18-447

Computer Architecture
Lecture 13: Virtual Memory 11

Lecturer: Rachata Ausavarungnirun
Carnegie Mellon University
Spring 2014, 2/17/2014
(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcement

Lab 2 grades and feedback available tonight
Lab 3 due this Friday (21t Feb.)
HW 2 grades and feedback available tonight

Midterm 1 in two weeks (37 Mar.)

Paper summary during this week recitations

Two problems with Page Table

Problem #1: Page table is too large
a Page table has 1M entries
o Each entry is 4B (because 4B =~ 20-bit PPN)
o Page table = 4MB (!!)
very expensive in the 80s

Solution: Multi-level page table

Two problems with Page Table

Problem #1: Page table is too large
a Page table has 1M entries
o Each entry is 4B (because 4B =~ 20-bit PPN)
o Page table = 4MB (!!)
very expensive in the 80s

Problem #2: Page table is in memory

o Before every memory access, always fetch the PTE from the
slow memory? - Large performance penalty

Translation L.ookaside Butter (T1L.B)

A hardware structure where PTEs are cached
o Q: How about PDEs? Should they be cached?

Whenever a virtual address needs to be translated, the TLB
is first searched: “hit” vs. "miss”

Example: 80386
o 32 entries in the TLB
o TLB entry: tag + data

Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)
Data: 20-bit PPN
Q: Why is the tag needed?

Context Switches

Assume that Process X is running
o Process X's VPN 5 is mapped to PPN 100
o The TLB caches this mapping

VPN 5 - PPN 100

Now assume a context switch to Process Y
o Process Y’s VPN 5 is mapped to PPN 200
o When Process Y tries to access VPN 5, it searches the TLB

Process Y finds an entry whose tag is 5
TLB hit!

The PPN must be 100!
... Are you sure?

Context Switches (cont’d)

Approach #1. Flush the TLB

o Whenever there is a context switch, flush the TLB
All TLB entries are invalidated

o Example: 80836
Updating the value of CR3 signals a context switch
This automatically triggers a TLB flush

Approach #2. Associate TLB entries with processes
o All TLB entries have an extra field in the tag ...
That identifies the process to which it belongs
o Invalidate only the entries belonging to the old process
o Example: Modern x86, MIPS

Handling TLLB Misses

The TLB is small; it cannot hold all PTEs

o Some translations will inevitably miss in the TLB

o Must access memory to find the appropriate PTE
Called walking the page directory/table
Large performance penalty

Who handles TLB misses?
1. Hardware-Managed TLB
2. Software-Managed TLB

Handling TLLB Misses (cont’d)

Approach #1. Hardware-Managed (e.g., x86)
o The hardware does the page walk
a The hardware fetches the PTE and inserts it into the TLB

If the TLB is full, the entry replaces another entry
o All of this is done transparently

Approach #2. Software-Managed (e.g., MIPS)

o The hardware raises an exception

a The operating system does the page walk

o The operating system fetches the PTE

o The operating system inserts/evicts entries in the TLB

Handling TI.LB Misses (cont’d)

= Hardware-Managed TLB
a Pro: No exceptions. Instruction just stalls
a Pro: Independent instructions may continue
a Pro: Small footprint (no extra instructions/data)
a Con: Page directory/table organization is etched in stone

= Software-Managed TLB
a Pro: The OS can design the page directory/table
a Pro: More advanced TLB replacement policy
a Con: Flushes pipeline
o Con: Performance overhead

Protection with Virtual Memory

A normal user process should not be able to:

o Read/write another process’ memory

o Write into shared library data

How does virtual memory help?

o Address space isolation

o Protection information in page table

o Efficient clearing of data on newly allocated pages

11

Protection: Leaked Information

Example (with the virtual memory we've discussed so far):
o Process A writes "my password = ..."” to virtual address 2

o OS maps virtual address 2 to physical page 4 in page table

o Process A no longer needs virtual address 2
Q

OS unmaps virtual address 2 from physical page 4 in page
table

Attack vector:

o Sneaky Process B continually allocates pages and searches for
“my password = <string>"

12

Page-Level Access Control (Protection)

Not every process is allowed to access every page

o E.g., may need supervisor level privilege to access system
pages

Idea: Store access control information on a page basis in
the process’s page table

Enforce access control at the same time as translation

- Virtual memory system serves two functions today
Address translation (for illusion of large physical memory)
Access control (protection)

13

Page Table 1s Per Process

Each process has its own virtual address space
o Full address space for each program
o Simplifies memory allocation, sharing, linking and loading.

