (without
conflicting with each other)

Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

Need techniques to
o Tolerate memory divergence
o Integrate solutions to branch and memory divergence
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NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

102
Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core’

64 KB of storage
for fragment

ol = SIMD functional unit, control
shared across 8 units

= multiply-add
B = multiply

contexts (registers)

= Instruction stream decode

= execution context storage

103
Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core’

64 KB of storage

for thread contexts

.

(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian
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NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian
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VLIW and DAE




Remember: SIMD /MIMD Classification of Computers

Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD? Multiple instructions operate on single data element
o Closest form: systolic array processor?

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor
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SISD Parallelism Extraction Techniques

We have already seen
o Superscalar execution
o Out-of-order execution

Are there simpler ways of extracting SISD parallelism?
o VLIW (Very Long Instruction Word)
o Decoupled Access/Execute
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VLIW




VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional Characteristics
o Multiple functional units
o Each instruction in a bundle executed in lock step

o Instructions in a bundle statically aligned to be directly fed

into the functional units
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VLIW Concept

Memory

add r1,r2,r3 load r4 r5+4 mov r6,r2 mul r7,r8,r9

Erograml
ounter

Instruction
Sreedien . . . .
PE PE PE PE

Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)
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SIMD Array Processing vs. VLIW

Array processor

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution . . .
PE PE PE PE
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VLIW Philosophy

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism
o Hardware stays as simple and streamlined as possible

Executes each instruction in a bundle in lock step

Simple = higher frequency, easier to design
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VLIW Philosophy (1I)

More formally, VLIW architectures have the following
properties:

There is one central control umit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

QOperations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 114



Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

a A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones
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VLIW Tradeofts

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
116



VLIW Summary

VLIW simplifies hardware, but requires complex compiler
techniqgues

Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations
++ VLIW successful in embedded markets, e.g. DSP
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Decoupled Access/Execute

Motivation: Tomasulo’ s algorithm too complex to
implement

o 1980s before HPS, Pentium Pro

E-instructions

Idea: Decouple operand
access and execution via

A-instructions

AEQ
two separate instruction R _.[

i E
streams that communicate g | -t le F__ pracodte
via ISA-visible queues. Access | EAQ

Processor AEBQ
_ A ——11 N
Smith, “Decoupled Access/Execute register = | register
Computer Architectures,” ISCA 1982, file EABQ file

ACM TOCS 1984.
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Decoupled Access/Execute (I1)

Compiler generates two instruction streams (A and E)
o Synchronizes the two upon control flow instructions (using branch queues)

?k% =q+ y(k) * (r * z(k+10) + t * z(k+11))

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO

EXCERPT)

A7 + -400 . negative loop count
A2 « 0 . initialize index
A3 « 1 . index increment
X2<r . load loop invariants
X5« t . into registers

loop: X3 « z + 10, A2 . load z(k+10)
X7 « z+ 11, A2 . load z(k+11)
X4 « X2 *f X3 . r*z(k+10)-f1t. mult,
X3 « X5 *f X7 .t * z(k+11)
X7 « vy, . lToad y(k)
X6 « X3 +f X4 . r*z(x+10)+t*z(k+11))
X4 « X7 *f X6 . y(k) * (above)
A7 « A7 + 1 . increment loop counter
x, A2 « X4 . store into x(k)
A2 « A2 + A3 . increment index
JAM loop . Branch if A7 < 0

Fig. 2b. Compilation onto CRAY-1-like
architecture

Access
-

AEQ « z + 10, A2
AEQ + z + 11, A2
AEQ « y, A2

A7 « A7 + 1

x, A2 « EAQ

A2 <« AZ+ A3

X4
X3
X6

EAQ

4+ 4 4 4

Execute

X2 *f AEQ
X5 *f AEQ
X3 +f X4

AEQ *f X6

Fig. 2c. Access and execute programs for
straight-line section of loop

120



Decoupled Access/Execute (111

Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers
+ Limited out-of-order execution without wakeup/select complexity

