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Announcement 

 Lab 2 grades and feedback available tonight 

 Lab 3 due this Friday (21st Feb.) 

 HW 2 grades and feedback available tonight 

 

 Midterm 1 in two weeks (3rd Mar.) 

 

 Paper summary during this week recitations 
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Two problems with Page Table 

 Problem #1: Page table is too large  

 Page table has 1M entries  

 Each entry is 4B (because 4B ≈ 20-bit PPN)  

 Page table = 4MB (!!)  

 very expensive in the 80s  

 

 Solution: Multi-level page table 
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Two problems with Page Table 

 Problem #1: Page table is too large  

 Page table has 1M entries  

 Each entry is 4B (because 4B ≈ 20-bit PPN)  

 Page table = 4MB (!!)  

 very expensive in the 80s 

 

 

 Problem #2: Page table is in memory  

 Before every memory access, always fetch the PTE from the 
slow memory?  Large performance penalty  
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Translation Lookaside Buffer (TLB) 

 A hardware structure where PTEs are cached  

 Q: How about PDEs? Should they be cached?  

 Whenever a virtual address needs to be translated, the TLB 
is first searched: “hit” vs. “miss”  

  

 Example: 80386  

 32 entries in the TLB  

 TLB entry: tag + data  

 Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)  

 Data: 20-bit PPN  

 Q: Why is the tag needed? 
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Context Switches 

 Assume that Process X is running 

 Process X’s VPN 5 is mapped to PPN 100 

 The TLB caches this mapping 

 VPN 5  PPN 100 

 

 Now assume a context switch to Process Y 

 Process Y’s VPN 5 is mapped to PPN 200 

 When Process Y tries to access VPN 5, it searches the TLB 

 Process Y finds an entry whose tag is 5 

 TLB hit!  

 The PPN must be 100! 

 … Are you sure? 

 

 



Context Switches (cont’d) 

 Approach #1. Flush the TLB 

 Whenever there is a context switch, flush the TLB 

 All TLB entries are invalidated 

 Example: 80836 

 Updating the value of CR3 signals a context switch 

 This automatically triggers a TLB flush 

 

 Approach #2. Associate TLB entries with processes 

 All TLB entries have an extra field in the tag ... 

 That identifies the process to which it belongs 

 Invalidate only the entries belonging to the old process 

 Example: Modern x86, MIPS 

 

 



Handling TLB Misses 

 The TLB is small; it cannot hold all PTEs 

 Some translations will inevitably miss in the TLB 

 Must access memory to find the appropriate PTE 

 Called walking the page directory/table 

 Large performance penalty 

 

 Who handles TLB misses? 

1. Hardware-Managed TLB 

2. Software-Managed TLB 
 

 



Handling TLB Misses (cont’d) 

 Approach #1. Hardware-Managed (e.g., x86) 

 The hardware does the page walk 

 The hardware fetches the PTE and inserts it into the TLB 

 If the TLB is full, the entry replaces another entry 

 All of this is done transparently 

 

 Approach #2. Software-Managed (e.g., MIPS) 

 The hardware raises an exception 

 The operating system does the page walk 

 The operating system fetches the PTE 

 The operating system inserts/evicts entries in the TLB 

 



Handling TLB Misses (cont’d) 

 Hardware-Managed TLB 

 Pro: No exceptions. Instruction just stalls 

 Pro: Independent instructions may continue 

 Pro: Small footprint (no extra instructions/data) 

 Con: Page directory/table organization is etched in stone 

 

 Software-Managed TLB 

 Pro: The OS can design the page directory/table 

 Pro: More advanced TLB replacement policy 

 Con: Flushes pipeline 

 Con: Performance overhead 



Protection with Virtual Memory 

 A normal user process should not be able to: 

 Read/write another process’ memory 

 Write into shared library data 

 How does virtual memory help? 

 Address space isolation 

 Protection information in page table 

 Efficient clearing of data on newly allocated pages 
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Protection: Leaked Information 

 Example (with the virtual memory we’ve discussed so far): 

 Process A writes “my password = ...” to virtual address 2 

 OS maps virtual address 2 to physical page 4 in page table 

 Process A no longer needs virtual address 2 

 OS unmaps virtual address 2 from physical page 4 in page 
table 

 Attack vector: 

 Sneaky Process B continually allocates pages and searches for 
“my password = <string>” 
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Page-Level Access Control (Protection) 

 Not every process is allowed to access every page 

 E.g., may need supervisor level privilege to access system 
pages 

 

 Idea: Store access control information on a page basis in 
the process’s page table 

 

 Enforce access control at the same time as translation 

 

 Virtual memory system serves two functions today 

     Address translation (for illusion of large physical memory) 

     Access control (protection) 
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Page Table is Per Process 

 Each process has its own virtual address space 

 Full address space for each program 

 Simplifies memory allocation, sharing, linking and loading. 
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VM as a Tool for Memory Access Protection 
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Page Tables 
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 Extend Page Table Entries (PTEs) with permission bits 

