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Abstract

We are entering the multi-core era in computer science.
All major high-performance processor manufacturers have in-
tegrated at least two cores (processors) on the same chip —
and it is predicted that chips with many more cores will be-
come widespread in the near future. As cores on the same chip
share the DRAM memory system, multiple programs execut-
ing on different cores can interfere with each others’ memory
access requests, thereby adversely affecting one another’s per-
formance.

In this paper, we demonstrate that current multi-core proces-
sors are vulnerable to a new class of Denial of Service (DoS)
attacks because the memory system is “unfairly”” shared among
multiple cores. An application can maliciously destroy the
memory-related performance of another application running on
the same chip. We call such an application a memory perfor-
mance hog (MPH). With the widespread deployment of multi-
core systems in commodity desktop and laptop computers, we
expect MPHs to become a prevalent security issue that could
affect almost all computer users.

We show that an MPH can reduce the performance of an-
other application by 2.9 times in an existing dual-core system,
without being significantly slowed down itself; and this prob-
lem will become more severe as more cores are integrated on
the same chip. Our analysis identifies the root causes of unfair-
ness in the design of the memory system that make multi-core
processors vulnerable to MPHs. As a solution to mitigate the
performance impact of MPHs, we propose a new memory sys-
tem architecture that provides fairness to different applications
running on the same chip. Our evaluations show that this mem-
ory system architecture is able to effectively contain the neg-
ative performance impact of MPHs in not only dual-core but
also 4-core and 8-core systems.

1 Introduction

For many decades, the performance of processors has in-
creased by hardware enhancements (increases in clock
frequency and smarter structures) that improved single-
thread (sequential) performance. In recent years, how-
ever, the immense complexity of processors as well
as limits on power-consumption has made it increas-
ingly difficult to further enhance single-thread perfor-
mance [18]. For this reason, there has been a paradigm

shift away from implementing such additional enhance-
ments. Instead, processor manufacturers have moved on
to integrating multiple processors on the same chip in
a tiled fashion to increase system performance power-
efficiently. In a multi-core chip, different applications
can be executed on different processing cores concur-
rently, thereby improving overall system throughput
(with the hope that the execution of an application on
one core does not interfere with an application on an-
other core). Current high-performance general-purpose
computers have at least two processors on the same chip
(e.g. Intel Pentium D and Core Duo (2 processors), Intel
Core-2 Quad (4), Intel Montecito (2), AMD Opteron (2),
Sun Niagara (8), IBM Power 4/5 (2)). And, the industry
trend is toward integrating many more cores on the same
chip. In fact, Intel has announced experimental designs
with up to 80 cores on chip [16].

The arrival of multi-core architectures creates signif-
icant challenges in the fields of computer architecture,
software engineering for parallelizing applications, and
operating systems. In this paper, we show that there are
important challenges beyond these areas. In particular,
we expose a new security problem that arises due to the
design of multi-core architectures — a Denial-of-Service
(DoS) attack that was not possible in a traditional single-
threaded processor.! We identify the “security holes”
in the hardware design of multi-core systems that make
such attacks possible and propose a solution that miti-
gates the problem.

In a multi-core chip, the DRAM memory system is
shared among the threads concurrently executing on dif-
ferent processing cores. The way current DRAM mem-
ory systems work, it is possible that a thread with a
particular memory access pattern can occupy shared re-
sources in the memory system, preventing other threads
from using those resources efficiently. In effect, the

While this problem could also exist in SMP (symmetric shared-
memory multiprocessor) and SMT (simultaneous multithreading) sys-
tems, it will become much more prevalent in multi-core architectures
which will be widespreadly deployed in commodity desktop, laptop,
and server computers.
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memory requests of some threads can be denied service
by the memory system for long periods of time. Thus,
an aggressive memory-intensive application can severely
degrade the performance of other threads with which it
is co-scheduled (often without even being significantly
slowed down itself). We call such an aggressive appli-
cation a Memory Performance Hog (MPH). For exam-
ple, we found that on an existing dual-core Intel Pentium
D system one aggressive application can slow down an-
other co-scheduled application by 2.9X while it suffers
a slowdown of only 18% itself. In a simulated 16-core
system, the effect is significantly worse: the same ap-
plication can slow down other co-scheduled applications
by 14.6X while it slows down by only 4.4X. This shows
that, although already severe today, the problem caused
by MPHs will become much more severe as processor
manufacturers integrate more cores on the same chip in
the future.

There are three discomforting aspects of this novel se-
curity threat:

e First, an MPH can maliciously destroy the memory-
related performance of other programs that run on
different processors on the same chip. Such Denial
of Service in a multi-core memory system can ulti-
mately cause significant discomfort and productiv-
ity loss to the end user, and it can have unforeseen
consequences. For instance, an MPH (perhaps writ-
ten by a competitor organization) could be used to
fool computer users into believing that some other
applications are inherently slow, even without caus-
ing easily observable effects on system performance
measures such as CPU usage. Or, an MPH can result
in very unfair billing procedures on grid-like com-
puting systems where users are charged based on
CPU hours [9].2 With the widespread deployment
of multi-core systems in commodity desktop, laptop,
and server computers, we expect MPHs to become a
much more prevalent security issue that could affect
almost all computer users.

e Second, the problem of memory performance attacks
is radically different from other, known attacks on
shared resources in systems, because it cannot be
prevented in software. The operating system or the
compiler (or any other application) has no direct con-
trol over the way memory requests are scheduled in
the DRAM memory system. For this reason, even
carefully designed and otherwise highly secured sys-
tems are vulnerable to memory performance attacks,
unless a solution is implemented in memory system

2In fact, in such systems, some users might be tempted to rewrite
their programs to resemble MPHs so that they get better performance
for the price they are charged. This, in turn, would unfairly slow down
co-scheduled programs of other users and cause other users to pay
much higher since their programs would now take more CPU hours.

hardware itself. For example, numerous sophisti-
cated software-based solutions are known to prevent
DoS and other attacks involving mobile or untrusted
code (e.g. [10, 25, 27, 5, 7]), but these are unsuited
to prevent our memory performance attacks.

e Third, while an MPH can be designed intentionally, a
regular application can unintentionally behave like an
MPH and damage the memory-related performance
of co-scheduled applications, too. This is discomfort-
ing because an existing application that runs with-
out significantly affecting the performance of other
applications in a single-threaded system may deny
memory system service to co-scheduled applications
in a multi-core system. Consequently, critical appli-
cations can experience severe performance degrada-
tions if they are co-scheduled with a non-critical but
memory-intensive application.

The fundamental reason why an MPH can deny memory
system service to other applications lies in the “unfair-
ness” in the design of the multi-core memory system.
State-of-the-art DRAM memory systems service mem-
ory requests on a First-Ready First-Come-First-Serve
(FR-FCFS) basis to maximize memory bandwidth uti-
lization [30, 29, 23]. This scheduling approach is suit-
able when a single thread is accessing the memory sys-
tem because it maximizes the utilization of memory
bandwidth and is therefore likely to ensure fast progress
in the single-threaded processing core. However, when
multiple threads are accessing the memory system, ser-
vicing the requests in an order that ignores which thread
generated the request can unfairly delay some thread’s
memory requests while giving unfair preference to oth-
ers. As a consequence, the progress of an application
running on one core can be significantly hindered by an
application executed on another.

In this paper, we identify the causes of unfairness in
the DRAM memory system that can result in DoS attacks
by MPHs. We show how MPHs can be implemented and
quantify the performance loss of applications due to un-
fairness in the memory system. Finally, we propose a
new memory system design that is based on a novel def-
inition of DRAM fairness. This design provides memory
access fairness across different threads in multi-core sys-
tems and thereby mitigates the impact caused by a mem-
ory performance hog.

The major contributions we make in this paper are:

e We expose a new Denial of Service attack that
can significantly degrade application performance on
multi-core systems and we introduce the concept of
Memory Performance Hogs (MPHs). An MPH is an
application that can destroy the memory-related per-
formance of another application running on a differ-
ent processing core on the same chip.
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e We demonstrate that MPHs are a real problem by
evaluating the performance impact of DoS attacks on
both real and simulated multi-core systems.

e We identify the major causes in the design of the
DRAM memory system that result in DoS attacks:
hardware algorithms that are unfair across different
threads accessing the memory system.

o We describe and evaluate a new memory system de-
sign that provides fairness across different threads
and mitigates the large negative performance impact
of MPHs.

2 Background

We begin by providing a brief background on multi-
core architectures and modern DRAM memory systems.
Throughout the section, we abstract away many details
in order to give just enough information necessary to
understand how the design of existing memory systems
could lend itself to denial of service attacks by explicitly-
malicious programs or real applications. Interested read-
ers can find more details in [30, 8, 41].

2.1 Multi-Core Architectures

Figure 1 shows the high-level architecture of a process-
ing system with one core (single-core), two cores (dual-
core) and N cores (N-core). In our terminology, a “core”
includes the instruction processing pipelines (integer and
floating-point), instruction execution units, and the L1
instruction and data caches. Many general-purpose com-
puters manufactured today look like the dual-core sys-
tem in that they have two separate but identical cores.
In some systems (AMD Athlon/Turion/Opteron, Intel
Pentium-D), each core has its own private L2 cache,
while in others (Intel Core Duo, IBM Power 4/5) the L2
cache is shared between different cores. The choice of a
shared vs. non-shared L2 cache affects the performance
of the system [19, 14] and a shared cache can be a pos-
sible source of vulnerability to DoS attacks. However,
this is not the focus of our paper because DoS attacks at
the L2 cache level can be easily prevented by providing
a private L2 cache to each core (as already employed by
some current systems) or by providing “quotas” for each
core in a shared L2 cache [28].

