Tiered-Latency DRAM: A Low Latency and A Low Cost DRAM Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, Onur Mutlu

Carnegie Mellon

Executive Summary

- Problem: DRAM latency is a critical performance bottleneck
- Our Goal: Reduce DRAM latency with low area cost
- Observation: Long bitlines in DRAM are the dominant source of DRAM latency
- Key Idea: Divide long bitlines into two shorter segments
 - Fast and slow segments
- <u>Tiered-latency DRAM</u>: Enables latency heterogeneity in DRAM
 - Can leverage this in many ways to improve performance and reduce power consumption
- Results: When the fast segment is used as a cache to the slow segment → Significant performance improvement (>12%) and power reduction (>23%) at low area cost (3%)

Outline

- Motivation & Key Idea
- Tiered-Latency DRAM
- Leveraging Tiered-Latency DRAM
- Evaluation Results

Historical DRAM Trend

DRAM latency continues to be a critical bottleneck

What Causes the Long Latency?

DRAM Chip

Why is the Subarray So Slow?

Long Bitline: Amortize sense amplifier \rightarrow Small area Long Bitline: Large bitline cap. \rightarrow High latency

Trade-Off: Area (Die Size) vs. Latency **Short Bitline Long Bitline Faster Smaller Trade-Off: Area vs. Latency**

Trade-Off: Area (Die Size) vs. Latency

Approximating the Best of Both Worlds

Approximating the Best of Both Worlds

Outline

- Motivation & Key Idea
- Tiered-Latency DRAM
- Leveraging Tiered-Latency DRAM
- Evaluation Results

Tiered-Latency DRAM

Divide a bitline into two segments with an isolation transistor

Near Segment Access

Turn off the isolation transistor

Reduced bitline length Reduced bitline capacitance → Low latency & low power Isolation Transistor (off) **Near Segment** Sense Amplifier

Far Segment Access

Turn on the isolation transistor

Long bitline length Large bitline capacitance Additional resistance of isolation transistor → High latency & high power Isolation Transistor (On) **Near Segment** Sense Amplifier

Latency, Power, and Area Evaluation

- Commodity DRAM: 512 cells/bitline
- TL-DRAM: 512 cells/bitline
 - Near segment: 32 cells
 - Far segment: 480 cells

Latency Evaluation

- SPICE simulation using circuit-level DRAM model
- Power and Area Evaluation
 - DRAM area/power simulator from Rambus
 - DDR3 energy calculator from Micron

Commodity DRAM vs. TL-DRAM

DRAM Latency (tRC)
 DRAM Power

DRAM Area Overhead

~3%: mainly due to the isolation transistors

Latency vs. Near Segment Length

Longer near segment length leads to higher near segment latency

Latency vs. Near Segment Length

Far Segment Length = 512 – Near Segment Length

Far segment latency is higher than commodity DRAM latency

Trade-Off: Area (Die-Area) vs. Latency

Outline

- Motivation & Key Idea
- Tiered-Latency DRAM
- Leveraging Tiered-Latency DRAM
- Evaluation Results

Leveraging Tiered-Latency DRAM

- TL-DRAM is a substrate that can be leveraged by the hardware and/or software
- Many potential uses
 - 1. Use near segment as hardware-managed *inclusive* cache to far segment
 - 2. Use near segment as hardware-managed *exclusive* cache to far segment
 - 3. Profile-based page mapping by operating system
 - 4. Simply replace DRAM with TL-DRAM

Near Segment as Hardware-Managed Cache

- Challenge 1: How to efficiently migrate a row between segments?
- Challenge 2: How to efficiently manage the cache?

Inter-Segment Migration

- Goal: Migrate source row into destination row
- Naïve way: Memory controller reads the source row byte by byte and writes to destination row byte by byte
 → High latency

Inter-Segment Migration

Our way:

- Source and destination cells share bitlines
- Transfer data from source to destination across shared bitlines concurrently

Inter-Segment Migration

Our way:

- Source and destination cells share bitlines
- Transfer data from sor shared bitlines concu
 Step 1: Activate source row

Migration is overlapped with source row access Additional ~4ns over row access latency

Step 2: Activate destination row to connect cell and bitline

Near Segment

Sense Amplifier

Near Segment as Hardware-Managed Cache

- Challenge 1: How to efficiently migrate a row between segments?
- Challenge 2: How to efficiently manage the cache?

