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Readings Specifically for Today 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Next Lecture 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, Dataflow 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

 

 Stay tuned for more readings… 
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Review: Summary of OOO Execution Concepts 

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

 Buffering enables the pipeline to move for independent ops 

 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

 Wakeup and select enables out-of-order dispatch 
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OOO Execution: Restricted Dataflow 

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program 

 which piece? 

 

 The dataflow graph is limited to the instruction window 

 Instruction window: all decoded but not yet retired 
instructions 

 

 Can we do it for the whole program?  

 Why would we like to? 

 In other words, how can we have a large instruction 
window? 

 Can we do it efficiently with Tomasulo’s algorithm? 
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Dataflow Graph for Our Example 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



State of RAT and RS in Cycle 7 
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Dataflow Graph 
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Restricted Data Flow 

 An out-of-order machine is a “restricted data flow” machine 

 Dataflow-based execution is restricted to the microarchitecture 
level 

 ISA is still based on von Neumann model (sequential 
execution) 

 

 Remember the data flow model (at the ISA level): 

 Dataflow model: An instruction is fetched and executed in 
data flow order 

 i.e., when its operands are ready 

 i.e., there is no instruction pointer 

 Instruction ordering specified by data flow dependence 

 Each instruction specifies “who” should receive the result 

 An instruction can “fire” whenever all operands are received 
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Questions to Ponder 

 Why is OoO execution beneficial? 

 What if all operations take single cycle? 

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently 

 

 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm? 

 Active/instruction window size: determined by register file, 
scheduling window, reorder buffer 
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Registers versus Memory, Revisited 

 So far, we considered register based value communication 
between instructions 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 

 
11 



Memory Dependence Handling (I) 

 Need to obey memory dependences in an out-of-order 
machine  

 and need to do so while providing high performance 

 

 Observation and Problem: Memory address is not known 
until a load/store executes 

 

 Corollary 1: Renaming memory addresses is difficult 

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution 

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine 
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Memory Dependence Handling (II) 

 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 

 Known as the memory disambiguation problem or the unknown 
address problem 

 

 Approaches 

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine) 

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away 

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store 
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Handling of Store-Load Dependencies 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to 
check)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load dependent on all previous stores 

 Option 2: Assume load independent of all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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Memory Disambiguation (I) 

 Option 1: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 2: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  

 
16 



Food for Thought for You 

 Many other design choices 

 

 Should reservation stations be centralized or distributed? 

 What are the tradeoffs? 

 

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 

 What are the tradeoffs? 

 

 Exactly when does an instruction broadcast its tag? 

 

 … 
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More Food for Thought for You 

 How can you implement branch prediction in an out-of-
order execution machine? 

 Think about branch history register and PHT updates 

 Think about recovery from mispredictions 

 How to do this fast? 
 

 How can you combine superscalar execution with out-of-
order execution? 

 These are different concepts 

 Concurrent renaming of instructions 

 Concurrent broadcast of tags 

 

 How can you combine superscalar + out-of-order + branch 
prediction? 
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Recommended Readings 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002. 
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Other Approaches to Concurrency 

(or Instruction Level Parallelism) 

 

 

 

 

 



Approaches to (Instruction-Level) Concurrency 

 Pipelining 

 Out-of-order execution 

 Dataflow (at the ISA level) 

 SIMD Processing 

 VLIW 

 

 Systolic Arrays 

 Decoupled Access Execute 
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Data Flow: 

Exploiting Irregular Parallelism 

 
 

 

 

 

 



Remember: State of RAT and RS in Cycle 7 
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Remember: Dataflow Graph 
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Review: More on Data Flow 

 In a data flow machine, a program consists of data flow 
nodes 

 A data flow node fires (fetched and executed) when all it 
inputs are ready 

 i.e. when all inputs have tokens 

 

 Data flow node and its ISA representation 
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Data Flow Nodes 

26 



Dataflow Nodes (II) 

 A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 

 

T F 
T F 

T T 

+ T F 
T F 

T T 


 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 

a b 

+ *7 

- + 

* 

y 
x 

1 2 

3 4 

5 

 Values in dataflow graphs are 
represented as tokens 

 

 

 

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination   operators 

token < ip , p , v > 

instruction ptr port data 

no separate control flow 



Example Data Flow Program 
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OUT 



Control Flow vs. Data Flow 
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Data Flow Characteristics 