Disadvantages:

-- Compiler support to partition the program and manage queues
-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)
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Astronautics Z.S-1

Single stream

LoeaL | | steered into A and
war__[™] X pipelines
X AEGISTERS . F'i%ﬂ!rﬂe | : EaCh pipeline in'

jIl MULTIPLIER
,...".-mm-n-- . Order
' l—) FLOATING

" POINT
T aooer 2

on X ¢ RECIPROCAL ' Smith et aI., “The
3 INSTRUCTION [ APPROX.

PIPELINE ~UNIT _ $TORE : _ ZS5-1 central
o LT - processor,”

INS:E?:;;;‘ON , ¢ . .
UNIT : TO CENTRAL
UNIT —1_) ................. ] J’ 1 MEMORY ASPLOS 1987
A DATA )
A __)‘"—) INTEGER i LOCAL < > )
TNSTRUCEON [T L suieTen MEMORY | . “ -
RDORESS | Smith, “Dynamic
o e Ly |l _r Instruction
AREGISTERS | | I LOGICAL |-~ -' Scheduling and
B e | SToRES - the Astronautics
N L Z5-1,” IEEE
. 14
' Computer 1989.
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Astronautics ZS-1 Instruction Scheduling

Dynamic scheduling
o A and X streams are issued/executed independently
o Loads can bypass stores in the memory unit (if no conflict)

o Branches executed early in the pipeline
To reduce synchronization penalty of A/X streams
Works only if the register a branch sources is available

Static scheduling

o Move compare instructions as early as possible before a branch
So that branch source register is available when branch is decoded

o Reorder code to expose parallelism in each stream

o Loop unrolling:
Reduces branch count + exposes code reordering opportunities
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Loop Unrolling

1= 1; =
while (1 <100 ) { wluavh||1e(|-::100){
a[!] - b[i”] * (+1)/m = Db[i+1] + (i+1)/m
bli] = E;["” -1/m bi] = a[i-1] - i/m
1=+
} ali+1] = b[i+2] + (I+2)/m
b[i+1] = - (I+1)/m
\ |=1+2

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead
o Induction variable increment or loop condition test
+ Enlarges basic block (and analysis scope)
o Enables code optimization and scheduling opportunities
-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
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Systolic Arrays




Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

Similar to an assembly line

o Different people work on the same car

o Many cars are assembled simultaneously
o Can be two-dimensional

Why? Special purpose accelerators/architectures need

o Simple, regular designs (keep # unique parts small and regular)
a High concurrency - high performance

o Balanced computation and I/O (memory access)
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Systolic Architectures

H. T. Kung, "Why Systolic Architectures?,” IEEE Computer 1982.

l MEMORY I‘-

| MEMORY |4

INSTEAD OF:
100 ns
WE HAVE:
1
100 ns
—Dl PE

PE | PE I PE | PE | PE I

THE SYSTOLIC ARRAY

9 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
PEs: cells

Memory pulses
data through
cells
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Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
—> achieve high throughput w/o increasing memory

bandwidth requirements

INSTEAD OF:

MEMORY 5 MILLION
OPERATIONS
100 ns PER SECOND
AT MOST

PE

WE HAVE:

MEMORY 30 MOPS
POSSIBLE
100 ns
PE|PE | PE | PE | PE | PE

THE SYSTOLIC ARRAY

Diffe rences fro m pi pel i n i n g : Figure 1. Basic principle of a systolic system.
o Array structure can be non-linear and multi-dimensional
o PE connections can be multidirectional (and different speed)

o PEs can have local memory and execute kernels (rather than a
piece of the instruction)
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Systolic Computation Example

