
CMU 18-447
S’13 © 2011
J. C. Hoe

18-447 MIPS ISA

James C. Hoe
Dept of ECE, CMU

CMU 18-447
S’13 © 2011
J. C. Hoe

Instruction Set Architecture

 A stable platform, typically 15~20 years
- guarantees binary compatibility for SW investments
- permits adoption of foreseeable technology advances

 User-level ISA
- program visible state and instructions available to user

processes
- single-user abstraction on top of HW/SW virtualization

 “Virtual Environment” Architecture
- state and instructions to control virtualization (e.g.,

caches, sharing)
- user-level, but not used by your average user programs

 “Operating Environment” Architecture
- state and instructions to implement virtualization
- privileged/protected access reserved for OS

CMU 18-447
S’13 © 2011
J. C. Hoe

Terminologies

 Instruction Set Architecture
- the machine behavior as observable and controllable

by the programmer

 Instruction Set
- the set of commands understood by the computer

 Machine Code
- a collection of instructions encoded in binary format
- directly consumable by the hardware

 Assembly Code
- a collection of instructions expressed in “textual”

format e.g. Add r1, r2, r3
- converted to machine code by an assembler
- one-to-one correspondence with machine code
 (mostly true: compound instructions, address labels

....)

CMU 18-447
S’13 © 2011
J. C. Hoe

What are specified/decided in an ISA?
 Data format and size

- character, binary, decimal, floating point, negatives

 “Programmer Visible State”
- memory, registers, program counters, etc.

 Instructions: how to transform the programmer visible state?

- what to perform and what to perform next
- where are the operands

 Instruction-to-binary encoding
 How to interface with the outside world?
 Protection and privileged operations
 Software conventions
Very often you compromise immediate optimality for

future scalability and compatibility

CMU 18-447
S’13 © 2011
J. C. Hoe

MIPS R2000 Program Visible State

Note r0=0

r1

r2

General Purpose
Register File

32 32-bit words
named r0...r31

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]

Memory
232 by 8-bit locations (4 Giga Bytes)

32-bit address
 (there is some magic going on)

Program Counter
32-bit memory address

of the current instruction

CMU 18-447
S’13 © 2011
J. C. Hoe

Data Format

 Most things are 32 bits
- instruction and data addresses
- signed and unsigned integers
- just bits

 Also 16-bit word and 8-bit word (aka byte)
 Floating-point numbers

- IEEE standard 754
- float: 8-bit exponent, 23-bit significand
- double: 11-bit exponent, 52-bit significand

CMU 18-447
S’13 © 2011
J. C. Hoe

Big Endian vs. Little Endian
(Part I, Chapter 4, Gulliver’s Travels)

 32-bit signed or unsigned integer comprises 4 bytes

 On a byte-addressable machine

 Big Endian Little Endian

 What difference does it make?

8-bit 8-bit 8-bit 8-bit
LSB

(least significant)
MSB

(most significant)

byte 0 byte 1 byte 2 byte 3

MSB LSB

byte 4 byte 5 byte 6 byte 7

byte 8 byte 9 byte 10 byte 11

byte 12 byte 13 byte 14 byte 15

byte 16 byte 17 byte 18 byte 19

MSB LSB

byte 0 byte 1 byte 2 byte 3

byte 4 byte 5 byte 6 byte 7

byte 8 byte 9 byte 10 byte 11

byte 12 byte 13 byte 14 byte 15

byte 16 byte 17 byte 18 byte 19

check out htonl(), ntohl() in in.h

pointer points to the big end pointer points to the little end

CMU 18-447
S’13 © 2011
J. C. Hoe

Instruction Formats

 3 simple formats
- R-type, 3 register operands

- I-type, 2 register operands and 16-bit immediate
operand

- J-type, 26-bit immediate operand

 Simple Decoding
- 4 bytes per instruction, regardless of format
- must be 4-byte aligned (2 lsb of PC must be 2b’00)
- format and fields readily extractable

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

CMU 18-447
S’13 © 2011
J. C. Hoe

ALU Instructions

 Assembly (e.g., register-register signed addition)
 ADD rdreg rsreg rtreg
 Machine encoding

 Semantics
- GPR[rd] GPR[rs] + GPR[rt]
- PC PC + 4

 Exception on “overflow”
 Variations

- Arithmetic: {signed, unsigned} x {ADD, SUB}
- Logical: {AND, OR, XOR, NOR}
- Shift: {Left, Right-Logical, Right-Arithmetic}

0
6-bit

rs
5-bit

rt
5-bit

R-type rd
5-bit

0
5-bit

ADD
6-bit

CMU 18-447
S’13 © 2011
J. C. Hoe

Reg-Reg Instruction Encoding

What patterns do you see? Why are they there?

