
18-447

Computer Architecture

Lecture 15: Execution Models I

(OoO, Dataflow, SIMD)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/21/2014

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

2

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

3

Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

4

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

5

Dataflow Graph for Our Example

6

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

State of RAT and RS in Cycle 7

7

Dataflow Graph

8

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

9

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by register file,
scheduling window, reorder buffer

 10

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

11

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

12

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

13

Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

14

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

15

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

16

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
17

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

18

Recommended Readings

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

19

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing

 VLIW

 Systolic Arrays

 Decoupled Access Execute

21

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

23

Remember: Dataflow Graph

24

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

25

Data Flow Nodes

26

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

29

OUT

Control Flow vs. Data Flow

30

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data

31

A Dataflow Processor

32

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

 Success: Both
tokens forwarded

 Fail: Incoming
token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

33

TTDA Data Flow Example

34

TTDA Data Flow Example

35

TTDA Data Flow Example

36

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

37

Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Interrupt/exception handling is difficult

 Debugging very difficult

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult

38

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

39

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.

40

Vector Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

42

Data Parallelism

 Concurrency arises from performing the same operations
on different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in
parallel

 SIMD exploits instruction-level parallelism

 Multiple instructions concurrent: instructions happen to be the same

43

SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements

 Time-space duality

 Array processor: Instruction operates on multiple data
elements at the same time

 Vector processor: Instruction operates on multiple data
elements in consecutive time steps

44

Array vs. Vector Processors

45

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

 VLIW

46

SIMD Array Processing vs. VLIW

 Array processor

47

Vector Processors

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

 C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors vector registers (contain vectors)

 Need to operate on vectors of different lengths vector length
register (VLEN)

 Elements of a vector might be stored apart from each other in
memory vector stride register (VSTR)

 Stride: distance between two elements of a vector

48

Vector Processors (II)

 A vector instruction performs an operation on each element
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies no hardware interlocking

within a vector

 No control flow within a vector

 Known stride allows prefetching of vectors into cache/memory

49

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining, parallelization work well

 Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

 Reduces instruction fetch bandwidth

+ Highly regular memory access pattern

 Interleaving multiple banks for higher memory bandwidth

 Prefetching

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

50

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations

 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

51 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

 1. compute/memory operation balance is not maintained

 2. data is not mapped appropriately to memory banks

52

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (V
k
[i] == 0)

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register

53

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

 Use deep pipeline (=> fast
clock) to execute element
operations

 Simplifies control of deep
pipeline because elements in
vector are independent

54

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

55

Memory Banking

 Example: 16 banks; can start one bank access per cycle

 Bank latency: 11 cycles

 Can sustain 16 parallel accesses if they go to different banks

56

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou

Vector Memory System

57

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e

Stride
Vector Registers

Memory Banks

Address
Generator

Slide credit: Krste Asanovic

Scalar Code Example

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code

 MOVI R0 = 50 1

 MOVA R1 = A 1

 MOVA R2 = B 1

 MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

 LD R5 = MEM[R2++] 11

 ADD R6 = R4 + R5 4

 SHFR R7 = R6 >> 1 1

 ST MEM[R3++] = R7 11

 DECBNZ --R0, X 2 ;decrement and branch if NZ

 58

304 dynamic instructions

Scalar Code Execution Time

59

 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 16
banks (word-interleaved)

 First two loads in the loop can be pipelined

 4 + 50*30 = 1504 cycles

 Why 16 banks?

 11 cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any
other

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop:

 MOVI VLEN = 50 1

 MOVI VSTR = 1 1

 VLD V0 = A 11 + VLN - 1

 VLD V1 = B 11 + VLN – 1

 VADD V2 = V0 + V1 4 + VLN - 1

 VSHFR V3 = V2 >> 1 1 + VLN - 1

 VST C = V3 11 + VLN – 1

60

7 dynamic instructions

Vector Code Performance

 No chaining

 i.e., output of a vector functional unit cannot be used as the
input of another (i.e., no vector data forwarding)

 One memory port (one address generator)

 16 memory banks (word-interleaved)

 285 cycles

61

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

62

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

 182 cycles

63

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles

64

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

 What if # data elements > # elements in a vector register?

 Need to break loops so that each iteration operates on #
elements in a vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

 What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

 Use indirection to combine elements into vector registers

 Called scatter/gather operations

65

Gather/Scatter Operations

66

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware
to handle sparse matrices

 Vector loads and stores use an index vector which is added
to the base register to generate the addresses

67

Index Vector Data Vector Equivalent

 1 3.14 3.14

 3 6.5 0.0

 7 71.2 6.5

 8 2.71 0.0

 0.0

 0.0

 0.0

 71.2

 2.7

Conditional Operations in a Loop

 What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

 goto loop

 Idea: Masked operations

 VMASK register is a bit mask determining which data element
should not be acted upon

 VLD V0 = A

 VLD V1 = B

 VMASK = (V0 != 0)

 VMUL V1 = V0 * V1

 VST B = V1

 Does this look familiar? This is essentially predicated execution.

