
18-447

Computer Architecture

Lecture 13: Virtual Memory II

Lecturer: Rachata Ausavarungnirun

Carnegie Mellon University

Spring 2014, 2/17/2014

(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcement

 Lab 2 grades and feedback available tonight

 Lab 3 due this Friday (21st Feb.)

 HW 2 grades and feedback available tonight

 Midterm 1 in two weeks (3rd Mar.)

 Paper summary during this week recitations

2

Two problems with Page Table

 Problem #1: Page table is too large

 Page table has 1M entries

 Each entry is 4B (because 4B ≈ 20-bit PPN)

 Page table = 4MB (!!)

 very expensive in the 80s

 Solution: Multi-level page table

3

Two problems with Page Table

 Problem #1: Page table is too large

 Page table has 1M entries

 Each entry is 4B (because 4B ≈ 20-bit PPN)

 Page table = 4MB (!!)

 very expensive in the 80s

 Problem #2: Page table is in memory

 Before every memory access, always fetch the PTE from the
slow memory? Large performance penalty

4

Translation Lookaside Buffer (TLB)

 A hardware structure where PTEs are cached

 Q: How about PDEs? Should they be cached?

 Whenever a virtual address needs to be translated, the TLB
is first searched: “hit” vs. “miss”

 Example: 80386

 32 entries in the TLB

 TLB entry: tag + data

 Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)

 Data: 20-bit PPN

 Q: Why is the tag needed?

5

Context Switches

 Assume that Process X is running

 Process X’s VPN 5 is mapped to PPN 100

 The TLB caches this mapping

 VPN 5  PPN 100

 Now assume a context switch to Process Y

 Process Y’s VPN 5 is mapped to PPN 200

 When Process Y tries to access VPN 5, it searches the TLB

 Process Y finds an entry whose tag is 5

 TLB hit!

 The PPN must be 100!

 … Are you sure?

Context Switches (cont’d)

 Approach #1. Flush the TLB

 Whenever there is a context switch, flush the TLB

 All TLB entries are invalidated

 Example: 80836

 Updating the value of CR3 signals a context switch

 This automatically triggers a TLB flush

 Approach #2. Associate TLB entries with processes

 All TLB entries have an extra field in the tag ...

 That identifies the process to which it belongs

 Invalidate only the entries belonging to the old process

 Example: Modern x86, MIPS

Handling TLB Misses

 The TLB is small; it cannot hold all PTEs

 Some translations will inevitably miss in the TLB

 Must access memory to find the appropriate PTE

 Called walking the page directory/table

 Large performance penalty

 Who handles TLB misses?

1. Hardware-Managed TLB

2. Software-Managed TLB

Handling TLB Misses (cont’d)

 Approach #1. Hardware-Managed (e.g., x86)

 The hardware does the page walk

 The hardware fetches the PTE and inserts it into the TLB

 If the TLB is full, the entry replaces another entry

 All of this is done transparently

 Approach #2. Software-Managed (e.g., MIPS)

 The hardware raises an exception

 The operating system does the page walk

 The operating system fetches the PTE

 The operating system inserts/evicts entries in the TLB

Handling TLB Misses (cont’d)

 Hardware-Managed TLB

 Pro: No exceptions. Instruction just stalls

 Pro: Independent instructions may continue

 Pro: Small footprint (no extra instructions/data)

 Con: Page directory/table organization is etched in stone

 Software-Managed TLB

 Pro: The OS can design the page directory/table

 Pro: More advanced TLB replacement policy

 Con: Flushes pipeline

 Con: Performance overhead

Protection with Virtual Memory

 A normal user process should not be able to:

 Read/write another process’ memory

 Write into shared library data

 How does virtual memory help?

 Address space isolation

 Protection information in page table

 Efficient clearing of data on newly allocated pages

11

Protection: Leaked Information

 Example (with the virtual memory we’ve discussed so far):

 Process A writes “my password = ...” to virtual address 2

 OS maps virtual address 2 to physical page 4 in page table

 Process A no longer needs virtual address 2

 OS unmaps virtual address 2 from physical page 4 in page
table

 Attack vector:

 Sneaky Process B continually allocates pages and searches for
“my password = <string>”

12

Page-Level Access Control (Protection)

 Not every process is allowed to access every page

 E.g., may need supervisor level privilege to access system
pages

 Idea: Store access control information on a page basis in
the process’s page table

 Enforce access control at the same time as translation

 Virtual memory system serves two functions today

 Address translation (for illusion of large physical memory)

 Access control (protection)

13

Page Table is Per Process

 Each process has its own virtual address space

 Full address space for each program

 Simplifies memory allocation, sharing, linking and loading.

14

Virtual

Address

Space for

Process 1:

Physical Address

Space (DRAM) VP 1
VP 2

PP 2 Address

Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only

library code)

...

...

Virtual

Address

Space for

Process 2:

VM as a Tool for Memory Access Protection

15

Page Tables

Process i:

Physical Addr Read? Write?

 PP 9 Yes No

 PP 4 Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

PP 0

Memory

Physical Addr Read? Write?

