138-447

Computer Architecture
Lecture 12: Virtual Memory I

Lecturer: Rachata Ausavarungnirun
Carnegie Mellon University
Spring 2014, 2/14/2014
(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcements

= Lab 3 due Friday (Feb 21)

= HW 3 is out

Memory: Programmet’s View

Store —>

Load €—

Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)

A Modern Memory Hierarchy

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 2MB, many nsec

L3 cache,

manual/compiler

register spilling

Automatic
HW cache
management

Main memory (DRAM),
GB, ~100 nsec

automatic

Swap Disk
100 GB, ~10 msec

demand
paging

A System with Physical Memory Only

= Examples:
o Most Cray machines
o early PCs

o nearly all embedded systems Physical
Addresses

Memory

CPU’s load or store addresses used
directly to access memory.

The Problem

Physical memory is of limited size (cost)
o What if you need more?

o Should the programmer be concerned about the size of
code/data blocks fitting physical memory? (overlay
programming, programming with some embedded systems)

o Should the programmer manage data movement from disk to
physical memory?

Also, ISA can have an address space greater than the
physical memory size

o E.qg., a 64-bit address space with byte addressability
o What if you do not have enough physical memory?

Basic Mechanism

Indirection

Address generated by each instruction in a program is a
“virtual address”

o i.e., it is not the physical address used to address main
memory

o called “linear address” in x86

An “address translation” mechanism maps this address to a
“physical address”

o called “real address” in x86

o Address translation mechanism is implemented in hardware
and software together

A System with Virtual Memory (page-based)

= Examples:
o Laptops, servers, modern PCs

Memory

Page Table

Virtual
Addresses

Physical
Addresses

e
T

= Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

Virtual Pages, Physical Frames

Virtual address space divided into pages
Physical address space divided into frames

A virtual page is mapped to a physical frame
o Assuming the page is in memory

If an accessed virtual page is not in memory, but on disk

a Virtual memory system brings the page into a physical frame
and adjusts the mapping -2 demand paging

Page table is the table that stores the mapping of virtual
pages to physical frames

10

What do we need to support VM?

Virtual memory requires both HW+SW support

The hardware component is called the MMU
o Most of what's been explained today is done by the MMU

It is the job of the software to leverage the MMU

o Populate page directories and page tables

o Modify the Page Directory Base Register on context switch
o Set correct permissions

o Handle page faults

o Etc.

11

Additional Jobs from the Software Side

Keeping track of which physical pages are free
Allocating free physical pages to virtual pages

Page replacement policy

o When no physical pages are free, which should be swapped
out?

Sharing pages between processes
Copy-on-write optimization
Page-flip optimization

12

Page Fault (“A miss in physical memory”)

What if object is on disk rather than in memory?

o Page table entry indicates virtual page not in memory - page
fault exception
o OS trap handler invoked to move data from disk into memory
Current process suspends, others can resume
OS has full control over placement

Before fault After fault

Memory

Memory

Page Table

Page Table

Virtual Physical
Addresses A Y

Virtual
Addresses

CPU

CPU

Servicing a Page Fault

(1) Processor signals controller

o Read block of length P starting
at disk address X and store
starting at memory address Y

(2) Read occurs
o Direct Memory Access (DMA)
a Under control of I/O controller

(3) Controller signals completion
o Interrupt processor
o OS resumes suspended process

(1) Initiate Block Read

Processor
Reg

I(2) DMA
VTransfer

14

Page Swap

Swapping

o You are running many programs that require lots of memory
What happens if you try to run another program?

o Some physical pages are “swapped out” to disk

o The data in some physical pages are migrated to disk

a This frees up those physical pages

o As a result, their PTEs become invalid

When you access a physical page that has been swapped
out, only then is it brought back into physical memory

o This may cause another physical page to be swapped out

o If this “ping-ponging” occurs frequently, it is called thrashing
o Extreme performance degradation

15

Address Translation

How to get the physical address from a virtual address?

Page size specified by the ISA
o VAX: 512 bytes

o Today: 4KB, 8KB, 2GB, ... (small and large pages mixed
together)

o Trade-offs?

Page Table contains an entry for each virtual page
o Called Page Table Entry (PTE)
o Whatisin a PTE?