Virtual 0 Physical Address

Address VP 1 ,_?_\ddrels?_ » PP 2 Space (DRAM)
ranslation
Space for VP 2

Process 1. N-1

A

(e.g., read/only

PP7 | library code)
Virtual 0 /

VP 1
Address > BP 10
Space for
Process 2: N-1 M-1i

v

14

VM as a Tool for Memory Access Protection

Extend Page Table Entries (PTEs) with permission bits

Page fault handler checks these before remapping
o If violated, generate exception (Access Protection exception)

Page Tables Memory
Read? Write? Physical Addr PP 0
VP 0:] Yes No PP 9
. PP 2
Processi: vp1: ves || Yes PP 4
vP 2] No No XXXXXXX PP 4
PP 6
Read? Write? Physical Addr PP 8
VP 0:] Yes Yes PP 6
. / PP 10
Process J: vp1 Yes No PP 9
PP 12
VP 2:1 No No XXXXXXX

15

Privilege Levels 1n x86

Protection Rings

Operating
System >
Kemnel Level O
Operating System
Services Level 1
Level 2
Applications

Figure 5-3. Protection Rings

16

x380: Privilege Level (Review)

Four privilege levels in x86 (referred to as rings)

0 ng 0: Highest privilege (operating system)
o “Supervisor

|
Dl

ol Rlng 3: Lowest privilege (user applications) W ”
User

n

Current Privilege Level (CPL) determined by:
o Address of the instruction that you are executing

o Specifically, the Descriptor Privilege Level (DPL) of the
code segment

x86: A Closer L.ook at the PDE/PTE

= PDE: Page Directory Entry (32 bits)
= PTE: Page Table Entry (32 bits)

31[30[29]28(27]26]25]24[23[22[21]20[19]18[17][16[15[14[13[12[11|10[9[8[7 [6[5[4[3[2[1]0
p
Address of page director;.f1 Ignored B P-P"l Ignored CR3
P P R PDE:
Bits 31:22 of address Reserved Bits 39:32 of
of 2MB page frame (must be 0) addres% ? Ignored C L{d ggg

PDE

lir:r'zm
IIE[!T]II

Ignored

PTE

PDE:
not
present

PTE:
not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Protection: PDE’s Flags
Protects all 1024 pages in a page table

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents
Position(s)
0(P) Present; must be 1 to reference a page table

Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

User/supervisor; if O, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section

46)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 lgnored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

Protection: PTE’s Flags

Protects one page at a time

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit Contents
Position(s)
0(P) Present; must be 1 to map a 4-KByte page

Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
46)

Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this

3 (PWT)
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2); otherwise, reserved (must be C])JI

8(Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

Protection: PDE + PTE = ???

Table 5-3. Combined Page-Directory and Page-Table Protection
Combined Effect

Page-Directory Entry

Page-Table Entry

Privilege Access Type Privilege Access Type Privilege Access Type

User
User
User
User
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor

NO

* If CRO.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CRO.WP = 0, supervisor
privilege permits read-write access.

Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write
Read-Only
Read-Only
Read-Write
Read-Write

Supervisor
Supervisor
Supervisor
Supervisor
User
User
User
User
Supervisor
Supervisor
Supervisor

Supervisor

Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write
Read-Only
Read-Write

Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisar
Supervisar
Supervisor
Supervisar
Supervisor
Supervisor

Supervisor

Read-Only
Read-Only
Read-Only
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write
Read/Write*
Read/Write*
Read/Write*
Read/Write

Protection: Segmentation + Paging

Paging provides protection

o Flags in the PDE/PTE (x86)

Read/Write
User/Supervisor
Executable (x86-64)

Segmentation also provides protection
o Flags in the Segment Descriptor (x86)

Read/Write
Descriptor Privilege Level

Executable

5.12 COMBINING PAGE AND SEGMENT PROTECTION

processor detects a protecTion VNSO S = [v LT -~ \ [i 100 =
carried out and a EICEDtID[‘I is generatecl If an EKCEDtIDF‘I is ganarated b‘!," segmentatlon nao [JEIQIFIQ EICEDUDH is
generated.