 Data-driven execution of instruction-level graphical code 

 Nodes are operators 

 Arcs are data (I/O) 

 As opposed to control-driven execution 

 Only real dependencies constrain processing 

 No sequential I-stream  

 No program counter 

 Operations execute asynchronously 

 Execution triggered by the presence of data 
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A Dataflow Processor 
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MIT Tagged Token Data Flow Architecture 

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address  

 Success: Both 
tokens forwarded 

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded) 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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Manchester Data Flow Machine 

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

 Large data set  

overflow in overflow 
unit 

 Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Advantages/Disadvantages 

 Advantages 

 Very good at exploiting irregular parallelism 

 Only real dependencies constrain processing 

 

 Disadvantages 

 No precise state 

 Interrupt/exception handling is difficult  

 Debugging very difficult  

 Bookkeeping overhead (tag matching) 

 Too much parallelism? (Parallelism control needed) 

 Overflow of tag matching tables 

 Implementing dynamic data structures difficult 
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Data Flow Summary 

 Availability of data determines order of execution 

 A data flow node fires when its sources are ready 

 Programs represented as data flow graphs (of nodes) 

 

 Data Flow at the ISA level has not been (as) successful 

 

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful 

 Out of order execution 

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986. 
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Further Reading on Data Flow 

 ISA level dataflow 

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985. 

 

 Microarchitecture-level dataflow: 

 Hwu and Patt, “HPSm, a high performance restricted 
data flow architecture having minimal functionality,” 
ISCA 1986. 
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Vector Processing: 

Exploiting Regular (Data) Parallelism 

 
 

 

 

 

 



Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Data Parallelism 

 Concurrency arises from performing the same operations 
on different pieces of data 

 Single instruction multiple data (SIMD) 

 E.g., dot product of two vectors 
 

 Contrast with data flow 

 Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

 Contrast with thread (“control”) parallelism 

 Concurrency arises from executing different threads of control in 
parallel 

 

 SIMD exploits instruction-level parallelism 

 Multiple instructions concurrent: instructions happen to be the same  
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SIMD Processing 

 Single instruction operates on multiple data elements 

 In time or in space 

 Multiple processing elements  

 

 Time-space duality 

 Array processor: Instruction operates on multiple data 
elements at the same time 

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

 VLIW 
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SIMD Array Processing vs. VLIW 

 Array processor 
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Vector Processors 

 A vector is a one-dimensional array of numbers 

 Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 

 C[i] = (A[i] + B[i]) / 2 

 

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

 Basic requirements 

 Need to load/store vectors  vector registers (contain vectors) 

 Need to operate on vectors of different lengths  vector length 
register (VLEN) 

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR) 

 Stride: distance between two elements of a vector 
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Vector Processors (II) 

 A vector instruction performs an operation on each element 
in consecutive cycles 

 Vector functional units are pipelined 

 Each pipeline stage operates on a different data element 

 

 Vector instructions allow deeper pipelines 

 No intra-vector dependencies  no hardware interlocking 

within a vector 

 No control flow within a vector 

 Known stride allows prefetching of vectors into cache/memory 
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Vector Processor Advantages 

+ No dependencies within a vector  

 Pipelining, parallelization work well 

 Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

 Reduces instruction fetch bandwidth 

 

+ Highly regular memory access pattern  

 Interleaving multiple banks for higher memory bandwidth 

 Prefetching 

 

+ No need to explicitly code loops  

 Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 

    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 

 

 

 

 

51 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained 

 2. data is not mapped appropriately to memory banks 
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Vector Registers 

 Each vector data register holds N M-bit values 

 Vector control registers: VLEN, VSTR, VMASK 

 Vector Mask Register (VMASK) 

 Indicates which elements of vector to operate on 

 Set by vector test instructions 

 e.g., VMASK[i] = (V
k
[i] == 0) 

 Maximum VLEN can be N 

 Maximum number of elements stored in a vector register 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 

 Use deep pipeline (=> fast 
clock) to execute element 
operations 

 Simplifies control of deep 
pipeline because elements in 
vector are independent   
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V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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Memory Banking 

 Example: 16 banks; can start one bank access per cycle 

 Bank latency: 11 cycles 

 Can sustain 16 parallel accesses if they go to different banks 
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Bank 