16

Trade-Oftts in Page Size

Large page size (e.g., 1GB)

Q

Q

Q

Q

Q

Pro: Fewer PTEs required - Saves memory space
Pro: Fewer TLB misses * Improves performance
Con: Large transfers to/from disk
Even when only 1KB is needed, 1GB must be transferred
Waste of bandwidth/energy
Reduces performance
Con: Internal fragmentation
Even when only 1KB is needed, 1GB must be allocated
Waste of space
Q: What is external fragmentation?
Con: Cannot have fine-grained permissions

17

VM Address Translation

Parameters

o P = 2P = page size (bytes).
o N = 2" = Virtual-address limit
o M = 2™ = Physical-address limit

n-1

p p-1

virtual page number

page offset

\4

@ress tra@

m-1 v

p p-1

v

physical page number

page offset

virtual address

physical address

Page offset bits don’t change as a result of translation

18

VM Address Translation

Separate (set of) page table(s) per process
VPN forms index into page table (points to a page table entry)
Page Table Entry (PTE) provides information about page

virtual address

n-1 p p-1
page table :
base register —e Virtual page number (VPN) page offset
_valid access_physical page number (PPN)
VPN acts as
table index
if valid=0 |
then page m-1 ' p p-1
not in memory physical page number (PPN) page offset
(page fault)

physical address

19

VM Address Translation: Page Hit

Cache/
memory

CPUchip . @
\PTEA
PTE
Processor 52 > MMU ;®
___ @
Data
®

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMV sends physical address to L1 cache

5) L1 cache sends data word to processor

20

VM Address Translation: Page Fault

Page fault exception handler

®-MMU

p >
rocessor VA

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory

Cache/
memory

Victim pagée

®

. New page

Disk

®

4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim, and if dirty pages it out to disk
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction.

21

Issues

How large is the page table?

Where do we store it?

o In hardware?

a In physical memory? (Where is the PTBR?)
o In virtual memory? (Where is the PTBR?)

How can we store it efficiently without requiring physical
memory that can store all page tables?

o Idea: multi-level page tables
a Only the first-level page table has to be in physical memory

o Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

22

Issue: Page Table Size

64-bit
A

VPN

PO

+ 52-bit

page

table zg_lbit

Suppose 64-bit VA and 40-bit PA, how large is the page table?
2°2 entries x ~4 bytes ~ 16x10'° Bytes

and that is for just one process!!?

23

Multi-Level Page Tables in x86

Linear Address Space

Linear Addr.

Linear Address

» Dir

Table

Offset

Page Directory

— -

r--h"

Page Table

Pqg. Dir. Entry ~‘ =

CR3"

*Physical Address

Pqg. Thl. Entry

.

Page

Physical Addr.

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Page Table Access

How do we access the Page Table?

Page Table Base Register (CR3 in x86)
Page Table Limit Register

If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page - access control
exception

Page Table Base Register is part of a process’s context
o Just like PC, PSR, GPRs
o Needs to be loaded when the process is context-switched in

25

More on x86 Page Tables (I)

Linear Address
31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 10 Page Table —»| Physical Address
Page Directory
—»= PTE r
20
| PDE with PS=0 [—<
- 20
3’3:32
CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

26

More on x86 Page Tables (II): Large Pages

Linear Address
31 22 21 0

Directory Offset

22 4-MByte Page

10 Page Directory

—= Physical Address

—»| PDE with P5=1 {;h

Y

32

CR3

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

27

x86 Page Table Entries

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “"not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

B13012928127126/252423122121120[1911817/16/15141312[11110, 987 16| 5

Address of page directury' lgnored Ilgnored] CR3

Bits 39:3Z2|P
of Allgnored|G |1 |D|A
address? | T

PDE
4MB

page

Bits 31:22 of address Reserved
of ZMB page frame (must be 0)

|_I

PDE

1] page
table

[e T Do/ OO e
—& | d=Z 9] A= TTjw

A= A=
E~T| T~=T

Address of page table lgnored (D |g|A
n

PDE
not
present

o

lgnored

PTE:
4KB

page

|_l

Address of 4KB page frame lgnored | G

— =T
=
e

[W iy v}

—& T

(0

=~

PTE:
lgnored 0] not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

28

X86 PTE (4KB page)

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0(P)

Present; must be 1 to map a 4-KByte page

1 (RIW)

Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CRO.WF; see Section 4.6)

2 (UIS)

User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT)

Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD)

Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A)

Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D)

Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT)

If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0}1

8(G)

Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

119

lgnored

31:12

Physical address of the 4-KByte page referenced by this entry

29

X386 Page Directory Entry (PDE)

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit Contents

Position(s)

0(P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CRO.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) FPage-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

30

Four-level Paging in x36

47

39 38

Linear Address

30 29

2120

12 1

PML4

Directory Ptr

Directory

Table

Offset

|

/5

Page-Directory-
Pn?nta' Table

9

A9

—i-—

PDE with PS=0

s19

L

FTE

E‘ 5 4-KByte Page
Physical Addr

2 -

40

PDPTE

40

Page-Directory

40

PMLAE

/| 40

CR3

Page Table

i
— -

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

31

Four-level Paging and Extended Physical Address Space in x86

A logical processor uses IA-32e paging if CRO.PG = 1, CR4.PAE = 1, and

IA32 EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use

of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:

32