 68

Another Example with Masking

69

for (i = 0; i < 64; ++i)

 if (a[i] >= b[i]) then c[i] = a[i]

 else c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute loop

1. Compare A, B to get

 VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

70

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

 Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Some Issues

 Stride and banking

 As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

 Storage of a matrix

 Row major: Consecutive elements in a row are laid out
consecutively in memory

 Column major: Consecutive elements in a column are laid out
consecutively in memory

 You need to change the stride when accessing a row versus
column

71

72

Array vs. Vector Processors, Revisited

 Array vs. vector processor distinction is a “purist’s”
distinction

 Most “modern” SIMD processors are a combination of both

 They exploit data parallelism in both time and space

73

Remember: Array vs. Vector Processors

74

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

75

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Vector Unit Structure

76

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
 example machine has 32 elements per vector register and 8 lanes

 Complete 24 operations/cycle while issuing 1 short instruction/cycle

77

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

78

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

 Vector/SIMD machines good at exploiting regular data-level
parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

79

SIMD Operations in Modern ISAs

Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements
simultaneously

 Ala array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

81

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”

IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.

MMX Example: Image Overlaying (I)

82

MMX Example: Image Overlaying (II)

83

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

High-Level View of a GPU

85

Concept of “Thread Warps” and SIMT

 Warp: A set of threads that execute the same instruction
(on different data elements) SIMT (Nvidia-speak)

 All threads run the same kernel
 Warp: The threads that run lengthwise in a woven fabric …

86

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Loop Iterations as Threads

87

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, blockDim=4 4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

90 Slide credit: Hyesoon Kim

Latency Hiding with “Thread Warps”

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No branch
prediction)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 No OS context switching

 Memory latency hiding

 Graphics has millions of pixels

91

Decode

R
 F

R
 F

R
 F

A
 L U

A
 L U

A
 L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Lock step

 Programming model is SIMD (no threads) SW needs to know vector

length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different
warp) programming model not SIMD

 SW does not need to know vector length

 Enables memory and branch latency tolerance

 ISA is scalar vector instructions formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

92

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

 Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD computer

93

Branch Divergence Problem in Warp-based SIMD

 SPMD Execution on SIMD Hardware

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”)

execution

94

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD

 GPU uses SIMD
pipeline to save area
on control logic.

 Group scalar threads into
warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

95

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

96

- G 1111 TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

97

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

 B;

} else {

 C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Dynamic Warp Formation

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Form new warp at divergence

 Enough threads branching to each path to create full new
warps

98

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

99

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

100

A A B B G G A A C C D D E E F F

Time

A A B B G G A A C D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
A A

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

What About Memory Divergence?

 Modern GPUs have caches

 Ideally: Want all threads in the warp to hit (without
conflicting with each other)

 Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

 Need techniques to

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence

101

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

102
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

103

…

= instruction stream decode = SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for fragment

contexts (registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

104

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

105

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

107

SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute

108

VLIW

VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with
SIMD)

 Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed
into the functional units

110

VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
111

SIMD Array Processing vs. VLIW

 Array processor

112

VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple higher frequency, easier to design
113

VLIW Philosophy (II)

114 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

115

VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware simple hardware

+ No need for dependency checking within a VLIW instruction

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units simple hardware

 Disadvantages

-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction

 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

 -- No instruction can progress until the longest-latency instruction completes

116

VLIW Summary

 VLIW simplifies hardware, but requires complex compiler
techniques

 Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

117

DAE

Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before HPS, Pentium Pro

 Idea: Decouple operand

 access and execution via

 two separate instruction

 streams that communicate

 via ISA-visible queues.

 Smith, “Decoupled Access/Execute

 Computer Architectures,” ISCA 1982,

 ACM TOCS 1984.

 119

Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)

120

Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E

 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling

 -- Branch instructions require synchronization between A and E

 -- Multiple instruction streams (can be done with a single one,
though)

121

Astronautics ZS-1

 Single stream
steered into A and
X pipelines

 Each pipeline in-
order

 Smith et al., “The

ZS-1 central
processor,”
ASPLOS 1987.

 Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

122

Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities

 123

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size

124

Systolic Arrays

125

Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and regular)

 High concurrency high performance

 Balanced computation and I/O (memory access)

126

Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

127

Memory: heart

PEs: cells

Memory pulses

data through

cells

Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a
piece of the instruction)

128

Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

 Many image processing tasks

129

Systolic Computation Example: Convolution

 y1 = w1x1 +
w2x2 + w3x3

 y2 = w1x2 +
w2x3 + w3x4

 y3 = w1x3 +
w2x4 + w3x5

130

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

131

 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution

132

More Programmability

Pipeline Parallelism

133

File Compression Example

134

Systolic Array

 Advantages

 Makes multiple uses of each data item reduced need for

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose need software, programmer

support to be a general purpose model

135

The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

136

The WARP Computer

137

The WARP Computer

138

Systolic Arrays vs. SIMD

 Food for thought…

139

Some More Recommended Readings

 Recommended:

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

 Russell, “The CRAY-1 computer system,” CACM 1978.

 Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

140