0 

Bank 

1 

MDR MAR 

Bank 

2 

Bank 

15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 

Slide credit: Derek Chiou 



Vector Memory System 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Bas
e 

Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Slide credit: Krste Asanovic 



Scalar Code Example 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 

 Scalar code 

     MOVI R0 = 50   1 

     MOVA R1 = A   1 

     MOVA R2 = B   1 

     MOVA R3 = C   1 

X:  LD R4 = MEM[R1++]  11  ;autoincrement addressing 

     LD R5 = MEM[R2++]  11 

     ADD R6 = R4 + R5  4 

     SHFR R7 = R6 >> 1  1 

     ST MEM[R3++] = R7   11 

     DECBNZ --R0, X  2   ;decrement and branch if NZ 
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304 dynamic instructions 



Scalar Code Execution Time 

59 

 Scalar execution time on an in-order processor with 1 bank 

 First two loads in the loop cannot be pipelined: 2*11 cycles 

 4 + 50*40 = 2004 cycles 

 

 Scalar execution time on an in-order processor with 16 
banks (word-interleaved) 

 First two loads in the loop can be pipelined 

 4 + 50*30 = 1504 cycles 

 

 Why 16 banks? 

 11 cycle memory access latency 

 Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency 

 



Vectorizable Loops 

 A loop is vectorizable if each iteration is independent of any 
other 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 Vectorized loop: 

  MOVI VLEN = 50   1 

  MOVI VSTR = 1   1 

  VLD V0 = A    11 + VLN - 1 

  VLD V1 = B    11 + VLN – 1 

  VADD V2 = V0 + V1   4 + VLN - 1 

  VSHFR V3 = V2 >> 1   1 + VLN - 1 

  VST C = V3    11 + VLN – 1 
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7 dynamic instructions 



Vector Code Performance 

 No chaining  

 i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding) 

 One memory port (one address generator) 

 16 memory banks (word-interleaved) 

 

 

 

 

 

 

 

 285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 
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Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 

 

 

 

 

 

 

 

 

 

 182 cycles 
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  

pipelined. WHY? 

VLD and VST cannot be  

pipelined. WHY? 

Strict assumption: 

Each memory bank  

has a single port  

(memory bandwidth 

bottleneck) 



Vector Code Performance – Multiple Memory Ports 

 Chaining and 2 load ports, 1 store port in each bank 

 

 

 

 

 

 

 

 

 

 

 79 cycles 
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 

 What if # data elements > # elements in a vector register? 

 Need to break loops so that each iteration operates on # 
elements in a vector register 

 E.g., 527 data elements, 64-element VREGs 

 8 iterations where VLEN = 64 

 1 iteration where VLEN = 15 (need to change value of VLEN) 

 Called vector stripmining 

 

 What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector) 

 Use indirection to combine elements into vector registers 

 Called scatter/gather operations 
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Gather/Scatter Operations 
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Want to vectorize loops with indirect accesses: 

for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 

LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 

 



Gather/Scatter Operations 

 Gather/scatter operations often implemented in hardware 
to handle sparse matrices  

 Vector loads and stores use an index vector which is added 
to the base register to generate the addresses 
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Index Vector  Data Vector  Equivalent 

 

        1           3.14         3.14 

        3          6.5             0.0 

        7        71.2            6.5 

        8          2.71             0.0 

          0.0 

           0.0 

          0.0 

         71.2 

          2.7   



Conditional Operations in a Loop 

 What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)? 
loop:  if (a[i] != 0) then b[i]=a[i]*b[i] 

   goto loop 

 

 Idea: Masked operations  

 VMASK register is a bit mask determining which data element 
should not be acted upon 

  VLD V0 = A 

  VLD V1 = B 

  VMASK = (V0 != 0) 

  VMUL V1 = V0 * V1 

  VST B = V1 

 Does this look familiar? This is essentially predicated execution. 
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Another Example with Masking 
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for (i = 0; i < 64; ++i) 

 if (a[i] >= b[i]) then c[i] = a[i] 

 else c[i] = b[i] 

A B VMASK     

1 2    0                  

2 2    1 

3 2    1 

4 10    0 

-5 -4    0 

0 -3    1 

6 5    1 

-7 -8    1 

Steps to execute loop 

 

1. Compare A, B to get  

 VMASK 

 

2. Masked store of  A into C 

 

3. Complement VMASK 

 

4. Masked store of B into C 



Masked Vector Instructions 
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C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 

