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Instruction Set Architecture 

 A stable platform, typically 15~20 years 
- guarantees binary compatibility for SW investments 
- permits adoption of foreseeable technology advances 

 User-level ISA 
- program visible state and instructions available to user 

processes 
- single-user abstraction on top of HW/SW virtualization 

 “Virtual Environment” Architecture 
- state and instructions to control virtualization (e.g., 

caches, sharing) 
- user-level, but not used by your average user programs 

 “Operating Environment” Architecture 
- state and instructions to implement virtualization 
- privileged/protected access reserved for OS 
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Terminologies 

 Instruction Set Architecture 
- the machine behavior as observable and controllable 

by the programmer 

 Instruction Set 
- the set of commands understood by the computer 

 Machine Code 
- a collection of instructions encoded in binary format 
- directly consumable by the hardware 

 Assembly Code 
- a collection of instructions expressed in “textual” 

format    e.g.  Add r1, r2, r3 
- converted to machine code by an assembler 
- one-to-one correspondence with machine code  
 (mostly true: compound instructions, address labels 

....) 
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What are specified/decided in an ISA? 
 Data format and size 

- character, binary, decimal, floating point, negatives 

 “Programmer Visible State” 
- memory, registers, program counters, etc. 

 Instructions: how to transform the programmer visible state? 

- what to perform and what to perform next 
- where are the operands 

 Instruction-to-binary encoding 
 How to interface with the outside world? 
 Protection and privileged operations  
 Software conventions 
Very often you compromise immediate optimality for 

future scalability and compatibility 
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MIPS R2000 Program Visible State 

**Note**  r0=0 

r1 

r2 

 
 
 

General Purpose 
Register File 

32 32-bit words 
named r0...r31 

M[0] 

M[1] 

M[2] 

M[3] 

M[4] 

M[N-1] 

Memory 
232  by 8-bit locations (4 Giga Bytes) 

32-bit address 
       (there is some magic going on) 

Program Counter 
32-bit memory address 

of the current instruction 
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Data Format 

 Most things are 32 bits 
- instruction and data addresses 
- signed and unsigned integers 
- just bits 

 Also 16-bit word and 8-bit word (aka byte) 
 Floating-point numbers 

- IEEE standard 754 
- float: 8-bit exponent, 23-bit significand 
- double: 11-bit exponent, 52-bit significand 
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Big Endian vs. Little Endian 
(Part I, Chapter 4, Gulliver’s Travels) 

 32-bit signed or unsigned integer comprises 4 bytes 
 
 

 On a byte-addressable machine . . . . . . . 
 

  Big Endian        Little Endian 
 
 
 
 
 
 
 

 What difference does it make? 

8-bit 8-bit 8-bit 8-bit 
LSB 

(least significant) 
MSB 

(most significant) 

byte 0 byte 1 byte 2 byte 3 

MSB LSB 

byte 4 byte 5 byte 6 byte 7 

byte 8 byte 9 byte 10 byte 11 

byte 12 byte 13 byte 14 byte 15 

byte 16 byte 17 byte 18 byte 19 

MSB LSB 

byte 0 byte 1 byte 2 byte 3 

byte 4 byte 5 byte 6 byte 7 

byte 8 byte 9 byte 10 byte 11 

byte 12 byte 13 byte 14 byte 15 

byte 16 byte 17 byte 18 byte 19 

check out htonl(), ntohl() in in.h 

pointer points to the big end pointer points to the little end 
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Instruction Formats 

  3 simple formats 
- R-type, 3 register operands 

 
 

- I-type, 2 register operands and 16-bit immediate 
operand 

 
- J-type, 26-bit immediate operand 

 
 

 Simple Decoding 
- 4 bytes per instruction, regardless of format 
- must be 4-byte aligned          (2 lsb of PC must be 2b’00) 
- format and fields readily extractable 