[MIPS R4000 Microprocessor User’s Manual]

CMU 18-447
S’13 © 2011
J. C. Hoe

ALU Instructions

 Assembly (e.g., regi-immediate signed additions)
 ADDI rtreg rsreg immediate16
 Machine encoding

 Semantics
- GPR[rt] GPR[rs] + sign-extend (immediate)
- PC PC + 4

 Exception on “overflow”
 Variations

- Arithmetic: {signed, unsigned} x {ADD, SUB}
- Logical: {AND, OR, XOR, LUI}

ADDI
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

CMU 18-447
S’13 © 2011
J. C. Hoe

Reg-Immed Instruction Encoding

[MIPS R4000 Microprocessor User’s Manual]

CMU 18-447
S’13 © 2011
J. C. Hoe

Assembly Programming 101

 Break down high-level program constructs into a
sequence of elemental operations

 E.g. High-level Code
 f = (g + h) – (i + j)

 Assembly Code
- suppose f, g, h, i, j are in rf, rg, rh, ri, rj
- suppose rtemp is a free register
 add rtemp rg rh # rtemp = g+h

 add rf ri rj # rf = i+j

 sub rf rtemp rf # f = rtemp – rf

CMU 18-447
S’13 © 2011
J. C. Hoe

Load Instructions

 Assembly (e.g., load 4-byte word)
 LW rtreg offset16 (basereg)
 Machine encoding

 Semantics
- effective_address = sign-extend(offset) + GPR[base]
- GPR[rt] MEM[translate(effective_address)]
- PC PC + 4

 Exceptions
- address must be “word-aligned”
 What if you want to load an unaligned word?
- MMU exceptions

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

CMU 18-447
S’13 © 2011
J. C. Hoe

Data Alignment

 LW/SW alignment restriction
- not optimized to fetch memory bytes not within a word

boundary
- not optimized to rotate unaligned bytes into registers

 Provide separate opcodes for the infrequent case

LWL rd 6(r0)

LWR rd 3(r0)

- LWL/LWR is slower but it is okay
- note LWL and LWR still fetch within word boundary

byte-3 byte-2 byte-1 byte-0
byte-7 byte-6 byte-5 byte-4

A B C D

byte-6 byte-5 byte-4 D

byte-6 byte-5 byte-4 byte-3

MSB LSB

CMU 18-447
S’13 © 2011
J. C. Hoe

Store Instructions

 Assembly (e.g., store 4-byte word)
 SW rtreg offset16 (basereg)
 Machine encoding

 Semantics
- effective_address = sign-extend(offset) + GPR[base]
- MEM[translate(effective_address)] GPR[rt]
- PC PC + 4

 Exceptions
- address must be “word-aligned”
- MMU exceptions

SW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

CMU 18-447
S’13 © 2011
J. C. Hoe

Assembly Programming 201

 E.g. High-level Code
 A[8] = h + A[0]

where A is an array of integers (4–byte each)

 Assembly Code
- suppose &A, h are in rA, rh
- suppose rtemp is a free register

 LW rtemp 0(rA) # rtemp = A[0]

 add rtemp rh rtemp # rtemp = h + A[0]

 SW rtemp 32(rA) # A[8] = rtemp

 # note A[8] is 32 bytes

 # from A[0]

CMU 18-447
S’13 © 2011
J. C. Hoe

Load Delay Slots

 R2000 load has an architectural latency of 1 inst*.
- the instruction immediately following a load (in the “delay

slot”) still sees the old register value
- the load instruction no longer has an atomic semantics
 Why would you do it this way?

 Is this a good idea? (hint: R4000 redefined LW to complete
atomically)

*BTW, notice that latency is defined in “instructions” not cyc. or sec.

LW ra ---

addi r- ra r-

addi r- ra r-

CMU 18-447
S’13 © 2011
J. C. Hoe

Control Flow Instructions

 C-Code

{ code A }
if X==Y then
 { code B }
else
 { code C }
{ code D }

code A

if X==Y

code B

code C

code D

Control Flow Graph

True False

Assembly Code
(linearized)

code A

if X==Y

goto

code C

goto

code B

code D

these things are called basic blocks

CMU 18-447
S’13 © 2011
J. C. Hoe

(Conditional) Branch Instructions

 Assembly (e.g., branch if equal)
 BEQ rsreg rtreg immediate16
 Machine encoding

 Semantics
- target = PC + sign-extend(immediate) x 4
- if GPR[rs]==GPR[rt] then PC target
 else PC PC + 4

 How far can you jump?
 Variations

- BEQ, BNE, BLEZ, BGTZ

BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Why isn’t there a BLE or BGT instruction?