Regardless of whether or not the L2 cache is shared,
the DRAM Memory System of current multi-core sys-
tems is shared among all cores. In contrast to the L2
cache, assigning a private DRAM memory system to
each core would significantly change the programming
model of shared-memory multiprocessing, which is com-
monly used in commercial applications. Furthermore,
in a multi-core system, partitioning the DRAM memory
system across cores (while maintaining a shared-memory
programming model) is also undesirable because:

1. DRAM memory is still a very expensive resource
in modern systems. Partitioning it requires more
DRAM chips along with a separate memory con-
troller for each core, which significantly increases the
cost of a commodity general-purpose system, espe-
cially in future systems that will incorporate tens of
cores on chip.

2. In a partitioned DRAM system, a processor access-
ing a memory location needs to issue a request to the
DRAM partition that contains the data for that loca-
tion. This incurs additional latency and a communi-
cation network to access another processor’s DRAM
if the accessed address happens to reside in that par-
tition.

For these reasons, we assume in this paper that each core
has a private L2 cache but all cores share the DRAM
memory system. We now describe the design of the
DRAM memory system in state-of-the-art systems.

2.2 DRAM Memory Systems

A DRAM memory system consists of three major com-
ponents: (1) the DRAM banks that store the actual data,
(2) the DRAM controller (scheduler) that schedules com-
mands to read/write data from/to the DRAM banks, and
(3) DRAM address/data/’command buses that connect the
DRAM banks and the DRAM controller.

2.2.1 DRAM Banks

A DRAM memory system is organized into multiple
banks such that memory requests to different banks can
be serviced in parallel. As shown in Figure 2 (left), each
DRAM bank has a two-dimensional structure, consisting
of multiple rows and columns. Consecutive addresses in
memory are located in consecutive columns in the same
row.> The size of a row varies, but it is usually between
1-8Kbytes in commodity DRAMs. In other words, in a
system with 32-byte L2 cache blocks, a row contains 32-
256 L2 cache blocks.

Each bank has one row-buffer and data can only be read
from this buffer. The row-buffer contains at most a sin-
gle row at any given time. Due to the existence of the
row-buffer, modern DRAMs are not truly random access
(equal access time to all locations in the memory array).
Instead, depending on the access pattern to a bank, a
DRAM access can fall into one of the three following
categories:

1. Row hit: The access is to the row that is already in
the row-buffer. The requested column can simply
be read from or written into the row-buffer (called
a column access). This case results in the lowest
latency (typically 30-50ns round trip in commodity

3Note that consecutive memory rows are located in different banks.
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DRAM, including data transfer time, which trans-
lates into 90-150 processor cycles for a core run-
ning at 3GHz clock frequency). Note that sequen-
tial/streaming memory access patterns (e.g. accesses
to cache blocks A, A+1, A+2, ...)) result in row hits
since the accessed cache blocks are in consecutive
columns in a row. Such requests can therefore be
handled relatively quickly.

. Row conflict: The access is to a row different from
the one that is currently in the row-buffer. In this
case, the row in the row-buffer first needs to be writ-
ten back into the memory array (called a row-close)
because the row access had destroyed the row’s data
in the memory array. Then, a row access is per-
formed to load the requested row into the row-buffer.
Finally, a column access is performed. Note that this
case has much higher latency than a row hit (typically
60-100ns or 180-300 processor cycles at 3GHz).

3. Row closed: There is no row in the row-buffer. Due
to various reasons (e.g. to save energy), DRAM
memory controllers sometimes close an open row in
the row-buffer, leaving the row-buffer empty. In this
case, the required row needs to be first loaded into the
row-buffer (called a row access). Then, a column ac-
cess is performed. We mention this third case for the

sake of completeness because in the paper, we focus
primarily on row hits and row conflicts, which have
the largest impact on our results.

Due to the nature of DRAM bank organization, sequen-
tial accesses to the same row in the bank have low latency
and can be serviced at a faster rate. However, sequen-
tial accesses to different rows in the same bank result in
high latency. Therefore, to maximize bandwidth, current
DRAM controllers schedule accesses to the same row in
a bank before scheduling the accesses to a different row
even if those were generated earlier in time. We will later
show how this policy causes unfairness in the DRAM
system and makes the system vulnerable to DoS attacks.

2.2.2 DRAM Controller

The DRAM controller is the mediator between the on-
chip caches and the off-chip DRAM memory. It re-
ceives read/write requests from L2 caches. The addresses
of these requests are at the granularity of the L2 cache
block. Figure 2 (right) shows the architecture of the
DRAM controller. The main components of the con-
troller are the memory request buffer and the memory ac-
cess scheduler.

The memory request buffer buffers the requests re-
ceived for each bank. It consists of separate bank request
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buffers. Each entry in a bank request buffer contains the
address (row and column), the type (read or write), the
timestamp, and the state of the request along with stor-
age for the data associated with the request.

The memory access scheduler is the brain of the mem-
ory controller. Its main function is to select a memory
request from the memory request buffer to be sent to
DRAM memory. It has a two-level hierarchical orga-
nization as shown in Figure 2. The first level consists of
separate per-bank schedulers. Each bank scheduler keeps
track of the state of the bank and selects the highest-
priority request from its bank request buffer. The second
level consists of an across-bank scheduler that selects the
highest-priority request among all the requests selected
by the bank schedulers. When a request is scheduled by
the memory access scheduler, its state is updated in the
bank request buffer, and it is removed from the buffer
when the request is served by the bank (For simplicity,
these control paths are not shown in Figure 2).

2.2.3 Memory Access Scheduling Algorithm

Current memory access schedulers are designed to max-
imize the bandwidth obtained from the DRAM memory.
As shown in [30], a simple request scheduling algorithm
that serves requests based on a first-come-first-serve pol-
icy is prohibitive, because it incurs a large number of
row conflicts. Instead, current memory access schedulers
usually employ what is called a First-Ready First-Come-
First-Serve (FR-FCFS) algorithm to select which request
should be scheduled next [30, 23]. This algorithm prior-
itizes requests in the following order in a bank:

1. Row-hit-first: A bank scheduler gives higher prior-
ity to the requests that would be serviced faster. In
other words, a request that would result in a row hit
is prioritized over one that would cause a row con-
flict.

2. Oldest-within-bank-first: A bank scheduler gives
higher priority to the request that arrived earliest.

Selection from the requests chosen by the bank sched-
ulers is done as follows:

Oldest-across-banks-first: The across-bank DRAM

bus scheduler selects the request with the earliest arrival
time among all the requests selected by individual bank
schedulers.
In summary, this algorithm strives to maximize DRAM
bandwidth by scheduling accesses that cause row hits
first (regardless of when these requests have arrived)
within a bank. Hence, streaming memory access patterns
are prioritized within the memory system. The oldest
row-hit request has the highest priority in the memory
access scheduler. In contrast, the youngest row-conflict
request has the lowest priority.

2.3 Vulnerability of the Multi-Core DRAM
Memory System to DoS Attacks

As described above, current DRAM memory systems do
not distinguish between the requests of different threads
(i.e. cores)*. Therefore, multi-core systems are vulnera-
ble to DoS attacks that exploit unfairness in the memory
system. Requests from a thread with a particular access
pattern can get prioritized by the memory access sched-
uler over requests from other threads, thereby causing
the other threads to experience very long delays. We find
that there are two major reasons why one thread can deny
service to another in current DRAM memory systems:

1. Unfairness of row-hit-first scheduling: A thread
whose accesses result in row hits gets higher priority
compared to a thread whose accesses result in row
conflicts. We call an access pattern that mainly re-
sults in row hits as a pattern with high row-buffer lo-
cality. Thus, an application that has a high row-buffer
locality (e.g. one that is streaming through memory)
can significantly delay another application with low
row-buffer locality if they happen to be accessing the
same DRAM banks.

2. Unfairness of oldest-first scheduling: Oldest-first
scheduling implicitly gives higher priority to those
threads that can generate memory requests at a faster
rate than others. Such aggressive threads can flood
the memory system with requests at a faster rate than
the memory system can service. As such, aggres-
sive threads can fill the memory system’s buffers with
their requests, while less memory-intensive threads
are blocked from the memory system until all the
earlier-arriving requests from the aggressive threads
are serviced.

Based on this understanding, it is possible to develop a
memory performance hog that effectively denies service
to other threads. In the next section, we describe an ex-
ample MPH and show its impact on another application.

3 Motivation: Examples of Denial of Mem-
ory Service in Existing Multi-Cores

In this section, we present measurements from real sys-
tems to demonstrate that Denial of Memory Service at-
tacks are possible in existing multi-core systems.