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

Given the sequence of weights [wy, wa, . . ., W |
and the input sequence Xy, X3, . . . , Xp 1

compute the result sequence ¥y, ¥2, - - - s Vn+1-k |
defined by

Vi=WiXi+ WX, + ...+ WX
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Systolic Computation Example: Convolution

vl = wilxl +
w2x2 + w3x3

y2 = Wilx2 +
w2x3 + w3x4

y3 = wlx3 +
w2x4 + w3x5

r 1l¢[r ledr ¢
3 X9 Wn W9 X4 Wi
“=p —==p L JHL JHp{L J

Yout

ou r A Yin | |
/ W_J Yout = Yin + W X
Xin L Xout Xout = Xin

(b)

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.
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Systolic Computation |

Example: Convolution

-y

> -

RESULTS 0—?—-

o

w3 *é w2
# X2 »>

ol

40

MULTIPLIER @ -

X1

-J—’ [{GNORED)

ADDER

= LATCH

Figure 10. Overlapping the executions of multiply and add in design W1.

= Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions
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More Programmability

Each PE in a systolic array

o Can store multiple “weights”

o Weights can be selected on the fly

o Eases implementation of, e.g., adaptive filtering

Taken further
o Each PE can have its own data and instruction memory
o Data memory - to store partial/temporary results, constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution
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Pipeline Parallelism

fori=1to N
[ Fmd“nm'h] PO an cofat]et|ct az c2 (a3 BJE] s
[ .. #f code in stage B |
[ W code in stagut:] t,:I tlI 1; t.:, tl. t; ti "." 1.. 1IB tlm t'" tlu time
) {a) L (el J
A
7}9 n | @OEGEE -
| P1 B0 |B1|B2|B3|B4|BS -
Bi
P2 cofc1]ez]ca]ce[cs) -
- time
Loy ot oo 4 ot Lot T Ty by Ty

{B) {d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. lteration | comprises Ai, Bi, Ci.
(e) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.
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File Compression Example

STAGESt  [|  STAGES2  [|  STAGES3 [|  STAGES¢ ||  STAGESS
'ALLOCATE | » [READINPUT| o [ COMPRESS | || (WRTEOUTPUT| || (DEALLOCATE
Input _ = Alocate buffers .- ' o Q=QUEUEIPop) | ' o O =QUEUEZ Pop() o Q=QUEUE3Pop() | | o Q=0UEUE4Pop) |
File QUEGELRushguy | Y| Read fletoBuf 9 | CompressQ | |witeodestQuoFie | ||| pasiosats Buffers
v | OUEUEE.F‘ush{BuI}J s | QUEUE3PushiQ) | o L\:’.JUELIEAl.Push{{]} N
. . . .
QUEUET QUEUE2 QUEUES QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism

134



Systolic Array

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching

o High concurrency
o Regular design (both data and control flow)

Disadvantages
o Not good at exploiting irregular parallelism

o Relatively special purpose - need software, programmer
support to be a general purpose model
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The WARP Computer
HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., "Warp Architecture and
Implementation,” ISCA 1986.

Annaratone et al., “"The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.
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The WARP Computer

Adr

INTERFACE

WARP PROCESSOR ARRAY

Figure 1: Warp system overview
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The WARP Computer

: XQ —> >
517 x 32 -
— >
' Y
. | ¢ j
| 512 x 32
31 x 32 Cal
Data
Cross
m &
Me — Bar < Mem
IIK = 32 - l *] Ik x 3z
S
A A T
e MReg E Mpy
—>1 31 x 32 PP 1
<Literal> —€
A |
_ | Address p€¢—— AGU
= Cross
Mru Bar
—_— = > —>
512 x 32
}.

Figure 2: Warp cell data path
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Systolic Arrays vs. SIMD

= Food for thought...
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Some More Recommended Readings

= Recommended:

a Fisher, “Very Long Instruction Word architectures and the ELI-
512,”7 ISCA 1983.

o Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

o Russell, “The CRAY-1 computer system,” CACM 1978.

o Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

o Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.
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