 

opcode 
6-bit 

rs 
5-bit 

rt 
5-bit 

immediate 
16-bit 

I-type 

R-type 0 
6-bit 

rs 
5-bit 

rt 
5-bit 

rd 
5-bit 

shamt 
5-bit 

funct 
6-bit 

opcode 
6-bit 

immediate 
26-bit 

J-type 
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ALU Instructions 

 Assembly (e.g., register-register signed addition) 
  ADD rdreg rsreg rtreg 
 Machine encoding 

 
 

 Semantics 
- GPR[rd]  GPR[rs] + GPR[rt]   
- PC  PC + 4 

 Exception on “overflow” 
 Variations 

- Arithmetic: {signed, unsigned} x {ADD, SUB} 
- Logical: {AND, OR, XOR, NOR} 
- Shift: {Left, Right-Logical, Right-Arithmetic} 

0 
6-bit 

rs 
5-bit 

rt 
5-bit 

R-type rd 
5-bit 

0 
5-bit 

ADD 
6-bit 
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Reg-Reg Instruction Encoding 

What patterns do you see? Why are they there? 

[MIPS R4000 Microprocessor User’s Manual] 
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ALU Instructions 

 Assembly (e.g., regi-immediate signed additions) 
  ADDI rtreg rsreg immediate16 
 Machine encoding 

 
 

 Semantics 
- GPR[rt]  GPR[rs] + sign-extend (immediate)   
- PC  PC + 4 

 Exception on “overflow” 
 Variations 

- Arithmetic: {signed, unsigned} x {ADD, SUB} 
- Logical: {AND, OR, XOR, LUI} 

ADDI 
6-bit 

rs 
5-bit 

rt 
5-bit 

immediate 
16-bit 

I-type 
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Reg-Immed Instruction Encoding 

[MIPS R4000 Microprocessor User’s Manual] 
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Assembly Programming 101 

 Break down high-level program constructs into a 
sequence of elemental operations 
 

 E.g. High-level Code 
   f = ( g + h ) – ( i + j ) 

 

 Assembly Code 
- suppose f, g, h, i, j are in rf, rg, rh, ri, rj 
- suppose rtemp is a free register 
   add rtemp rg rh # rtemp = g+h 

   add rf ri rj # rf = i+j   

   sub rf rtemp rf # f = rtemp – rf 
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Load Instructions 

 Assembly (e.g., load 4-byte word) 
  LW rtreg offset16 (basereg) 
 Machine encoding 

 
 

 Semantics 
- effective_address = sign-extend(offset) + GPR[base] 
- GPR[rt]  MEM[ translate(effective_address) ]  
- PC  PC + 4 

 Exceptions 
- address must be “word-aligned” 
   What if you want to load an unaligned word? 
- MMU exceptions 

LW 
6-bit 

base 
5-bit 

rt 
5-bit 

offset 
16-bit 

I-type 
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Data Alignment 

 LW/SW alignment restriction 
- not optimized to fetch memory bytes not within a word 

boundary 
- not optimized to rotate unaligned bytes into registers 

 Provide separate opcodes for the infrequent case 
 
 

LWL  rd 6(r0) 
 

LWR  rd 3(r0) 
 

- LWL/LWR is slower but it is okay 
- note LWL and LWR still fetch within word boundary 

byte-3 byte-2 byte-1 byte-0 
byte-7 byte-6 byte-5 byte-4 

A B C D 

byte-6 byte-5 byte-4 D 

byte-6 byte-5 byte-4 byte-3 

MSB LSB 
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Store Instructions 

 Assembly (e.g., store 4-byte word) 
  SW rtreg offset16 (basereg) 
 Machine encoding 

 
 

 Semantics 
- effective_address = sign-extend(offset) + GPR[base] 
- MEM[ translate(effective_address) ]  GPR[rt]  
- PC  PC + 4 

 Exceptions 
- address must be “word-aligned” 
- MMU exceptions 
    

SW 
6-bit 

base 
5-bit 

rt 
5-bit 

offset 
16-bit 

I-type 
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Assembly Programming 201 