– scan mask vector and only execute 
elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 

– execute all N operations, turn off 
result writeback according to mask 

Slide credit: Krste Asanovic 



Some Issues 

 Stride and banking 

 As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel 

 

 Storage of a matrix 

 Row major: Consecutive elements in a row are laid out 
consecutively in memory 

 Column major: Consecutive elements in a column are laid out 
consecutively in memory 

 You need to change the stride when accessing a row versus 
column 

71 



72 



Array vs. Vector Processors, Revisited 

 Array vs. vector processor distinction is a “purist’s” 
distinction 

 

 Most “modern” SIMD processors are a combination of both 

 They exploit data parallelism in both time and space 
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Remember: Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 
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ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 
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Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 

Can overlap execution of multiple vector instructions 
 example machine has 32 elements per vector register and 8 lanes 

 Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 

 Vector/SIMD machines good at exploiting regular data-level 
parallelism 

 Same operation performed on many data elements 

 Improve performance, simplify design (no intra-vector 
dependencies) 

 

 Performance improvement limited by vectorizability of code 

 Scalar operations limit vector machine performance 

 Amdahl’s Law 

 CRAY-1 was the fastest SCALAR machine at its time! 

 

 Many existing ISAs include (vector-like) SIMD operations 

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 
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SIMD Operations in Modern ISAs 

 

 

 

 

 

 



Intel Pentium MMX Operations 

 Idea: One instruction operates on multiple data elements 
simultaneously 

 Ala array processing (yet much more limited) 

 Designed with multimedia (graphics) operations in mind 

 
 

81 

Peleg and Weiser, “MMX Technology 

Extension to the Intel Architecture,” 

IEEE Micro, 1996. 

No VLEN register 

Opcode determines data type: 

8 8-bit bytes 

4 16-bit words 

2 32-bit doublewords 

1 64-bit quadword 

 

Stride always equal to 1. 

 



MMX Example: Image Overlaying (I) 
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MMX Example: Image Overlaying (II) 
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Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 

 

 

 

 

 



High-Level View of a GPU 
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Concept of “Thread Warps” and SIMT 

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak) 

 All threads run the same kernel 
 Warp: The threads that run lengthwise in a woven fabric … 
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Thread Warp 3 
Thread Warp 8 

Thread Warp 7 

Thread Warp 

Scalar 
Thread 

W 

Scalar 
Thread 

X 

Scalar 
Thread 

Y 

Scalar 
Thread 

Z 

Common PC 

SIMD Pipeline 



Loop Iterations as Threads 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 
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2 
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T
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e
 

Slide credit: Krste Asanovic 



 Same instruction in different threads uses thread id to 
index and access different data elements 

 

SIMT Memory Access 

Let’s assume N=16, blockDim=4  4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 
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Latency Hiding with “Thread Warps” 

 Warp: A set of threads that 
execute the same instruction 
(on different data elements) 

 

 Fine-grained multithreading 

 One instruction per thread in 
pipeline at a time (No branch 
prediction) 

 Interleave warp execution to 
hide latencies 

 Register values of all threads stay 
in register file 

 No OS context switching 

 Memory latency hiding 

 Graphics has millions of pixels 
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Warp-based SIMD vs. Traditional SIMD 
 Traditional SIMD contains a single thread  

 Lock step 

 Programming model is SIMD (no threads)  SW needs to know vector 

length 

 ISA contains vector/SIMD instructions 

 

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 

 Does not have to be lock step 

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD 

 SW does not need to know vector length 

 Enables memory and branch latency tolerance 

 ISA is scalar  vector instructions formed dynamically 

 Essentially, it is SPMD programming model implemented on SIMD 
hardware 

92 



SPMD 
 Single procedure/program, multiple data  

 This is a programming model rather than computer organization 

 

 Each processing element executes the same procedure, except on 
different data elements 

 Procedures can synchronize at certain points in program, e.g. barriers 

 

 Essentially, multiple instruction streams execute the same 
program 

 Each program/procedure can 1) execute a different control-flow path, 
2) work on different data, at run-time 

 Many scientific applications programmed this way and run on MIMD 
computers (multiprocessors) 

 Modern GPUs programmed in a similar way on a SIMD computer 
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Branch Divergence Problem in Warp-based SIMD 

 SPMD Execution on SIMD Hardware  

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 
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Control Flow Problem in GPUs/SIMD 

 GPU uses SIMD 
pipeline to save area 
on control logic. 