3.1 Applications

We consider two applications to motivate the problem.
One is a modified version of the popular stream bench-
mark [21], an application that streams through memory
and performs operations on two one-dimensional arrays.
The arrays in stream are sized such that they are much

4We assume, without loss of generality, one core can execute one
thread.
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// initialize arrays a, b
for (3=0; j<N; Jj++)
index[j] = 3j; // streaming index
.o
for (3=0; J<N; Jj++)
alindex[j]] = blindex[j]];
for (3=0; j<N; Jj++)
blindex[j]] = scalar * alindex[3j]];
.o

(a) STREAM

// initialize arrays a,
for (3=0; J<N; j++)
index[j] = rand();

for (3=0; j<N; j++)

for (3j=0; J<N; Jj++)
blindex[j]] =

alindex[j]] = blindex[j]];

scalar * alindex[j]];

b

// random # in [0,N]

(b) RDARRAY

Figure 3: Major loops of the stream (a) and rdarray (b) programs

larger than the L2 cache on a core. Each array consists of
2.5M 128-byte elements.’ Stream (Figure 3(a)) has very
high row-buffer locality since consecutive cache misses
almost always access the same row (limited only by the
size of the row-buffer). Even though we cannot directly
measure the row-buffer hit rate in our real experimental
system (because hardware does not directly provide this
information), our simulations show that 96% of all mem-
ory requests in stream result in row-hits.

The other application, called rdarray, is almost the ex-
act opposite of stream in terms of its row-buffer locality.
Its pseudo-code is shown in Figure 3(b). Although it per-
forms the same operations on two very large arrays (each
consisting of 2.5M 128-byte elements), rdarray accesses
the arrays in a pseudo-random fashion. The array indices
accessed in each iteration of the benchmark’s main loop
are determined using a pseudo-random number genera-
tor. Consequently, this benchmark has very low row-
buffer locality; the likelihood that any two outstanding
L2 cache misses in the memory request buffer are to the
same row in a bank is low due to the pseudo-random gen-
eration of array indices. Our simulations show that 97%
of all requests in rdarray result in row-conflicts.

3.2 Measurements

We ran the two applications alone and together on two
existing multi-core systems and one simulated future
multi-core system.

3.2.1 A Dual-core System

The first system we examine is an Intel Pentium D
930 [17] based dual-core system with 2GB SDRAM.
In this system each core has an L2 cache size of 2MB.
Only the DRAM memory system is shared between the
two cores. The operating system is Windows XP Pro-
fessional.® All the experiments were performed when

SEven though the elements are 128-byte, each iteration of the main
loop operates on only one 4-byte integer in the 128-byte element. We
use 128-byte elements to ensure that consecutive accesses miss in the
cache and exercise the DRAM memory system.

6We also repeated the same experiments in (1) the same system with
the RedHat Fedora Core 6 operating system and (2) an Intel Core Duo
based dual-core system running RedHat Fedora Core 6. We found the
results to be almost exactly the same as those reported.

the systems were unloaded

as much as possible. To ac-

count for possible variability due to system state, each
run was repeated 10 times and the execution time results
were averaged (error bars show the variance across the
repeated runs). Each application’s main loop consists of
N = 2.5 - 109 iterations and was repeated 1000 times in

the measurements.

Figure 4(a) shows the normalized execution time of
stream when run (1) alone, (2) concurrently with another
copy of stream, and (3) concurrently with rdarray. Fig-
ure 4(b) shows the normalized execution time of rdarray
when run (1) alone, (2) concurrently with another copy
of rdarray, and (3) concurrently with stream.

When stream and rdarray execute concurrently on the
two different cores, stream is slowed down by only 18%.
In contrast, rdarray experiences a dramatic slowdown:

its execution time increases by up to 190%.

Hence,

stream effectively denies memory service to rdarray
without being significantly slowed down itself.

We hypothesize that this behavior is due to the row-
hit-first scheduling policy in the DRAM memory con-

troller.

As most of stream’s memory requests hit in

the row-buffer, they are prioritized over rdarray’s re-
quests, most of which result in row conflicts. Conse-

quently, rdarray is denied
that are being accessed by

access to the DRAM banks
stream until the stream pro-

gram’s access pattern moves on to another bank. With
a row size of 8KB and a cache line size of 64B, 128
(=8KB/64B) of stream’s memory requests can be ser-
viced by a DRAM bank before rdarray is allowed to ac-
cess that bank!” Thus, due to the thread-unfair imple-
mentation of the DRAM memory system, stream can act

as an MPH against rdarray.

Note that the slowdown rdarray experiences when run

7Note that we do not know the exact details of the DRAM mem-
ory controller and scheduling algorithm that is implemented in the ex-
isting systems. These details are not made public in either Intel’s or

AMD’s documentation. Therefore

, we hypothesize about the causes of

the behavior based on public information available on DRAM memory
systems - and later support our hypotheses with our simulation infras-
tructure (see Section 6). It could be possible that existing systems have

a threshold up to which younger
requests as described in a patent

requests can be ordered over older
[33], but even so our experiments

suggest that memory performance attacks are still possible in existing

multi-core systems.
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Figure 4: Normalized execution time of (a) stream and (b) rdarray when run alone/together on a dual-core system

with stream (2.90X) is much greater than the slowdown
it experiences when run with another copy of rdarray
(1.71X). Because neither copy of rdarray has good row-
buffer locality, another copy of rdarray cannot deny ser-
vice to rdarray by holding on to a row-buffer for a long
time. In this case, the performance loss comes from in-
creased bank conflicts and contention in the DRAM bus.

On the other hand, the slowdown stream experiences
when run with rdarray is significantly smaller than the
slowdown it experiences when run with another copy of
stream. When two copies of stream run together they are
both able to deny access to each other because they both
have very high row-buffer locality. Because the rates at
which both streams generate memory requests are the
same, the slowdown is not as high as rdarray’s slowdown
with stream: copies of stream take turns in denying ac-
cess to each other (in different DRAM banks) whereas
stream always denies access to rdarray (in all DRAM
banks).

3.2.2 A Dual Dual-core System

The second system we examine is a dual dual-core AMD
Opteron 275 [1] system with 4GB SDRAM. In this sys-
tem, only the DRAM memory system is shared between
a total of four cores. Each core has an L2 cache size
of 1 MB. The operating system used was RedHat Fe-
dora Core 5. Figure 5(a) shows the normalized execution
time of stream when run (1) alone, (2) with one copy of
rdarray, (3) with 2 copies of rdarray, (4) with 3 copies
of rdarray, and (5) with 3 other copies of stream. Fig-
ure 5(b) shows the normalized execution time of rdarray
in similar but “dual” setups.

Similar to the results shown for the dual-core Intel sys-
tem, the performance of rdarray degrades much more
significantly than the performance of stream when the
two applications are executed together on the 4-core
AMD system. In fact, stream slows down by only 48%
when it is executed concurrently with 3 copies of rdar-
ray. In contrast, rdarray slows down by 408% when run-
ning concurrently with 3 copies of stream. Again, we hy-
pothesize that this difference in slowdowns is due to the
row-hit-first policy employed in the DRAM controller.

3.2.3 A Simulated 16-core System

While the problem of MPHs is severe even in current
dual- or dual-dual-core systems, it will be significantly
aggravated in future multi-core systems consisting of
many more cores. To demonstrate the severity of the
problem, Figure 6 shows the normalized execution time
of stream and rdarray when run concurrently with 15
copies of stream or 15 copies of rdarray, along with
their normalized execution times when 8 copies of each
application are run together. Note that our simulation
methodology and simulator parameters are described in
Section 6.1. In a 16-core system, our memory perfor-
mance hog, stream, slows down rdarray by 14.6X while
rdarray slows down stream by only 4 .4X. Hence, stream
is an even more effective performance hog in a 16-core
system, indicating that the problem of “memory perfor-
mance attacks” will become more severe in the future if
the memory system is not adjusted to prevent them.

4 Towards a Solution: Fairness in DRAM
Memory Systems

The fundamental unifying cause of the attacks demon-
strated in the previous section is unfairness in the shared
DRAM memory system. The problem is that the mem-
ory system cannot distinguish whether a harmful mem-
ory access pattern issued by a thread is due to a malicious
attack, due to erroneous programming, or simply a nec-
essary memory behavior of a specific application. There-
fore, the best the DRAM memory scheduler can do is to
contain and limit memory attacks by providing fairness
among different threads.

Difficulty of Defining DRAM Fairness: But what ex-
actly constitutes fairness in DRAM memory systems?
As it turns out, answering this question is non-trivial
and coming up with a reasonable definition is somewhat
problematic. For instance, simple algorithms that sched-
ule requests in such a way that memory latencies are
equally distributed among different threads disregard the
fact that different threads have different amounts of row-
buffer locality. As a consequence, such equal-latency
scheduling algorithms will unduly slow down threads
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that have high row-buffer locality and prioritize threads
that have poor row-buffer locality. Whereas the standard
FR-FCFS scheduling algorithm can starve threads with
poor row-buffer locality (Section 2.3), any algorithm
seeking egalitarian memory fairness would unfairly pun-
ish “well-behaving” threads with good row-buffer local-
ity. Neither of the two options therefore rules out unfair-
ness and the possibility of memory attacks.