CMU 18-447
S’13 © 2011
J. C. Hoe

Jump Instructions

 Assembly
 J immediate26
 Machine encoding

 Semantics
- target = PC[31:28]x228 |bitwise-or zero-

extend(immediate)x4
- PC target

 How far can you jump?
 Variations

- Jump and Link
- Jump Registers

J
6-bit

immediate
26-bit

J-type

CMU 18-447
S’13 © 2011
J. C. Hoe

 E.g. High-level Code
 if (i == j) then

 e = g

 else

 e = h

 f = e

 Assembly Code
- suppose e, f, g, h, i, j are in re, rf, rg, rh, ri, rj

 bne ri rj L1 # L1 and L2 are addr labels

 # assembler computes offset

 add re rg r0 # e = g

 j L2

L1: add re rh r0 # e = h

L2: add rf re r0 # f = e

Assembly Programming 301

fork

then

else

join

CMU 18-447
S’13 © 2011
J. C. Hoe

 bne ri rj L1

 nop

 add re rg r0

 j L2

 nop

L1: add re rh r0

L2: add rf re r0

Branch Delay Slots

 R2000 branch instructions also have an architectural
latency of 1 instructions
- the instruction immediately after a branch is always

executed (in fact PC-offset is computed from the delay
slot instruction)

- branch target takes effect on the 2nd instruction
 bne ri rj L1

 nop

 j L2

 add re rg r0

L1: add re rh r0

L2: add rf re r0

 bne ri rj L1

 add re rg r0

 j L2

L1: add re rh r0

L2: add rf re r0

CMU 18-447
S’13 © 2011
J. C. Hoe

Strangeness in the Semantics

Where do you think you will end up?

_s: j L1

 j L2

 j L3

L1: j L4

L2: j L5

L3: foo

L4: bar

L5: baz

CMU 18-447
S’13 © 2011
J. C. Hoe

Function Call and Return
 Jump and Link: JAL offset26

- return address = PC + 8
- target = PC[31:28]x228 |bitwise-or zero-

extend(immediate)x4
- PC target
- GPR[r31] return address
On a function call, the callee needs to know where to go

back to afterwards

 Jump Indirect: JR rsreg
- target = GPR [rs]
- PC target
PC-offset jumps and branches always jump to the same

target every time the same instruction is executed
Jump Indirect allows the same instruction to jump to any

location specified by rs (usually r31)

CMU 18-447
S’13 © 2011
J. C. Hoe

Assembly Programming 401

 A call B return C call B return D
 How do you pass argument between caller and callee?
 If A set r10 to 1, what is the value of r10 when B returns

to C?
 What registers can B use?
 What happens to r31 if B calls another function

Callee

_myfxn: ... code B ...

 JR r31

Caller

 ... code A ...

 JAL _myfxn

 ... code C ...

 JAL _myfxn

 ... code D ...

CMU 18-447
S’13 © 2011
J. C. Hoe

Caller and Callee Saved Registers

 Callee-Saved Registers
- Caller says to callee, “The values of these registers

should not change when you return to me.”
- Callee says, “If I need to use these registers, I promise

to save the old values to memory first and restore
them before I return to you.”

 Caller-Saved Registers
- Caller says to callee, “If there is anything I care about in

these registers, I already saved it myself.”
- Callee says to caller, “Don’t count on them staying the

same values after I am done.

CMU 18-447
S’13 © 2011
J. C. Hoe

R2000 Register Usage Convention

 r0: always 0
 r1: reserved for the assembler
 r2, r3: function return values
 r4~r7: function call arguments
 r8~r15: “caller-saved” temporaries
 r16~r23 “callee-saved” temporaries
 r24~r25 “caller-saved” temporaries
 r26, r27: reserved for the operating system
 r28: global pointer
 r29: stack pointer
 r30: callee-saved temporaries
 r31: return address

CMU 18-447
S’13 © 2011
J. C. Hoe

stack pointer

GPR[r29]

R2000 Memory Usage Convention

static data

text

reserved

free space

stack space

dynamic data

grow down

grow up

low address

high address

binary executable

CMU 18-447
S’13 © 2011
J. C. Hoe

1. caller saves caller-saved registers
2. caller loads arguments into r4~r7
3. caller jumps to callee using JAL
4. callee allocates space on the stack (dec. stack pointer)
5. callee saves callee-saved registers to stack (also r4~r7,

old r29, r31)

6. callee loads results to r2, r3
7. callee restores saved register values
8. JR r31
9. caller continues with return values in r2, r3

Calling Convention

....... body of callee (can “nest” additional calls)

p
ro

lo
gu

e
ep

ilo
gu

e

.......

CMU 18-447
S’13 © 2011
J. C. Hoe

To Summarize: MIPS RISC

 Simple operations
- 2-input, 1-output arithmetic and logical operations
- few alternatives for accomplishing the same thing

 Simple data movements
- ALU ops are register-to-register (need a large register

file)
- “Load-store” architecture

 Simple branches
- limited varieties of branch conditions and targets

 Simple instruction encoding
- all instructions encoded in the same number of bits
- only a few formats

Loosely speaking, an ISA intended for compilers rather
than assembly programmers

CMU 18-447
S’13 © 2011
J. C. Hoe

We didn’t talk about

 Privileged Modes
- User vs. supervisor

 Exception Handling
- trap to supervisor handling routine and back

 Virtual Memory
- Each user has 4-GBytes of private, large, linear and fast

memory?

 Floating-Point Instructions