 E.g. High-level Code 
   A[ 8 ] = h + A[ 0 ] 

 

where A is an array of integers (4–byte each) 

 Assembly Code 
- suppose &A, h are in rA, rh 
- suppose rtemp is a free register 
 
  LW rtemp 0(rA)  # rtemp = A[0] 

  add rtemp rh rtemp # rtemp = h + A[0] 

  SW rtemp 32(rA) # A[8] = rtemp 

     # note A[8] is 32 bytes 

    # from A[0] 
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Load Delay Slots 

 R2000 load has an architectural latency of 1 inst*. 
- the instruction immediately following a load (in the “delay 

slot”) still sees the old register value 
- the load instruction no longer has an atomic semantics 
     Why would you do it this way?  

 Is this a good idea? (hint: R4000 redefined LW to complete 
atomically) 

 
*BTW, notice that latency is defined in “instructions” not cyc. or sec.  

LW ra ---

   
addi r- ra r-  

addi r- ra r-  
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Control Flow Instructions 

 C-Code 
 
{ code A } 
if X==Y then 
   { code B } 
else 
    { code C } 
{ code D } 

 
 

code A 

 
if X==Y 

code B 
 
 

code C 
 
 

code D 
 
 

Control Flow Graph 

True False 

Assembly Code 
(linearized) 

code A 

 
if X==Y 

goto 

code C 
 
 

goto 

code B 
 
 

code D 
 
 

these things are called basic blocks 
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(Conditional) Branch Instructions 

 Assembly (e.g., branch if equal) 
  BEQ rsreg rtreg immediate16 
 Machine encoding 

 
 

 Semantics 
- target = PC + sign-extend(immediate) x 4 
- if GPR[rs]==GPR[rt]  then  PC  target 
     else  PC  PC + 4 

 How far can you jump? 
 Variations 

- BEQ, BNE, BLEZ, BGTZ 

BEQ 
6-bit 

rs 
5-bit 

rt 
5-bit 

immediate 
16-bit 

I-type 

Why isn’t there a BLE or BGT instruction? 
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Jump Instructions 

 Assembly 
  J immediate26 
 Machine encoding 

 
 

 Semantics 
- target = PC[31:28]x228  |bitwise-or zero-

extend(immediate)x4   
- PC  target 

 How far can you jump? 
 Variations 

- Jump and Link 
- Jump Registers 

J 
6-bit 

immediate 
26-bit 

J-type 
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 E.g. High-level Code 
   if (i == j) then 

    e = g 

   else 

    e = h 

   f = e 

 Assembly Code 
- suppose e, f, g, h, i, j are in re, rf, rg, rh, ri, rj 

 

    bne ri rj L1 # L1 and L2 are addr labels 

     # assembler computes offset 

    add re rg r0 # e = g 

    j L2    

L1:  add re rh r0 # e = h 

L2:  add rf re r0 # f = e 

    . . . .    

Assembly Programming 301 
 

 

fork 
 

then 

 

else 

 

join 
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  bne ri rj L1 

  nop 

  add re rg r0  

  j L2 

  nop 

L1:   add re rh r0 

 

L2:   add rf re r0 

     . . . .   

Branch Delay Slots 

 R2000 branch instructions also have an architectural 
latency of 1 instructions 
- the instruction immediately after a branch is always 

executed (in fact PC-offset is computed from the delay 
slot instruction) 

- branch target takes effect on the 2nd instruction 
  bne ri rj L1 

  nop 

  

  j L2 

  add re rg r0 

L1:   add re rh r0 

 

L2:   add rf re r0 

     . . . .   

 bne ri rj L1 

 

 add re rg r0 

 j L2    

 

L1:  add re rh r0 

 

L2:  add rf re r0 

 . . . .   
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Strangeness in the Semantics 

Where do you think you will end up? 
 