Aside: Protection w/o Virtual Memory

Question: Do we need virtual memory for protection
Answer: No

Other ways of providing memory protection
o Base and bound registers
o Segmentation

None of these are as elegant as page-based access control

o They run into complexities as we need more protection
capabilites

o Virtual memory integrates

23

Overview of Segmentation

= Divide the physical address space into segments
o The segments may overlap

Virtual Physical OxFFFF
Addr. Addr. A

0x2345 OxA345

Base:0x8000

IS
S
0
»
IS
S
Q'
¥

Base:0x0000 0x0000

Segmentation in Intel 8086

Intel 8086 (Late 70s)

o 16-bit processor
0 4 segment registers that store the base

address
15 0
CS SEGMENT
DS SEGMENT
S8 SEGMENT
ES EXTRA

SEGMENT

Figure 2-8. Segment Registers

Intel 8086: Specifying a Segment

There can be many segments ol 1MB??
FFFFFH -—y?
But only 4 of them are .
addressable at once oara: os:[8 — — — —l— T‘
CODE; CS:E—— — —I 5
Which 4 depends on saox: s [7 J-— |
the 4 segment registers N :
o The programmer sets | _]| T —
the segment register value | 11
| —
Each segment is 64KB in size l__ IRk]
o Because 8086 is 16-bit ‘

Intel 8086: Translation

8086 is a 16-bit processor ...
o How can it address up to OxFFFFF (1MB)?

Segment
Register

SHIFT LEFT 4 BITS SEGMENT\
1 2 BASE

LOGICAL

0 0 2 2 OFFSET
19 . y

2 3 4 10
0
15 0
0O 0 2 2 |-
5
2 3 6 2

1 0 Virtual

PHYSICAL ADDRESS Addr.
9

TO MEMORY

Figure 2-18. Physical Address Generation

Intel 8086: Which Segment Register?

Q: For a memory access, how does the machine know
which of the 4 segment register to use?

o A: Depends on the type of memory access

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE

Instruction Fetch CS NONE P

Stack Operation SS NONE SP

Variable (except following) DS CS,ES,SS Effective Address
String Source DS CS,ES,SS Sl

String Destination ES NONE DI

BP Used As Base Register SS CS,DS,ES Effective Address

o Can be overridden: mov $AX, ($ES:0x1234)

X86 Instruction Opcode ModR/M SIB Displacement Immediate

Prefixes
Instruction

Segmentation 1n Intel 80286

= Intel 80286 (Early 80s)

o Still a 16-bit processor

o Still has 4 segment registers that ...
= stores the index into a table of base addresses
= nhot the base address itseljc ___________________

Segment Register (CS)

Segment Register (SS) ! Segment Descriptor 1
Segment Register (ES) : Segment Descriptor 0
|

(
|
|
: Segment Register (DS) Segment Descriptor 2
:
|
|
|
|

“Segment Selectors™ | \ ‘Segment Descriptor Table”

————————————————————————————————————

— e e o o o o o o e o Em = = P

/

Intel 802806: Segment Descriptor

= A segment descriptor describes a segment:
1. BASE: Base address

2. LIMIT: The size of the segment
3. DPL: Descriptor Privilege Level (1)
4. Etc.

7 0 7 0
L)

RESERVED FOR iAPX 386 +6
MUST BE ZERO

63 0o ./

Segment Descriptor

Issues with Segmentation

Segmented addressing creates fragmentation problems:
o a system may have plenty of unallocated memory locations

a they are useless if they do not form a contiguous region of a
sufficient size

Page-based virtual memory solves these issues

o By ensuring the address space is divided into fixed size
\\pagesll
o And virtual address space of each process is contiguous

a The key is the use of indirection to give each process the
illusion of a contiguous address space

31

Page-based Address Space

= In a Paged Memory System:

= PA space is divided into fixed size “segments” (e.q., 4kbyte),
more commonly known as “page frames”

= VA s interpreted as page number and page offset

Page No. Page Offset
page tables |
must be 1. v
privileged data /\
structures and 2. page X N
private/unigue to table Frarge no U
each process okay?

32

Fast Forward to Today (2014)

Modern x86 Machines
0 32-bit x86: Segmentation is similar to 80286

o 64-bit x86: Segmentation is not supported per se
Forces the BASE=0x0000000000000000
Forces the LIMIT=0xFFFFFFFEFFFFFFFFF
But DPL is still supported

Side Note: Linux & 32-bit x86

o Linux does not use segmentation per se
For all segments, Linux sets BASE=0x00000000
For all segments, Linux sets LIMIT=0xFFFFFFFF

o Instead, Linux uses segments for privilege levels
For segments used by the kernel, Linux sets DPL = 0
For segments used by the applications, Linux sets DPL = 3

Other Issues

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache
What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache - can lead to inconsistency in data

34