Another challenge is that DRAM memory systems
have a notion of state (consisting of the currently
buffered rows in each bank). For this reason, well-
studied notions of fairness that deal with stateless sys-
tems cannot be applied in our setting. In network fair
queuing (24,40, 3], for example, the idea is that if N pro-
cesses share a common channel with bandwidth B, every
process should achieve exactly the same performance as
if it had a single channel of bandwidth B/N. When map-
ping the same notion of fairness onto a DRAM memory
system (as done in [23]), however, the memory sched-
uler would need to schedule requests in such a way as
to guarantee the following: In a multi-core system with
N threads, no thread should run slower than the same
thread on a single-core system with a DRAM memory
system that runs at 1/Nth of the speed. Unfortunately,
because memory banks have state and row conflicts incur
a higher latency than row hit accesses, this notion of fair-
ness is ill-defined. Consider for instance two threads in
a dual-core system that constantly access the same bank
but different rows. While each of these threads by itself
has perfect row-buffer locality, running them together
will inevitably result in row-buffer conflicts. Hence, it
is impossible to schedule these threads in such a way

that each thread runs at the same speed as if it ran by
itself on a system at half the speed. On the other hand,
requests from two threads that consistently access differ-
ent banks could (almost) entirely be scheduled in parallel
and there is no reason why the memory scheduler should
be allowed to slow these threads down by a factor of 2.

In summary, in the context of memory systems, no-
tions of fairness—such as network fair queuing—that at-
tempt to equalize the latencies experienced by different
threads are unsuitable. In a DRAM memory system, it
is neither possible to achieve such a fairness nor would
achieving it significantly reduce the risk of memory per-
formance attacks. In Section 4.1, we will present a novel
definition of DRAM fairness that takes into account the
inherent row-buffer locality of threads and attempts to
balance the “relative slowdowns”.

The Idleness Problem: In addition to the above ob-
servations, it is important to observe that any scheme
that tries to balance latencies between threads runs into
the risk of what we call the idleness problem. Threads
that are temporarily idle (not issuing many memory re-
quests, for instance due to a computation-intensive pro-
gram phase) will be slowed down when returning to a
more memory intensive access pattern. On the other
hand, in certain solutions based on network fair queu-
ing [23], a memory hog could intentionally issue no or
few memory requests for a period of time. During that
time, other threads could “move ahead” at a proportion-
ally lower latency, such that, when the malicious thread
returns to an intensive access pattern, it is temporarily
prioritized and normal threads are blocked. The idleness
problem therefore poses a severe security risk: By ex-
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ploiting it, an attacking memory hog could temporarily
slow down or even block time-critical applications with
high performance stability requirements from memory.

4.1 Fair Memory Scheduling: A Model

As discussed, standard notions of fairness fail in pro-
viding fair execution and hence, security, when mapping
them onto shared memory systems. The crucial insight
that leads to a better notion of fairness is that we need
to dissect the memory latency experienced by a thread
into two parts: First, the latency that is inherent to the
thread itself (depending on its row-buffer locality) and
second, the latency that is caused by contention with
other threads in the shared DRAM memory system. A
fair memory system should—unlike the approaches so
far—schedule requests in such a way that the second la-
tency component is fairly distributed, while the first com-
ponent remains untouched. With this, it is clear why our
novel notion of DRAM shared memory fairness is based
on the following intuition: In a multi-core system with
N threads, no thread should suffer more relative perfor-
mance slowdown—compared to the performance it gets
if it used the same memory system by itself—than any
other thread. Because each thread’s slowdown is thus
measured against its own baseline performance (single
execution on the same system), this notion of fairness
successfully dissects the two components of latency and
takes into account the inherent characteristics of each
thread.

In more technical terms, we consider a measure Y; for
each currently executed thread 7.3 This measure captures
the price (in terms of relative additional latency) a thread
1 pays because the shared memory system is used by mul-
tiple threads in parallel in a multi-core architecture. In
order to provide fairness and contain the risk of denial of
memory service attacks, the memory controller should
schedule outstanding requests in the buffer in such a way
that the ; values are as balanced as possible. Such a
scheduling will ensure that each thread only suffers a fair
amount of additional latency that is caused by the parallel
usage of the shared memory system.

Formal Definition: Our definition of the measure y;
is based on the notion of cumulated bank-latency L;
that we define as follows.

Definition 4.1. For each thread i and bank b, the cumu-
lated bank-latency L; ;, is the number of memory cycles
during which there exists an outstanding memory request
by thread i for bank b in the memory request buffer. The
cumulated latency of a thread L; = ), L; is the sum
of all cumulated bank-latencies of thread 1.

8The DRAM memory system only keeps track of threads that are
currently issuing requests.

The motivation for this formulation of L, ; is best seen
when considering latencies on the level of individual
memory requests. Consider a thread ¢ and let Rf , denote
the kth memory request of thread 7 that accesses bank b.
Each such request Rﬁ , 18 associated with three specific
times: Its arrival time af’ , When it is entered into the re-
quest buffer; its finish time fi]fb, when it is completely
serviced by the bank and sent to processor i’s cache; and
finally, the request’s activation time

s,]f,b = max{fi’fb_l,af,b}.

This is the earliest time when request Rf , could be
scheduled by the bank scheduler. It is the larger of its
arrival time and the finish time of the previous request
Rﬁ;l that was issued by the same thread to the same
bank. A request’s activation time marks the point in time
from which on Rf , is responsible for the ensuing latency
of thread i; before sif »» the request was either not sent
to the memory system or an earlier request to the same
bank by the same thread was generating the latency. With
these definitions, the amortized latency Eﬁ , of request
Rf , 1s the difference between its finish time and its acti-
vation time, i.e., Kﬁb = fi’f'b - sifb By the definition of the
activation time sf p» it is clear that at any point in time,
the amortized latency of exactly one outstanding request
is increasing (if there is at least one in the request buffer).
Hence, when describing time in terms of executed mem-
ory cycles, our definition of cumulated bank-latency L; j,
corresponds exactly to the sum over all amortized laten-
cies to this bank, i.e., Ly = >, £F,.

In order to compute the experienced slowdown of each
thread, we compare the actual experienced cumulated la-
tency L; of each thread i to an imaginary, ideal single-
core cumulated latency L; that serves as a baseline. This
latency L; is the minimal cumulated latency that thread
1 would have accrued if it had run as the only thread in
the system using the same DRAM memory; it captures
the latency component of L; that is inherent to the thread
itself and not caused by contention with other threads.
Hence, threads with good and bad row-buffer locality
have small and large L;, respectively. The measure y;
that captures the relative slowdown of thread ¢ caused by
multi-core parallelism can now be defined as follows.

Definition 4.2. For a thread i, the DRAM memory slow-
down index x; is the ratio between its cumulated latency
L; and its ideal single-core cumulated latency L;:°

9Notice that our definitions do not take into account the service and
waiting times of the shared DRAM bus and across-bank scheduling.
Both our definition of fairness as well as our algorithm presented in
Section 5 can be extended to take into account these and other more
subtle hardware issues. As the main goal of this paper point out and
investigate potential security risks caused by DRAM unfairness, our
model abstracts away numerous aspects of secondary importance be-
cause our definition provides a good approximation.
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Xi = Li / Ei.

Finally, we define the DRAM unfairness ¥ of a
DRAM memory system as the ratio between the maxi-
mum and minimum slowdown index over all currently
executed threads in the system:

U = m%ixi Xi
ming; x;
The “ideal” DRAM unfairness index ¥ = 1 is achieved
if all threads experience exactly the same slowdown; the
higher W, the more unbalanced is the experienced slow-
down of different threads. The goal of a fair memory ac-
cess scheduling algorithm is therefore to achieve a W that
is as close to 1 as possible. This ensures that no thread
is over-proportionally slowed down due to the shared na-
ture of DRAM memory in multi-core systems.

Notice that by taking into account the different row-
buffer localities of different threads, our definition of
DRAM unfairness prevents punishing threads for hav-
ing either good or bad memory access behavior. Hence,
a scheduling algorithm that achieves low DRAM un-
fairness mitigates the risk that any thread in the sys-
tem, regardless of its bank and row access pattern, is
unduly bogged down by other threads. Notice further
that DRAM unfairness is virtually unaffected by the idle-
ness problem, because both cumulated latencies L; and
ideal single-core cumulated latencies L; are only accrued
when there are requests in the memory request buffer.

Short-Term vs. Long-Term Fairness: So far, the as-
pect of time-scale has remained unspecified in our def-
inition of DRAM-unfairness. Both L; and L; continue
to increase throughout the lifetime of a thread. Conse-
quently, a short-term unfair treatment of a thread would
have increasingly little impact on its slowdown index
Xi- While still providing long-term fairness, threads that
have been running for a long time could become vulnera-
ble to short-term DoS attacks even if the scheduling algo-
rithm enforced an upper bound on DRAM unfairness V.
In this way, delay-sensitive applications could be blocked
from DRAM memory for limited periods of time.

We therefore generalize all our definitions to include
an additional parameter 7" that denotes the time-scale for
which the definitions apply. In particular, L;(7) and
Zl(T) are the maximum (ideal single-core) cumulated
latencies over all time-intervals of duration 7' during
which thread i is active. Similarly, x,;(7") and ¥(T) are
defined as the maximum values over all time-intervals
of length T'. The parameter 7" in these definitions deter-
mines how short- or long-term the considered fairness is.
In particular, a memory scheduling algorithm with good
long term fairness will have small W(T") for large 7', but
possibly large W(T") for smaller 7”. In view of the se-
curity issues raised in this paper, it is clear that a mem-
ory scheduling algorithm should aim at achieving small
U(T) for both small and large 7.

5 Our Solution

In this section, we propose FairMem, a new fair memory
scheduling algorithm that achieves good fairness accord-
ing to the definition in Section 4 and hence, reduces the
risk of memory-related DoS attacks.