 Group scalar threads into 
warps 

 

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch Divergence Handling (I) 
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Branch Divergence Handling (II) 
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Dynamic Warp Formation 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 Form new warp at divergence 

 Enough threads branching to each path to create full new 
warps 
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Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 

 

 

 

 

 

 

 

 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 
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Dynamic Warp Formation Example 
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What About Memory Divergence? 

 Modern GPUs have caches 

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other) 

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache. 

 

 Need techniques to  

 Tolerate memory divergence 

 Integrate solutions to branch and memory divergence 
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NVIDIA GeForce GTX 285 

 NVIDIA-speak: 

 240 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 30 cores 

 8 SIMD functional units per core 
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Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 

= instruction stream decode = SIMD functional unit, control  

   shared across 8 units 

    
= execution context storage  = multiply-add 

= multiply 

64 KB of storage  

for fragment 

contexts (registers) 

Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  

for thread contexts 

(registers) 

 Groups of 32 threads share instruction stream (each group is 
a Warp) 

 Up to 32 warps are simultaneously interleaved 

 Up to 1024 thread contexts can be stored    

 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 



VLIW and DAE 

 

 

 

 

 

 



Remember: SIMD/MIMD Classification of Computers 

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD? Multiple instructions operate on single data element 

 Closest form: systolic array processor? 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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SISD Parallelism Extraction Techniques 

 We have already seen 

 Superscalar execution 

 Out-of-order execution 

 

 Are there simpler ways of extracting SISD parallelism? 

 VLIW (Very Long Instruction Word) 

 Decoupled Access/Execute 
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VLIW 

 

 

 

 

 

 



VLIW (Very Long Instruction Word) 

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler 

 Packed instructions can be logically unrelated (contrast with 
SIMD) 

 

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction 

 

 Traditional Characteristics 

 Multiple functional units 

 Each instruction in a bundle executed in lock step 

 Instructions in a bundle statically aligned to be directly fed 
into the functional units 
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VLIW Concept 
 

 

 

 

 

 

 

 

 

 

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983. 

 ELI: Enormously longword instructions (512 bits) 
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SIMD Array Processing vs. VLIW 

 Array processor 
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VLIW Philosophy 

 Philosophy similar to RISC (simple instructions and hardware) 

 Except multiple instructions in parallel 

 

 RISC (John Cocke, 1970s, IBM 801 minicomputer) 

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals) 

 And, to reorder simple instructions for high performance 

 Hardware does little translation/decoding  very simple 

 

 VLIW (Fisher, ISCA 1983) 

 Compiler does the hard work to find instruction level parallelism  

 Hardware stays as simple and streamlined as possible 

 Executes each instruction in a bundle in lock step 

 Simple  higher frequency, easier to design 
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VLIW Philosophy (II) 

114 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Commercial VLIW Machines 

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide) 

 Cydrome Cydra 5, Bob Rau 

 Transmeta Crusoe: x86 binary-translated into internal VLIW 

 TI C6000, Trimedia, STMicro (DSP & embedded processors) 

 Most successful commercially 

 

 Intel IA-64 

 Not fully VLIW, but based on VLIW principles 

 EPIC (Explicitly Parallel Instruction Computing) 

 Instruction bundles can have dependent instructions 

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones 
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VLIW Tradeoffs 

 Advantages 

+ No need for dynamic scheduling hardware  simple hardware 

+ No need for dependency checking within a VLIW instruction  

simple hardware for multiple instruction issue + no renaming 

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware 

 

 Disadvantages 

-- Compiler needs to find N independent operations 

 -- If it cannot, inserts NOPs in a VLIW instruction 

 -- Parallelism loss AND code size increase 

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing) 

-- Lockstep execution causes independent operations to stall 

 -- No instruction can progress until the longest-latency instruction completes 

 
116 



VLIW Summary 

 VLIW simplifies hardware, but requires complex compiler 
techniques 

 Solely-compiler approach of VLIW has several downsides 
that reduce performance 

-- Too many NOPs (not enough parallelism discovered) 

-- Static schedule intimately tied to microarchitecture 

 -- Code optimized for one generation performs poorly for next 

-- No tolerance for variable or long-latency operations (lock step) 

 

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation) 

 Enable code optimizations 

++ VLIW successful in embedded markets, e.g. DSP 

117 



DAE 

 

 

 

 

 

 



Decoupled Access/Execute 

 Motivation: Tomasulo’s algorithm too complex to 
implement  

 1980s before HPS, Pentium Pro 

 

 Idea: Decouple operand  

    access and execution via  

    two separate instruction  

    streams that communicate  

    via ISA-visible queues.  

