
18-447

Computer Architecture

Lecture 12: Virtual Memory I

Lecturer: Rachata Ausavarungnirun

Carnegie Mellon University

Spring 2014, 2/14/2014

(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcements

 Lab 3 due Friday (Feb 21)

 HW 3 is out

2

Memory: Programmer’s View

3

Memory

Store

Load

Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)

4

A Modern Memory Hierarchy

5

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 2MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

6

A System with Physical Memory Only

 Examples:

 Most Cray machines

 early PCs

 nearly all embedded systems

 CPU’s load or store addresses used

 directly to access memory.

CPU

0:
1:

N-1:

Memory

Physical

Addresses

The Problem

 Physical memory is of limited size (cost)

 What if you need more?

 Should the programmer be concerned about the size of
code/data blocks fitting physical memory? (overlay
programming, programming with some embedded systems)

 Should the programmer manage data movement from disk to
physical memory?

 Also, ISA can have an address space greater than the
physical memory size

 E.g., a 64-bit address space with byte addressability

 What if you do not have enough physical memory?

7

Basic Mechanism

 Indirection

 Address generated by each instruction in a program is a
“virtual address”

 i.e., it is not the physical address used to address main
memory

 called “linear address” in x86

 An “address translation” mechanism maps this address to a
“physical address”

 called “real address” in x86

 Address translation mechanism is implemented in hardware
and software together

8

9

A System with Virtual Memory (page-based)

 Examples:

 Laptops, servers, modern PCs

 Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual

Addresses
Physical

Addresses

Virtual Pages, Physical Frames

 Virtual address space divided into pages

 Physical address space divided into frames

 A virtual page is mapped to a physical frame

 Assuming the page is in memory

 If an accessed virtual page is not in memory, but on disk

 Virtual memory system brings the page into a physical frame
and adjusts the mapping demand paging

 Page table is the table that stores the mapping of virtual
pages to physical frames

10

What do we need to support VM?

 Virtual memory requires both HW+SW support

 The hardware component is called the MMU

 Most of what’s been explained today is done by the MMU

 It is the job of the software to leverage the MMU

 Populate page directories and page tables

 Modify the Page Directory Base Register on context switch

 Set correct permissions

 Handle page faults

 Etc.

11

Additional Jobs from the Software Side

 Keeping track of which physical pages are free

 Allocating free physical pages to virtual pages

 Page replacement policy

 When no physical pages are free, which should be swapped
out?

 Sharing pages between processes

 Copy-on-write optimization

 Page-flip optimization

12

Page Fault (“A miss in physical memory”)

 What if object is on disk rather than in memory?

 Page table entry indicates virtual page not in memory page

fault exception

 OS trap handler invoked to move data from disk into memory

 Current process suspends, others can resume

 OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

After fault

Disk

14

Servicing a Page Fault

(1) Processor signals controller

 Read block of length P starting
at disk address X and store
starting at memory address Y

(2) Read occurs

 Direct Memory Access (DMA)

 Under control of I/O controller

(3) Controller signals completion

 Interrupt processor

 OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

Page Swap

 Swapping

 You are running many programs that require lots of memory

 What happens if you try to run another program?

 Some physical pages are “swapped out” to disk

 The data in some physical pages are migrated to disk

 This frees up those physical pages

 As a result, their PTEs become invalid

 When you access a physical page that has been swapped
out, only then is it brought back into physical memory

 This may cause another physical page to be swapped out

 If this “ping-ponging” occurs frequently, it is called thrashing

 Extreme performance degradation

15

Address Translation

 How to get the physical address from a virtual address?

 Page size specified by the ISA

 VAX: 512 bytes

 Today: 4KB, 8KB, 2GB, … (small and large pages mixed
together)

 Trade-offs?

 Page Table contains an entry for each virtual page

 Called Page Table Entry (PTE)

 What is in a PTE?

16

Trade-Offs in Page Size

 Large page size (e.g., 1GB)

 Pro: Fewer PTEs required Saves memory space

 Pro: Fewer TLB misses Improves performance

 Con: Large transfers to/from disk

 Even when only 1KB is needed, 1GB must be transferred

 Waste of bandwidth/energy

 Reduces performance

 Con: Internal fragmentation

 Even when only 1KB is needed, 1GB must be allocated

 Waste of space

 Q: What is external fragmentation?

 Con: Cannot have fine-grained permissions

17

18

VM Address Translation

 Parameters

 P = 2p = page size (bytes).

 N = 2n = Virtual-address limit

 M = 2m = Physical-address limit

virtual page number page offset virtual address

physical page number page offset physical address

0 p–1

address translation

p m–1

n–1 0 p–1 p

Page offset bits don’t change as a result of translation

19

VM Address Translation

 virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0 p–1 p m–1

n–1
0

p–1 p
page table

base register

if valid=0

then page

not in memory

(page fault)

valid physical page number (PPN)

VPN acts as

table index

 Separate (set of) page table(s) per process

 VPN forms index into page table (points to a page table entry)

 Page Table Entry (PTE) provides information about page

access

20

VM Address Translation: Page Hit

21

VM Address Translation: Page Fault

Issues

 How large is the page table?

 Where do we store it?

 In hardware?

 In physical memory? (Where is the PTBR?)

 In virtual memory? (Where is the PTBR?)

 How can we store it efficiently without requiring physical
memory that can store all page tables?

 Idea: multi-level page tables

 Only the first-level page table has to be in physical memory

 Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

22

Issue: Page Table Size

 Suppose 64-bit VA and 40-bit PA, how large is the page table?
252 entries x ~4 bytes 16x1015 Bytes

 and that is for just one process!!?

23

VPN PO

page
table

concat PA

64-bit

12-bit 52-bit

28-bit 40-bit

Multi-Level Page Tables in x86

24

Page Table Access

 How do we access the Page Table?

 Page Table Base Register (CR3 in x86)

 Page Table Limit Register

 If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page access control

exception

 Page Table Base Register is part of a process’s context

 Just like PC, PSR, GPRs

 Needs to be loaded when the process is context-switched in

25

More on x86 Page Tables (I)

26

More on x86 Page Tables (II): Large Pages

27

x86 Page Table Entries

28

X86 PTE (4KB page)

29

X86 Page Directory Entry (PDE)

30

Four-level Paging in x86

31

Four-level Paging and Extended Physical Address Space in x86

32