 

_s:  j L1 

    j L2 

    j L3 

 

L1:  j L4   

L2:  j L5 

 

L3:  foo 

L4:  bar 

L5:  baz    

  



CMU 18-447 
S’13 © 2011 
J. C. Hoe 

Function Call and Return 
 Jump and Link: JAL offset26 

- return address = PC + 8 
- target = PC[31:28]x228 |bitwise-or zero-

extend(immediate)x4   
- PC  target 
- GPR[r31]  return address 
On a function call, the callee needs to know where to go 

back to afterwards 

 Jump Indirect: JR  rsreg 
- target = GPR [rs] 
- PC  target 
PC-offset jumps and branches always jump to the same 

target every time the same instruction is executed 
Jump Indirect allows the same instruction to jump to any 

location specified by rs (usually r31) 
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Assembly Programming 401 

 .....  A call B return C call B return D ..... 
 How do you pass argument between caller and callee? 
 If A set r10 to 1, what is the value of r10 when B returns 

to C? 
 What registers can B use? 
 What happens to r31 if B calls another function   

Callee 

_myfxn: ... code B ... 

   JR r31 

 

 

Caller 

 ... code A ... 

 JAL _myfxn 

 ... code C ... 

 JAL _myfxn 

 ... code D ... 
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Caller and Callee Saved Registers 

 Callee-Saved Registers 
- Caller says to callee, “The values of these registers 

should not change when you return to me.” 
- Callee says, “If I need to use these registers, I promise 

to save the old values to memory first and restore 
them before I return to you.” 
 

 Caller-Saved Registers 
- Caller says to callee, “If there is anything I care about in 

these registers, I already saved it myself.” 
- Callee says to caller, “Don’t count on them staying the 

same values after I am done. 



CMU 18-447 
S’13 © 2011 
J. C. Hoe 

R2000 Register Usage Convention 

 r0:   always 0 
 r1:   reserved for the assembler  
 r2, r3:  function return values 
 r4~r7: function call arguments 
 r8~r15: “caller-saved” temporaries 
 r16~r23 “callee-saved” temporaries 
 r24~r25 “caller-saved” temporaries 
 r26, r27: reserved for the operating system 
 r28:  global pointer 
 r29:  stack pointer 
 r30:  callee-saved temporaries 
 r31:  return address 
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stack pointer 

GPR[r29] 

R2000 Memory Usage Convention 

static data 

text 

reserved  

free space 

stack space 

dynamic data 

grow down 

grow up      

low address 

high address 

binary executable 
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1. caller saves caller-saved registers 
2. caller loads arguments into r4~r7 
3. caller jumps to callee using JAL 
4. callee allocates space on the stack (dec. stack pointer) 
5. callee saves callee-saved registers to stack (also r4~r7, 

old r29, r31) 
 

6. callee loads results to r2, r3 
7. callee restores saved register values 
8. JR r31 
9. caller continues with return values in r2, r3 
 ........ 

Calling Convention 

....... body of callee  (can “nest” additional calls) ....... 

p
ro

lo
gu

e 
ep

ilo
gu

e
 

.......  
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To Summarize: MIPS RISC 

 Simple operations 
- 2-input, 1-output arithmetic and logical operations 
- few alternatives for accomplishing the same thing 

 Simple data movements 
- ALU ops are register-to-register (need a large register 

file) 
- “Load-store” architecture 

 Simple branches 
- limited varieties of branch conditions and targets 

 Simple instruction encoding 
- all instructions encoded in the same number of bits 
- only a few formats 

 

Loosely speaking, an ISA intended for compilers rather 
than assembly programmers 
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We didn’t talk about 

 Privileged Modes 
- User vs. supervisor 

 Exception Handling 
- trap to supervisor handling routine and back 

 Virtual Memory 
- Each user has 4-GBytes of private, large, linear and fast 

memory? 

 Floating-Point Instructions 
 
 
 