 
 Smith, “Decoupled Access/Execute  

     Computer Architectures,” ISCA 1982,  

     ACM TOCS 1984. 
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Decoupled Access/Execute (II) 

 Compiler generates two instruction streams (A and E) 
 Synchronizes the two upon control flow instructions (using branch queues) 
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Decoupled Access/Execute (III) 

 Advantages: 

+ Execute stream can run ahead of the access stream and vice 
versa 

 + If A takes a cache miss, E can perform useful work 

    + If A hits in cache, it supplies data to lagging E 

 + Queues reduce the number of required registers 

+ Limited out-of-order execution without wakeup/select complexity 

 

 Disadvantages: 

 -- Compiler support to partition the program and manage queues 

        -- Determines the amount of decoupling 

 -- Branch instructions require synchronization between A and E 

 -- Multiple instruction streams (can be done with a single one, 
though) 
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Astronautics ZS-1 

 Single stream 
steered into A and 
X pipelines 

 Each pipeline in-
order 

 
 Smith et al., “The 

ZS-1 central 
processor,” 
ASPLOS 1987. 

 

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989. 

122 



Astronautics ZS-1 Instruction Scheduling 

 Dynamic scheduling 

 A and X streams are issued/executed independently 

 Loads can bypass stores in the memory unit (if no conflict) 

 Branches executed early in the pipeline 

 To reduce synchronization penalty of A/X streams 

 Works only if the register a branch sources is available 

 

 Static scheduling 

 Move compare instructions as early as possible before a branch 

 So that branch source register is available when branch is decoded 

 Reorder code to expose parallelism in each stream 

 Loop unrolling: 

 Reduces branch count + exposes code reordering opportunities 
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Loop Unrolling 

 

 

 

 

 

 

 

 Idea: Replicate loop body multiple times within an iteration 

+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 

 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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Systolic Arrays 
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Why Systolic Architectures? 

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory 

 

 Similar to an assembly line 

 Different people work on the same car 

 Many cars are assembled simultaneously 

 Can be two-dimensional 

 

 Why? Special purpose accelerators/architectures need 

 Simple, regular designs (keep # unique parts small and regular) 

 High concurrency  high performance 

 Balanced computation and I/O (memory access) 
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Systolic Architectures 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 
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Memory: heart 

PEs: cells 

 

 

Memory pulses  

data through  
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Systolic Architectures 

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements 

 

 

 

 

 Differences from pipelining: 

 Array structure can be non-linear and multi-dimensional  

 PE connections can be multidirectional (and different speed) 

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction) 
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Systolic Computation Example 

 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
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Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 

 

 y2 = w1x2 + 
w2x3 + w3x4 

 

 y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

 

 

 

 

 

 

 

 

 

 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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 Each PE in a systolic array 

 Can store multiple “weights” 

 Weights can be selected on the fly 

 Eases implementation of, e.g., adaptive filtering 

 

 Taken further 

 Each PE can have its own data and instruction memory 

 Data memory  to store partial/temporary results, constants 

 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 
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More Programmability 



Pipeline Parallelism 
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File Compression Example 

 

134 



Systolic Array 

 Advantages 

 Makes multiple uses of each data item  reduced need for 

fetching/refetching 

 High concurrency 

 Regular design (both data and control flow) 

 

 Disadvantages 

 Not good at exploiting irregular parallelism 

 Relatively special purpose  need software, programmer 

support to be a general purpose model 
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The WARP Computer 

 HT Kung, CMU, 1984-1988 

 

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor 

 Attached to a general purpose host machine 

 HLL and optimizing compiler to program the systolic array 

 Used extensively to accelerate vision and robotics tasks 

 

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986.  

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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The WARP Computer  
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Systolic Arrays vs. SIMD 

 Food for thought… 
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Some More Recommended Readings 

 Recommended: 

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983. 

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000. 

 

 Russell, “The CRAY-1 computer system,” CACM 1978. 

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993. 

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001. 
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