5.1 Basic Idea

The reason why MPHSs can exist in multi-core systems
is the unfairness in current memory access schedulers.
Therefore, the idea of our new scheduling algorithm is
to enforce fairness by balancing the relative memory-
related slowdowns experienced by different threads. The
algorithm schedules requests in such a way that each
thread experiences a similar degree of memory-related
slowdown relative to its performance when run alone.

In order to achieve this goal, the algorithm maintains
a value (x; in our model of Section 4.1) that character-
izes the relative slowdown of each thread. As long as all
threads have roughly the same slowdown, the algorithm
schedules requests using the regular FR-FCFS mecha-
nism. When the slowdowns of different threads start di-
verging and the difference exceeds a certain threshold
(i.e., when ¥ becomes too large), however, the algo-
rithm switches to an alternative scheduling mechanism
and starts prioritizing requests issued by threads experi-
encing large slowdowns.

5.2 Fair Memory Scheduling Algorithm
(FairMem)

The memory scheduling algorithm we propose for use
in DRAM controllers for multi-core systems is defined
by means of two input parameters, o and 3. These pa-
rameters can be used to fine-tune the involved trade-offs
between fairness and throughput on the one hand ()
and short-term versus long-term fairness on the other
(B). More concretely, « is a parameter that expresses
to what extent the scheduler is allowed to optimize for
DRAM throughput at the cost of fairness, i.e., how much
DRAM unfairness is tolerable. The parameter 3 corre-
sponds to the time-interval 7" that denotes the time-scale
of the above fairness condition. In particular, the mem-
ory controller divides time into windows of duration 3
and, for each thread maintains an accurate account of
its accumulated latencies L; () and L;(/3) in the current
time window.'?

10Notice that in principle, there are various possibilities of interpret-
ing the term “current time window.” The simplest way is to completely
reset L;(3) and L;(3) after each completion of a window. More so-
phisticated techniques could include maintaining multiple, say k, such
windows of size 3 in parallel, each shifted in time by 3/k memory
cycles. In this case, all windows are constantly updated, but only the
oldest is used for the purpose of decision-making. This could help in
reducing volatility.
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Instead of using the (FR-FCFS) algorithm described
in Section 2.2.3, our algorithm first determines two can-
didate requests from each bank b, one according to each
of the following rules:

e Highest FR-FCFS priority: Let Rgr.rcrs be the re-
quest to bank b that has the highest priority according
to the FR-FCFS scheduling policy of Section 2.2.3.
That is, row hits have higher priority than row con-
flicts, and— given this partial ordering—the oldest re-
quest is served first.

e Highest fairness-index: Let i’ be the thread with
highest current DRAM memory slowdown index
xi’ () that has at least one outstanding request in the
memory request buffer to bank b. Among all requests
to b issued by 7', let Rg,;; be the one with highest FR-
FCEFS priority.

Between these two candidates, the algorithm chooses the
request to be scheduled based on the following rule:

e Fairness-oriented Selection: Let x,(5) and x(05)
denote largest and smallest DRAM memory slow-
down index of any request in the memory request
buffer for a current time window of duration 3. If
it holds that

xe(B)

Xs(B)
then Rpy, is selected by bank b’s scheduler and
Rer-rcrs otherwise.

Instead of using the oldest-across-banks-first strategy as
used in current DRAM memory schedulers, selection
from requests chosen by the bank schedulers is handled
as follows:

Highest-DRAM-fairness-index-first across banks:
The request with highest slowdown index x;(3) among
all selected bank-requests is sent on the shared DRAM
bus.

In principle, the algorithm is built to ensure that at no
time DRAM unfairness W(() exceeds the parameter «.
Whenever there is the risk of exceeding this threshold,
the memory controller will switch to a mode in which it
starts prioritizing threads with higher y; values, which
decreases ;. It also increases the x; values of threads
that have had little slowdown so far. Consequently, this
strategy balances large and small slowdowns, which de-
creases DRAM unfairness and —as shown in Section 6 —
keeps potential memory-related DoS attacks in check.

Notice that this algorithm does not—in fact, cannot—
guarantee that the DRAM unfairness ¥ does stay below
the predetermined threshold « at all times. The impos-
sibility of this can be seen when considering the corner-
case &« = 1. In this case, a violation occurs after the
first request regardless of which request is scheduled by
the algorithm. On the other hand, the algorithm always
attempts to keep the necessary violations to a minimum.

Another advantage of our scheme is that an approxi-
mate version of it lends itself to efficient implementation
in hardware. Finally, notice that our algorithm is robust
with regard to the idleness problem mentioned in Sec-
tion 4. In particular, neither L; nor L, is increased or de-
creased if a thread has no outstanding memory requests
in the request buffer. Hence, not issuing any requests for
some period of time (either intentionally or unintention-
ally) does not affect this or any other thread’s priority in
the buffer.

5.3 Hardware Implementations

The algorithm as described so far is abstract in the sense
that it assumes a memory controller that always has full
knowledge of every active (currently-executed) thread’s
L; and L;. In this section, we show how this exact
scheme could be implemented, and we also briefly dis-
cuss a more efficient practical hardware implementation.

Exact Implementation: Theoretically, it is possible
to ensure that the memory controller always keeps accu-
rate information of L;(() and L;(3). Keeping track of
L;(0) for each thread is simple. For each active thread,
a counter maintains the number of memory cycles dur-
ing which at least one request of this thread is buffered
for each bank. After completion of the window 3 (or
when a new thread is scheduled on a core), counters are
reset. The more difficult part of maintaining an accurate
account of L;((3) can be done as follows: At all times,
maintain for each active thread ¢ and for each bank the
row that would currently be in the row-buffer if ¢ had
been the only thread using the DRAM memory system.
This can be done by simulating an FR-FCFS priority
scheme for each thread and bank that ignores all requests
issued by threads other than i. The Zf , latency of each
request Rﬁ , then corresponds to the latency this request
would have caused if DRAM memory was not shared.
Whenever a request is served, the memory controller can
add this “ideal latency” to the corresponding L; () of
that thread and-if necessary—update the simulated state
of the row-buffer accordingly. For instance, assume that
arequest Rﬁ , 18 served, but results in a row conflict. As-
sume further that the same request would have been a
row hit, if thread ¢ had run by itself, ie., Rﬁ ;1 accesses

the same row as R?,v In this case, Zi’b(ﬁ) is increased
by row-hit latency Th;;, whereas L; ;(3) is increased by
the bank-conflict latency T, . By thus “simulating”
its own execution for each thread, the memory controller
obtains accurate information for all L; ;(3).

The obvious problem with the above implementation
is that it is expensive in terms of hardware overhead.
It requires maintaining at least one counter for each
corexbank pair. Similarly severe, it requires one di-
vider per core in order to compute the value x;(5) =
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Li(3)/L;(B) for the thread that is currently running on
that core in every memory cycle. Fortunately, much
less expensive hardware implementations are possible
because the memory controller does not need to know
the exact values of L;; and L;; at any given moment.
Instead, using reasonably accurate approximate values
suffices to maintain an excellent level of fairness and se-
curity.

Reduce counters by sampling: Using sampling tech-
niques, the number of counters that need to be main-
tained can be reduced from O(#Banks x #Cores) to
O(#Cores) with only little loss in accuracy. Briefly, the
idea is the following. For each core and its active thread,
we keep two counters .S; and H; denoting the number of
samples and sampled hits, respectively. Instead of keep-
ing track of the exact row that would be open in the row-
buffer if a thread 7 was running alone, we randomly sam-

ple a subset of requests Rf , issued by thread ¢ and check

whether the next request by ¢ to the same bank, Rfjl, is

for the same row. If so, the memory controller increases
both S; and H;, otherwise, only S; is increased. Requests
R}, to different banks 0" # b served between R}, and
Rfj}rl are ignored. Finally, if none of the () requests of
thread ¢ following Rf, , £0 to bank b, the sample is dis-
carded, neither S; nor H; is increased, and a new sam-
ple request is taken. With this technique, the probability
H; /S, that a request results in a row hit gives the memory
controller a reasonably accurate picture of each thread’s
row-buffer locality. An approximation of L; can thus be
maintained by adding the expected amortized latency to
it whenever a request is served, i.e.,

LPew .= Lo 4 (H;/S; - Thir + (1 — Hi/Si) - Toonyg) -

Reuse dividers:  The ideal scheme employs
O(#Cores) hardware dividers, which significantly
increases the memory controller’s energy consumption.
Instead, a single divider can be used for all cores by
assigning individual threads to it in a round robin
fashion. That is, while the slowdowns L;(3) and L;(53)
can be updated in every memory cycle, their quotient
Xi () is recomputed in intervals.

6 Evaluation
6.1 Experimental Methodology

We evaluate our solution using a detailed processor
and memory system simulator based on the Pin dy-
namic binary instrumentation tool [20]. Our in-house
instruction-level performance simulator can simulate ap-
plications compiled for the x86 instruction set architec-
ture. We simulate the memory system in detail using
a model loosely based on DRAMsim [36]. Both our
processor model and the memory model mimic the de-
sign of a modern high-performance dual-core proces-

sor loosely based on the Intel Pentium M [11]. The
size/bandwidth/latency/capacity of different processor
structures along with the number of cores and other
structures are parameters to the simulator. The simulator
faithfully models the bandwidth, latency, and capacity
of each buffer, bus, and structure in the memory subsys-
tem (including the caches, memory controller, DRAM
buses, and DRAM banks). The relevant parameters of
the modeled baseline processor are shown in Table 1.
Unless otherwise stated, all evaluations in this section are
performed on a simulated dual-core system using these
parameters. For our measurements with the FairMem
system presented in Section 5, the parameters are set to
a = 1.025and 3 = 10°.