Three Caching Mechanisms

- 1. SC (Simple Caching)
 - Classic LRU cache
 - Benefit: Reduced reuse latency

Is there another benefit of caching?

- Identify and cache and wait-inducing rows
Baseline - BenefftovRéducedRavait > Time 3. BBC (Benefit-Based Caching) 2 Wait until finishing Req1 - BBC ≈ SC + White row - Benefit: Reduced reuse latency & reduced wait Caching Low 1 Row 2 Row 2 Row 1 > Time **Cached row** 27 Reduced wait

Outline

- Motivation & Key Idea
- Tiered-Latency DRAM
- Leveraging Tiered-Latency DRAM
- Evaluation Results

Evaluation Methodology

System simulator

- CPU: Instruction-trace-based x86 simulator
- Memory: Cycle-accurate DDR3 DRAM simulator

Workloads

32 Benchmarks from TPC, STREAM, SPEC CPU2006

Metrics

- Single-core: Instructions-Per-Cycle
- Multi-core: Weighted speedup

Configurations

- System configuration
 - CPU: 5.3GHz
 - LLC: 512kB private per core
 - Memory: DDR3-1066
 - 1-2 channel, 1 rank/channel
 - 8 banks, 32 subarrays/bank, **512 cells/bitline**
 - Row-interleaved mapping & closed-row policy

TL-DRAM configuration

- Total bitline length: 512 cells/bitline
- Near segment length: 1-256 cells

Single-Core: Performance & Power

Using near segment as a cache improves performance and reduces power consumption

Single-Core: Varying Near Segment Length

By adjusting the near segment length, we can trade off cache capacity for cache latency

Dual-Core Evaluation

- We categorize single-core benchmarks into two categories
 - 1. Sens: benchmarks whose performance is *sensitive* to near segment capacity
 - 2. Insens: benchmarks whose performance is insensitive to near segment capacity

- Dual-core workload categorization
 - 1. Sens/Sens
 - 2. Sens/Insens
 - 3. Insens/Insens

Dual-Core: Sens/Sens

Larger near segment capacity leads to higher performance improvement in sensitive workloads BBC/WMC show more perf. improvement

Dual-Core: Sens/Insens & Insens/Insens

Using near segment as a cache provides high performance improvement regardless of near segment capacity

Other Mechanisms & Results in Paper

- More mechanisms for leveraging TL-DRAM
 - Hardware-managed exclusive caching mechanism
 - Profile-based page mapping to near segment
 - TL-DRAM improves performance and reduces power consumption with other mechanisms
- More than two tiers
 - Latency evaluation for three-tier TL-DRAM
- Detailed circuit evaluation for DRAM latency and power consumption
 - Examination of tRC and tRCD
- Implementation details and storage cost analysis memory controller

in

Conclusion

- Problem: DRAM latency is a critical performance bottleneck
- Our Goal: Reduce DRAM latency with low area cost
- Observation: Long bitlines in DRAM are the dominant source of DRAM latency
- Key Idea: Divide long bitlines into two shorter segments
 - Fast and slow segments
- <u>Tiered-latency DRAM</u>: Enables latency heterogeneity in DRAM
 - Can leverage this in many ways to improve performance and reduce power consumption
- Results: When the fast segment is used as a cache to the slow segment → Significant performance improvement (>12%) and power reduction (>23%) at low area cost (3%)

Thank You

Tiered-Latency DRAM: A Low Latency and A Low Cost DRAM Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, Onur Mutlu

Carnegie Mellon

Backup Slides

Storage Cost in Memory Controller

Organization

- Bitline Length: 512 cells/bitline
- Near Segment Length: 32 cells
- Far Segment Length: 480 cells
- Inclusive Caching

Simple caching and wait-minimized caching

- Tag Storage: 9 KB
- Replace Information: 5 KB

Benefit-based caching

- Tag storage: 9 KB
- Replace Information: 8 KB(8 bit benefit field/near segment row)

Hardware-managed Exclusive Cache

- Near and Far segment: Main memory
- Caching: Swapping near and far segment row
 - Need one dummy row to swap

Performance improvement is lower than Inclusive caching due to high swapping latency

42

Profile-Based Page Mapping

 Operating system profiles applications and maps frequently accessed rows to the near segment

Allocating frequently accessed rows in the near segment provides performance improvement

Three-Tier Analysis

Three tiers

- Add two isolation transistors
- Near/Mid/Far segment length: 32/224/256 Cells

More tiers enable finer-grained caching and partitioning mechanisms