 Page fault handler checks these before remapping 

 If violated, generate exception (Access Protection exception) 



Privilege Levels in x86 
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x86: Privilege Level (Review) 

 Four privilege levels in x86 (referred to as rings) 

 Ring 0: Highest privilege (operating system) 

 Ring 1: Not widely used 

 Ring 2: Not widely used 

 Ring 3: Lowest privilege (user applications) 

 

 Current Privilege Level (CPL) determined by: 

 Address of the instruction that you are executing 

 Specifically, the Descriptor Privilege Level (DPL) of the 
code segment 

“Supervisor” 

“User” 



x86: A Closer Look at the PDE/PTE 

 PDE: Page Directory Entry (32 bits) 

 PTE:  Page Table Entry (32 bits) 

PPN PTE Flags 

&PT PDE Flags 



Protection: PDE’s Flags 

 Protects all 1024 pages in a page table 



Protection: PTE’s Flags 

 Protects one page at a time 



Protection: PDE + PTE = ??? 



Protection: Segmentation + Paging 
 Paging provides protection 

 Flags in the PDE/PTE (x86) 
 Read/Write 

 User/Supervisor 

 Executable (x86-64) 

 Segmentation also provides protection 

 Flags in the Segment Descriptor (x86) 

 Read/Write 

 Descriptor Privilege Level 

 Executable 



Aside: Protection w/o Virtual Memory 

 Question: Do we need virtual memory for protection 

 

 Answer: No 

 

 Other ways of providing memory protection 

 Base and bound registers 

 Segmentation 

 

 None of these are as elegant as page-based access control 

 They run into complexities as we need more protection 
capabilites 

 Virtual memory integrates 

23 



Overview of Segmentation 

 Divide the physical address space into segments 

 The segments may overlap 
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Segmentation in Intel 8086 

 Intel 8086 (Late 70s) 

 16-bit processor 

 4 segment registers that store the base 
address 

 

 



Intel 8086: Specifying a Segment 

 There can be many segments 

 

 But only 4 of them are  
addressable at once 

 

 Which 4 depends on  
the 4 segment registers 

 The programmer sets 
the segment register value 

 

 Each segment is 64KB in size 

 Because 8086 is 16-bit 

1MB?

? 



Intel 8086: Translation 

 8086 is a 16-bit processor ... 

 How can it address up to 0xFFFFF (1MB)? 
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Intel 8086: Which Segment Register? 

 Q: For a memory access, how does the machine know 
which of the 4 segment register to use? 

 A: Depends on the type of memory access 

 

 

 

 

 
 

 Can be overridden: mov %AX,(%ES:0x1234) 

 x86 

Instruction 



Segmentation in Intel 80286 

 Intel 80286 (Early 80s) 

 Still a 16-bit processor 

 Still has 4 segment registers that ... 

 stores the index into a table of base addresses 

 not the base address itself 

 

Segment Descriptor 2 

Segment Descriptor 0 

Segment Descriptor 1 

Segment Descriptor N-1 

··
 

Segment Register (CS) 

Segment Register (DS) 

Segment Register (SS) 

Segment Register (ES) 

“Segment Selectors” “Segment Descriptor Table” 
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Intel 80286: Segment Descriptor 

 A segment descriptor describes a segment: 

1. BASE: Base address 

2. LIMIT: The size of the segment 

3. DPL: Descriptor Privilege Level (!!) 

4. Etc. 

0 63 

Segment Descriptor  



Issues with Segmentation 

 Segmented addressing creates fragmentation problems: 

 a system may have plenty of unallocated memory locations 

 they are useless if they do not form a contiguous region of a 
sufficient size 

 

 Page-based virtual memory solves these issues 

 By ensuring the address space is divided into fixed size 
“pages” 

 And virtual address space of each process is contiguous 

 The key is the use of indirection to give each process the 
illusion of a contiguous address space 
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Page-based Address Space 
 

 In a Paged Memory System: 

 PA space is divided into fixed size “segments” (e.g., 4kbyte),   
 more commonly known as “page frames” 

 VA is interpreted as page number and page offset 
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Fast Forward to Today (2014) 

 Modern x86 Machines 

 32-bit x86: Segmentation is similar to 80286 

 64-bit x86: Segmentation is not supported per se 
 Forces the BASE=0x0000000000000000 

 Forces the LIMIT=0xFFFFFFFFFFFFFFFF 

 But DPL is still supported 

 Side Note: Linux & 32-bit x86 

 Linux does not use segmentation per se 
 For all segments, Linux sets BASE=0x00000000 

 For all segments, Linux sets LIMIT=0xFFFFFFFF 

 Instead, Linux uses segments for privilege levels 

 For segments used by the kernel, Linux sets DPL = 0 

 For segments used by the applications, Linux sets DPL = 3 



Other Issues 

 When do we do the address translation? 

 Before or after accessing the L1 cache? 

 

 In other words, is the cache virtually addressed or 
physically addressed? 

 Virtual versus physical cache 

 

 What are the issues with a virtually addressed cache? 

 

 Synonym problem: 

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data 
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