We simulate each application for 100 million x86 in-
structions. The portions of applications that are sim-
ulated are determined using the SimPoint tool [32],
which selects simulation points in the application that
are representative of the application’s behavior as a
whole. Our applications include stream and rdarray (de-
scribed in Section 3), several large benchmarks from the
SPEC CPU2000 benchmark suite [34], and one memory-
intensive benchmark from the Olden suite [31]. These
applications are described in Table 2.

6.2 Evaluation Results
6.2.1 Dual-core Systems

Two microbenchmark applications - stream and
rdarray: Figure 7 shows the normalized execution
time of stream and rdarray applications when run alone
or together using either the baseline FR-FCFS or our
FairMem memory scheduling algorithms. Execution
time of each application is normalized to the execution
time they experience when they are run alone using the
FR-FCFS scheduling algorithm (This is true for all nor-
malized results in this paper). When stream and rdarray
are run together on the baseline system, stream—which
acts as an MPH—experiences a slowdown of only 1.22X
whereas rdarray slows down by 2.45X. In contrast, a
memory controller that uses our FairMem algorithm pre-
vents stream from behaving like an MPH against rdarray
— both applications experience similar slowdowns when
run together. FairMem does not significantly affect per-
formance when the applications are run alone or when
run with identical copies of themselves (i.e. when mem-
ory performance is not unfairly impacted). These exper-
iments show that our simulated system closely matches
the behavior we observe in an existing dual-core system
(Figure 4), and that FairMem successfully provides fair-
ness among threads. Next, we show that with real appli-
cations, the effect of an MPH can be drastic.

Effect on real applications: Figure 8 shows the normal-
ized execution time of 8 different pairs of applications
when run alone or together using either the baseline FR-
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Processor pipeline

4 GHz processor, 128-entry instruction window, 12-stage pipeline

Fetch/Execute width per core

3 instructions can be fetched/executed every cycle; only 1 can be a memory operation

L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size, 12-cycle latency
Memory controller 128 request buffer entries, FR-FCFS baseline scheduling policy, runs at 2 GHz
DRAM parameters 8 banks, 2K-byte row-buffer

DRAM latency (round-trip L2 miss latency)

row-buffer hit: 50ns (200 cycles), closed: 75ns (300 cycles), conflict: 100ns (400 cycles)

Table 1: Baseline processor configuration

[ Benchmark [[ Suite | Brief description | Base performance | L2-misses per 1K inst. | row-buffer hit rate |
stream Microbenchmark | Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%
rdarray Microbenchmark | Random access on arrays 56.29 cycles/inst. 629.18 3%
small-stream || Microbenchmark | Streaming on 4-byte-element arrays 13.86 cycles/inst. 7143 97%
art SPEC 2000 FP | Object recognition in thermal image 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT | Chess game 0.64 cycles/inst. 0.35 15%
health Olden Columbian health care system simulator | 7.24 cycles/inst. 8345 27%
mcf SPEC 2000 INT | Single-depot vehicle scheduling 4.73 cycles/inst. 45.95 51%
vpr SPEC 2000 INT | FPGA circuit placement and routing 1.71 cycles/inst. 5.08 14%

Table 2: Evaluated applications and their performance characteristics on the baseline processor
25 25
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Figure 7: Slowdown of (a) stream and (b) rdarray benchmarks using FR-FCFS and our FairMem algorithm

FCFS or FairMem. The results show that 1) an MPH can
severely damage the performance of another application,
and 2) our FairMem algorithm is effective at preventing
it. For example, when stream and health are run together
in the baseline system, stream acts as an MPH slowing
down health by 8.6X while itself being slowed down by
only 1.05X. This is because it has 7 times higher L2 miss
rate and much higher row-buffer locality (96% vs. 27%)
— therefore, it exploits unfairness in both row-buffer-
hit first and oldest-first scheduling policies by flooding
the memory system with its requests. When the two
applications are run on our FairMem system, health’s
slowdown is reduced from 8.63X to 2.28X. The figure
also shows that even regular applications with high row-
buffer locality can act as MPHs. For instance when art
and vpr are run together in the baseline system, art acts as
an MPH slowing down vpr by 2.35X while itself being
slowed down by only 1.05X. When the two are run on
our FairMem system, each slows down by only 1.35X;
thus, art is no longer a performance hog.

Effect on Throughput and Unfairness: Table 3 shows
the overall throughput (in terms of executed instructions
per 1000 cycles) and DRAM unfairness (relative dif-
ference between the maximum and minimum memory-
related slowdowns, defined as ¥ in Section 4) when dif-
ferent application combinations are executed together. In

all cases, FairMem reduces the unfairness to below 1.20
(Remember that 1.00 is the best possible ¥ value). In-
terestingly, in most cases, FairMem also improves over-
all throughput significantly. This is especially true when
a very memory-intensive application (e.g.stream) is run
with a much less memory-intensive application (e.g.vpr).
Providing fairness leads to higher overall system
throughput because it enables better utilization of the
cores (i.e. better utilization of the multi-core system).
The baseline FR-FCFS algorithm significantly hinders
the progress of a less memory-intensive application,
whereas FairMem allows this application to stall less
due to the memory system, thereby enabling it to make
fast progress through its instruction stream. Hence,
rather than wasting execution cycles due to unfairly-
induced memory stalls, some cores are better utilized
with FairMem.!! On the other hand, FairMem re-
duces the overall throughput by 9% when two extremely
memory-intensive applications,stream and rdarray, are
run concurrently. In this case, enforcing fairness reduces
stream’s data throughput without significantly increas-
ing rdarray’s throughput because rdarray encounters L2
cache misses as frequently as stream (see Table 2).

' Note that the data throughput obtained from the DRAM itself may
be, and usually is reduced using FairMem. However, overall through-
put in terms of instructions executed per cycle usually increases.
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Figure 8: Slowdown of different application combinations using FR-FCFS and our FairMem algorithm

‘ Combination [ Baseline (FR-FCFS) FairMem [[ Throughput Fairness
| Throughput | Unfairness | Throughput | Unfairness || improvement | improvement
stream-rdarray 24.8 2.00 22.5 1.06 091X 1.89X
art-vpr 4014 223 5130 1.00 128X 2.23X
health-vpr 463.8 1.56 508.4 1.09 1.10X 1.43X
art-health 179.3 1.62 178.5 1.15 0.99X 141X
rdarray-art 65.9 224 97.1 1.06 147X 2.11X
stream-health 38.0 8.14 72.5 1.18 191X 6.90X
stream-vpr 87.2 8.73 390.6 1.11 4.48X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 4.06 98.6 1.06 1.93X 3.83X

Table 3: Effect of FairMem on overall throughput (in terms of instructions per 1000 cycles) and unfairness

6.2.2 Effect of Row-buffer Size

From the above discussions, it is clear that the exploita-
tion of row-buffer locality by the DRAM memory con-
troller makes the multi-core memory system vulnerable
to DoS attacks. The extent to which this vulnerability can
be exploited is determined by the size of the row-buffer.
In this section, we examine the impact of row-buffer size
on the effectiveness of our algorithm. For these sensitiv-
ity experiments we use two real applications, art and vpr,
where art behaves as an MPH against vpr.

Figure 9 shows the mutual impact of art and vpr on
machines with different row-buffer sizes. Additional
statistics are presented in Table 4. As row-buffer size in-
creases, the extent to which art becomes a memory per-
formance hog for vpr increases when FR-FCFS schedul-
ing algorithm is used. In a system with very small, 512-
byte row-buffers, vpr experiences a slowdown of 1.65X
(versus art’s 1.05X). In a system with very large, 64 KB
row-buffers, vpr experiences a slowdown of 5.50X (ver-
sus art’s 1.03X). Because art has very high row-buffer
locality, a large buffer size allows its accesses to occupy
a bank much longer than a small buffer size does. Hence,

art’s ability to deny bank service to vpr increases with
row-buffer size. FairMem effectively contains this denial
of service and results in similar slowdowns for both art
and vpr (1.32X to 1.41X). It is commonly assumed that
row-buffer sizes will increase in the future to allow better
throughput for streaming applications [41]. As our re-
sults show, this implies that memory-related DoS attacks
will become a larger problem and algorithms to prevent
them will become more important.'?