 PP 6 Yes Yes

 PP 9 Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

PP 2

PP 4

PP 6

PP 8

PP 10

PP 12

•
•
•

 Extend Page Table Entries (PTEs) with permission bits

 Page fault handler checks these before remapping

 If violated, generate exception (Access Protection exception)

Privilege Levels in x86

16

x86: Privilege Level (Review)

 Four privilege levels in x86 (referred to as rings)

 Ring 0: Highest privilege (operating system)

 Ring 1: Not widely used

 Ring 2: Not widely used

 Ring 3: Lowest privilege (user applications)

 Current Privilege Level (CPL) determined by:

 Address of the instruction that you are executing

 Specifically, the Descriptor Privilege Level (DPL) of the
code segment

“Supervisor”

“User”

x86: A Closer Look at the PDE/PTE

 PDE: Page Directory Entry (32 bits)

 PTE: Page Table Entry (32 bits)

PPN PTE Flags

&PT PDE Flags

Protection: PDE’s Flags

 Protects all 1024 pages in a page table

Protection: PTE’s Flags

 Protects one page at a time

Protection: PDE + PTE = ???

Protection: Segmentation + Paging
 Paging provides protection

 Flags in the PDE/PTE (x86)
 Read/Write

 User/Supervisor

 Executable (x86-64)

 Segmentation also provides protection

 Flags in the Segment Descriptor (x86)

 Read/Write

 Descriptor Privilege Level

 Executable

Aside: Protection w/o Virtual Memory

 Question: Do we need virtual memory for protection

 Answer: No

 Other ways of providing memory protection

 Base and bound registers

 Segmentation

 None of these are as elegant as page-based access control

 They run into complexities as we need more protection
capabilites

 Virtual memory integrates

23

Overview of Segmentation

 Divide the physical address space into segments

 The segments may overlap

p
h
ys

ic
a
l
m

e
m

o
ry

0x2345

0x0000

0xFFFF

se
g
m

e
n
t

se
g
m

e
n
t

Base:0x8000

Base:0x0000

+ 0xA345

Virtual

Addr.

Physical

Addr.

Segmentation in Intel 8086

 Intel 8086 (Late 70s)

 16-bit processor

 4 segment registers that store the base
address

Intel 8086: Specifying a Segment

 There can be many segments

 But only 4 of them are
addressable at once

 Which 4 depends on
the 4 segment registers

 The programmer sets
the segment register value

 Each segment is 64KB in size

 Because 8086 is 16-bit

1MB?

?

Intel 8086: Translation

 8086 is a 16-bit processor ...

 How can it address up to 0xFFFFF (1MB)?

Segment

Register

Virtual

Addr.

Intel 8086: Which Segment Register?

 Q: For a memory access, how does the machine know
which of the 4 segment register to use?

 A: Depends on the type of memory access

 Can be overridden: mov %AX,(%ES:0x1234)

 x86

Instruction

Segmentation in Intel 80286

 Intel 80286 (Early 80s)

 Still a 16-bit processor

 Still has 4 segment registers that ...

 stores the index into a table of base addresses

 not the base address itself

Segment Descriptor 2

Segment Descriptor 0

Segment Descriptor 1

Segment Descriptor N-1

··

Segment Register (CS)

Segment Register (DS)

Segment Register (SS)

Segment Register (ES)

“Segment Selectors” “Segment Descriptor Table”

15 0

0 63

Intel 80286: Segment Descriptor

 A segment descriptor describes a segment:

1. BASE: Base address

2. LIMIT: The size of the segment

3. DPL: Descriptor Privilege Level (!!)

4. Etc.

0 63

Segment Descriptor

Issues with Segmentation

 Segmented addressing creates fragmentation problems:

 a system may have plenty of unallocated memory locations

 they are useless if they do not form a contiguous region of a
sufficient size

 Page-based virtual memory solves these issues

 By ensuring the address space is divided into fixed size
“pages”

 And virtual address space of each process is contiguous

 The key is the use of indirection to give each process the
illusion of a contiguous address space

31

Page-based Address Space

 In a Paged Memory System:

 PA space is divided into fixed size “segments” (e.g., 4kbyte),
 more commonly known as “page frames”

 VA is interpreted as page number and page offset

32

Page No. Page Offset

page

table
+

Frame no
&

okay?

PA

page tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

Fast Forward to Today (2014)

 Modern x86 Machines

 32-bit x86: Segmentation is similar to 80286

 64-bit x86: Segmentation is not supported per se
 Forces the BASE=0x0000000000000000

 Forces the LIMIT=0xFFFFFFFFFFFFFFFF

 But DPL is still supported

 Side Note: Linux & 32-bit x86

 Linux does not use segmentation per se
 For all segments, Linux sets BASE=0x00000000

 For all segments, Linux sets LIMIT=0xFFFFFFFF

 Instead, Linux uses segments for privilege levels

 For segments used by the kernel, Linux sets DPL = 0

 For segments used by the applications, Linux sets DPL = 3

Other Issues

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address  same physical address can be present in multiple
locations in the cache  can lead to inconsistency in data

34