6.2.3 Effect of Number of Banks

The number of DRAM banks is another important pa-
rameter that affects how much two threads can interfere
with each others’ memory accesses. Figure 10 shows
the impact of art and vpr on each other on machines
with different number of DRAM banks. As the num-
ber of banks increases, the available parallelism in the

12Note that reducing the row-buffer size may at first seem like one
way of reducing the impact of memory-related DoS attacks. However,
this solution is not desirable because reducing the row-buffer size sig-
nificantly reduces the memory bandwidth (hence performance) for ap-
plications with good row-buffer locality even when they are running
alone or when they are not interfering with other applications.
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Figure 9: Normalized execution time of art and vpr when run together on processors with different row-buffer sizes.
Execution time is independently normalized to each machine with different row-buffer size.

| [[512B] IKB [ 2KB | 4KB | 8KB [ I6KB [32KB [ 64KB |

art’s row-buffer hit rate 56% | 67% | 81% | 91% | 92% | 93% | 95% | 98%
vpr’s row-buffer hit rate 13% | 15% | 17% | 19% | 23% | 28% | 38% | 41%
FairMem throughput improvement || 1.08X | 1.16X [ 1.28X | 1.44X | 1.62X | 1.88X | 2.23X | 2.64X
FairMem fairness improvement 1.55X | 1.75X | 2.23X | 242X [ 2.62X | 3.14X | 3.88X | 5.13X

Table 4: Statistics for art and vpr with different row-buffer sizes

2 banks 4 banks  =art 8 banks 16 banks 32 banks 64 banks

S F B F BRI

FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

Figure 10: Slowdown of art and vpr when run together on processors with various number of DRAM banks. Execution
time is independently normalized to each machine with different number of banks.
[ [[ 1 bank [ 2 banks [ 4 banks [ 8 banks [ 16 banks | 32 banks [ 64 banks |

art-vpr base throughput (IPTC) 122 210 304 401 507 617 707
art-vpr FairMem throughput IPTC) || 190 287 402 513 606 690 751
FairMem throughput improvement 156X | 1.37X | 1.32X | 1.28X 1.20X 1.12X 1.06X
FairMem fairness improvement 267X | 257X | 235X | 2.23X 1.70X 1.50X 1.18X

Table 5: Statistics for art-vpr with different number of DRAM banks (IPTC: Instructions/1000-cycles)

memory system increases, and thus art becomes less of a is 1.89X with a 50-cycle latency versus 2.57X with a
performance hog; its memory requests conflict less with 1000-cycle latency. Again, FairMem reduces art’s im-
vpr’s requests. Regardless of the number of banks, our pact on vpr for all examined memory latencies while
mechanism significantly mitigates the performance im- also improving overall system throughput (Table 6). As
pact of art on vpr while at the same time improving over- main DRAM latencies are expected to increase in mod-
all throughput as shown in Table 5. Current DRAMs ern processors (in terms of processor clock cycles) [39],
usually employ 4-16 banks because a larger number of scheduling algorithms that mitigate the impact of MPHs
banks increases the cost of the DRAM system. In a sys- will become more important and effective in the future.
Fem with 4 banks, art slows down vpr by 2.64.X (whil.e 6.2.5 Effect of Number of Cores

itself being slowed down by only 1.10X). FairMem is

able to reduce vpr’s slowdown to only 1.62X and im- Finally, this section analyzes FairMem within the con-
prove overall throughput by 32%. In fact, Table 5 shows text of 4-core and 8-core systems. Our results show that
that FairMem achieves the same throughput on only 4 FairMem effectively mitigates the impact of MPHs while

banks as the baseline scheduling algorithm on 8 banks. improving overall system throughput in both 4-core and
8-core systems running different application mixes with
6.2.4 Effect of Memory Latency

varying memory-intensiveness.

Clearly, memory latency also has an impact on the vul- Figure 12 shows the effect of FairMem on three dif-
nerability in the DRAM system. Figure 11 shows how ferent application mixes run on a 4-core system. In
different DRAM latencies influence the mutual perfor- all the mixes, stream and small-stream act as severe

mance impact of art and vpr. We vary the round-trip MPHs when run on the baseline FR-FCFS system, slow-
latency of a request that hits in the row-buffer from 50 ing down other applications by up to 10.4X (and at least
to 1000 processor clock cycles, and scale closed/conflict 3.5X) while themselves being slowed down by no more
latencies proportionally. As memory latency increases, than 1.10X. FairMem reduces the maximum slowdown
the impact of art on vpr also increases. Vpr’s slowdown caused by these two hogs to at most 2.98X while also
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Figure 11: Slowdown of art and vpr when run together on processors with different DRAM access latencies. Execution
time is independently normalized to each machine with different number of banks. Row-buffer hit latency is denoted.

[ [] 50 cycles [ 100 cycles | 200 cycles [ 300 cycles [ 400 cycles | 500 cycles | 1000 cycles |

art-vpr base throughput (IPTC) 1229 728 401 278 212 172 88
art-vpr FairMem throughput (IPTC) 1459 905 513 359 276 224 114
FairMem throughput improvement 1.19X 1.24X 1.28X 1.29X 1.30X 1.30X 1.30X
FairMem fairness improvement 1.69X 1.82X 223X 221X 225X 223X 2.22X

Table 6: Statistics for art-vpr with different DRAM latencies (IPTC: Instructions/1000-cycles)
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Figure 12: Effect of FR-FCFS and FairMem scheduling on different application mixes in a 4-core system

improving the overall throughput of the system (Table 7).
Figure 13 shows the effect of FairMem on three dif-
ferent application mixes run on an 8-core system. Again,
in the baseline system, stream and small-stream act as
MPHs, sometimes degrading the performance of another
application by as much as 17.6X. FairMem effectively
contains the negative performance impact caused by the
MPHs for all three application mixes. Furthermore, it
is important to observe that FairMem is also effective
at isolating non-memory-intensive applications (such as
crafty in MIX2 and MIX3) from the performance degra-
dation caused by the MPHs. Even though crafty rarely
generates a memory request (0.35 times per 1000 instruc-
tions), it is slowed down by 7.85X by the baseline sys-
tem when run within MIX2! With FairMem crafty’s rare
memory requests are not unfairly delayed due to a mem-
ory performance hog — and its slowdown is reduced to
only 2.28X. The same effect is also observed for crafty in
MIX3."3 We conclude that FairMem provides fairness in
the memory system, which improves the performance of
both memory-intensive and non-memory-intensive ap-
plications that are unfairly delayed by an MPH.

7 Related Work

The possibility of exploiting vulnerabilities in the soft-
ware system to deny memory allocation to other appli-
cations has been considered in a number of works. For

3Notice that 8p-MIX2 and 8p-MIX3 are much less memory inten-
sive than 8p-MIX1. Due to this, their baseline overall throughput is
significantly higher than 8p-MIX1 as shown in Table 7.

example, [37] describes an attack in which one process
continuously allocates virtual memory and causes other
processes on the same machine to run out of memory
space because swap space on disk is exhausted. The
“memory performance attack” we present in this paper
is conceptually very different from such “memory allo-
cation attacks” because (1) it exploits vulnerabilities in
the hardware system, (2) it is not amenable to software
solutions — the hardware algorithms must be modified
to mitigate the impact of attacks, and (3) it can be caused
even unintentionally by well-written, non-malicious but
memory-intensive applications.

There are only few research papers that consider hard-
ware security issues in computer architecture. Woo and
Lee [38] describe similar shared-resource attacks that
were developed concurrently with this work, but they do
not show that the attacks are effective in real multi-core
systems. In their work, a malicious thread tries to dis-
place the data of another thread from the shared caches or
to saturate the on-chip or off-chip bandwidth. In contrast,
our attack exploits the unfairness in the DRAM memory
scheduling algorithms; hence their attacks and ours are
complementary.

Grunwald and Ghiasi [12] investigate the possibility of
microarchitectural denial of service attacks in SMT (si-
multaneous multithreading) processors. They show that
SMT processors exhibit a number of vulnerabilities that
could be exploited by malicious threads. More specif-
ically, they study a number of DoS attacks that affect
caching behavior, including one that uses self-modifying
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Figure 13: Effect of FR-FCFS and FairMem scheduling on different application mixes in an 8-core system

[ 4p-MIX1 [ 4p-MIX2 | 4p-MIX3 ]| 8p-MIX1 | 8p-MIX2 | 8p-MIX3 |

base throughput (IPTC) 107 156 163 131 625 1793
FairMem throughput (IPTC) 179 338 234 189 1233 2809
base unfairness (V) 8.05 8.71 10.98 7.89 13.56 10.11
FairMem unfairness (V) 1.09 1.32 1.21 1.18 1.34 132
FairMem throughput improvement 1.67X 2.17X 1.44X 1.44X 197X 157X
FairMem fairness improvement 7.39X 6.60X 9.07X 6.69X 10.11X 766X

Table 7: Throughput and fairness statistics for 4-core and 8-core systems

code to cause the trace cache to be flushed. The authors
then propose counter-measures that ensure fair pipeline
utilization. The work of Hasan et al. [13] studies in a sim-
ulator the possibility of so-called heat stroke attacks that
repeatedly access a shared resource to create a hot spot at
the resource, thus slowing down the SMT pipeline. The
authors propose a solution that selectively slows down
malicious threads. These two papers present involved
ways of “hacking” existing systems using sophisticated
techniques such as self-modifying code or identifying
on-chip hardware resources that can heat up. In contrast,
our paper describes a more prevalent problem: a triv-
ial type of attack that could be easily developed by any-
one who writes a program. In fact, even existing simple
applications may behave like memory performance hogs
and future multi-core systems are bound to become even
more vulnerable to MPHs. In addition, neither of the
above works consider vulnerabilities in shared DRAM
memory in multi-core architectures.

The FR-FCFS scheduling algorithm implemented in
many current single-core and multi-core systems was
studied in [30, 29, 15, 23], and its best implementation —
the one we presented in Section 2—is due to Rixner
et al [30]. This algorithm was initially developed for
single-threaded applications and shows good through-
put performance in such scenarios. As shown in [23],
however, it can have negative effects on fairness in chip-
multiprocessor systems. The performance impact of dif-
ferent memory scheduling techniques in SMT processors
and multiprocessors has been considered in [42, 22].

Fairness issues in managing access to shared resources
have been studied in a variety of contexts. Network fair
queuing has been studied in order to offer guaranteed ser-
vice to simultaneous flows over a shared network link,
e.g., [24, 40, 3], and techniques from network fair queu-
ing have since been applied in numerous fields, e.g., CPU
scheduling [6]. The best currently known algorithm for

network fair scheduling that also effectively solves the
idleness problem was proposed in [2]. In [23], Nesbit et
al. propose a fair memory scheduler that uses the def-
inition of fairness in network queuing and is based on
techniques from [3, 40]. As we pointed out in Section 4,
directly mapping the definitions and techniques from net-
work fair queuing to DRAM memory scheduling is prob-
lematic. Also, the scheduling algorithm in [23] can sig-
nificantly suffer from the idleness problem. Fairness in
disk scheduling has been studied in [4, 26]. The tech-
niques used to achieve fairness in disk access are highly
influenced by the physical association of data on the disk
(cylinders, tracks, sectors, etc.) and can therefore not di-
rectly be applied in DRAM scheduling.

Shared hardware caches in multi-core systems have
been studied extensively in recent years, e.g. in [35, 19,
14, 28, 9]. Suh et al. [35] and Kim et al. [19] develop
hardware techniques to provide thread-fairness in shared
caches. Fedorova et al. [9] and Suh et al. [35] propose
modifications to the operating system scheduler to allow
each thread its fair share of the cache. These solutions do
not directly apply to DRAM memory controllers. How-
ever, the solution we examine in this paper has interac-
tions with both the operating system scheduler and the
fairness mechanisms used in shared caches, which we
intend to examine in future work.

8 Conclusion

The advent of multi-core architectures has spurred a lot
of excitement in recent years. It is widely regarded as the
most promising direction towards increasing computer
performance in the current era of power-consumption-
limited processor design. In this paper, we show that this
development—besides posing numerous challenges in
fields like computer architecture, software engineering,
or operating systems—bears important security risks.

In particular, we have shown that due to unfairness in
the memory system of multi-core architectures, some ap-
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plications can act as memory performance hogs and de-
stroy the memory-related performance of other applica-
tions that run on different processors in the chip; with-
out even being significantly slowed down themselves. In
order to contain the potential of such attacks, we have

[16]

[17]

Intel Corporation. Intel Develops Tera-Scale Research
Chips. http://www.intel.com/pressroom/
archive/releases/20060926corp b.htm.
Intel Corporation. Pentium D. http://www.intel.
com/products/processor_number/chart/
pentium_d.htm.

) " [18] Intel Corporation.  Terascale computing. http:
proposed a memory request scheduling algorithm whose //www.intel .com/research/platform/
ien i iti i terascale/index.htm.

design is based on our novel deﬁn'ltlon of DRAM'falr— [19] S. Kim, D. C/handra, and Y. Solihin. Fair cache shar-

ness. As the number of processors integrated on a single ing and partitioning in a chip multiprocessor architecture.

chip increases, and as multi-chip architectures become 0] IéAET-LB];Z(t)O;LP buildi omized |
P . .K. Luk et al. Pin: building customized program analy-

ubiquitous, the danger of memory p erformance. hf)gs 18 sis tools with dynamic instrfmentation. IinLgDI s 2005.y

bound to aggravate in the future and more sophisticated [21] J. D. McCalpin. STREAM: Sustainable memory band-

solutions may be required. We hope that this paper helps width in high performance computers. http://www.

in raising awareness of the security issues involved in the 5, o N\;%a];%;ilg: %ﬁ%@ﬁiﬁ?ﬁﬁ d F. Brigs. A study

rapid shift towards ever-larger multi-core architectures. of performance impact of memory controller features in
multi-processor server environment. In WMPI, 2004.

Acknowledgments [23] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.
; ; ; ; i Fair queuing memory systems. In MICRO-39, 2006.

We espemuy thank Burton Smith for continued inspir [24] A. K(.lParek%.A Gengra}l/ized Processor Sharing Approach

ing discussions on this work. We also thank Hyesoon to Flow Control in Integrated Service Networks. PhD the-

Kim, Chris Brumme, Mark Oskin, Rich Draves, Trishul sis, MIT, 1992.

Chilimbi, Dan Simon, John Dunagan, Yi-Min Wang,and ~ [25] D. Peterson, M. Bishop, and R. Pandey. A flexible con-

. . tainment mechanism for executing untrusted code. In

the anonymous reviewers for their comments and sug- [1th USENIX Security Symposium, 2002.

gestions on earlier drafts of this paper. [26] T.Pradhan and J. Haritsa. Efficient fair disk schedulers.

In 3rd Conference on Advanced Computing, 1995.
[27] V. Prevelakis and D. Spinellis. Sandboxing applications.

References In USENIX 2001 Technical Conf.: FreeNIX Track, 2001.

[1] Advanced Micro Devices. AMD  Opteron. [28] N. Rafique et al. Architectural support for operating
http://www.amd.com/us-en/Processors/ system-driven CMP cache management. In PACT-15,
ProductInformation/. 2006. o

[2] J. H. Anderson, A. Block, and A. Srinivasan. Quick- [29] S. Rixner. Memory controller optimizations for web
release fair scheduling. In RTSS, 2003. servers. In MICRO-37, 2004. )

[3] J. C. Bennett and H. Zhang. Hierarchical packet fair ~ [30] S.Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J. D.
queueing algorithms. In SIGCOMM, 1996. Owens. Memory access scheduling. In ISCA-27, 2000.

[4] J. Bruno et al. Disk scheduling with quality of service [31] A. Rogers, M. C. Carlisle, J. Reppy, and L. Hendren.
guarantees. In Proceedings of IEEE Conference on Mul- Supporting dynamic data structures on distributed mem-
timedia Computing and Systems, 1999. ory machines. ACM Transactions on Programming Lan-

[5] A. Chander, J. C. Mitchell, and 1. Shin. Mobile code se- guages and Systems, 17(2):233-263, Mar. 1995.
curity by Java bytecode instrumentation. In DARPA In- [32] T. Sherwood et al. Automatically characterizing large
formation Survivability Conference & Exposition,2001. scale program behavior. In ASPLOS-X, 2002.

[6] A.Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus [33] E. Sprangle and O. Mutlu. Method and apparatus to con-
fair scheduling: A proportional-share CPU scheduling al- trol memory accesses. U.S. Patent 6,799,257, 2004.
gorithm for symmetric multiprocessors. In OSDI-4, 2000. [34] Standard Performance Evaluation Corporation. SPEC

[7] R.S.Cox,J. G. Hansen, S. D. Gribble, and H. M. Levy. CPU2000. http: //www.spec.org/cpu2000/.

A safety-oriented platform for web applications. In JEEE ~ [35] G.E. Suh, S. Devadas, and L. Rudolph. A new memory
Symposium on Security and Privacy, 2006. monitoring scheme for memory-aware scheduling and

[8] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A per- partitioning. HPCA-8, 2002. )
formance comparison of contemporary DRAM architec-  [36] D. Wang et al. DRAMsim: A memory system simulator.
tures. In ISCA-26, 1999. Computer Architecture News, 33(4):100-107, 2005.

[9]1 A. Fedorova, M. Seltzer, and M. D. Smith. Cache-fair [37] Y.-M. Wang et al. Checkpointing and its applications. In
thread scheduling for multi-core processors. Technical FTCS-25,1995. )

Report TR-17-06, Harvard University, Oct. 2006. [38] D. H. Woo and H-H. S. Lee. Analyzing performance

[10] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and vulnerability due to resource denial of service attack on
D. Boneh. Terra: A virtual machine-based platform for chip multiprocessors. In Workshop on Chip Multiproces-
trusted computing. In SOSP, 2003. sor Memory Systems and Interconnects, Feb. 2007.

[11] S. Gochman et al. The Intel Pentium M processor: Mi- [39] W. Wulf and S. McKee. Hitting the memory wall: Im-
croarchitecture and performance. Intel Technology Jour- plications of the obvious. ACM Computer Architecture
nal, 7(2), May 2003. News, 23(1), 1995.

[12] D. Grunwald and S. Ghiasi. Microarchitectural denial of ~ [40] H.Zhang. Service disciplines for guaranteed performance
service: Insuring microarchitectural fairness. In MICRO- service in packet-switching networks. In Proceedings of
35,2002. the IEEE, 1995.

[13] J. Hasan et al. Heat stroke: power-density-based denial [41] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
of service in SMT. In HPCA-11,2005. page interleaving scheme to reduce row-buffer conflicts

[14] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. and exploit data locality. In MICRO-33, 2000.
Communist, utilitarian, and capitalist cache policies on [42] Z. Zhu and Z. Zhang. A performance comparison of
CMPs: Caches as a shared resource. In PACT-15, 2006. DRAM memory system optimizations for SMT proces-

[15] I.Hur and C. Lin. Adaptive history-based memory sched- sors. In HPCA-11,2005.
ulers. In MICRO-37,2004.

274 16th USENIX Security Symposium USENIX Association





