
18-447

Computer Architecture

Lecture 12: Virtual Memory I

Lecturer: Rachata Ausavarungnirun

Carnegie Mellon University

Spring 2014, 2/14/2014

(with material from Onur Mutlu, Justin Meza and Yoongu Kim)

Announcements

 Lab 3 due Friday (Feb 21)

 HW 3 is out

2

Memory: Programmer’s View

3

Memory

Store

Load

Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)

4

A Modern Memory Hierarchy

5

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 2MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

6

A System with Physical Memory Only

 Examples:

 Most Cray machines

 early PCs

 nearly all embedded systems

 CPU’s load or store addresses used

 directly to access memory.

CPU

0:
1:

N-1:

Memory

Physical

Addresses

The Problem

 Physical memory is of limited size (cost)

 What if you need more?

 Should the programmer be concerned about the size of
code/data blocks fitting physical memory? (overlay
programming, programming with some embedded systems)

 Should the programmer manage data movement from disk to
physical memory?

 Also, ISA can have an address space greater than the
physical memory size

 E.g., a 64-bit address space with byte addressability

 What if you do not have enough physical memory?

7

Basic Mechanism

 Indirection

 Address generated by each instruction in a program is a
“virtual address”

 i.e., it is not the physical address used to address main
memory

 called “linear address” in x86

 An “address translation” mechanism maps this address to a
“physical address”

 called “real address” in x86

 Address translation mechanism is implemented in hardware
and software together

8

9

A System with Virtual Memory (page-based)

 Examples:

 Laptops, servers, modern PCs

 Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual

Addresses
Physical

Addresses

Virtual Pages, Physical Frames

 Virtual address space divided into pages

 Physical address space divided into frames

 A virtual page is mapped to a physical frame

 Assuming the page is in memory

 If an accessed virtual page is not in memory, but on disk

 Virtual memory system brings the page into a physical frame
and adjusts the mapping  demand paging

 Page table is the table that stores the mapping of virtual
pages to physical frames

10

What do we need to support VM?

 Virtual memory requires both HW+SW support

 The hardware component is called the MMU

 Most of what’s been explained today is done by the MMU

 It is the job of the software to leverage the MMU

 Populate page directories and page tables

 Modify the Page Directory Base Register on context switch

 Set correct permissions

 Handle page faults

 Etc.

11

Additional Jobs from the Software Side

 Keeping track of which physical pages are free

 Allocating free physical pages to virtual pages

 Page replacement policy

 When no physical pages are free, which should be swapped
out?

 Sharing pages between processes

 Copy-on-write optimization

 Page-flip optimization

12

Page Fault (“A miss in physical memory”)

 What if object is on disk rather than in memory?

 Page table entry indicates virtual page not in memory  page

fault exception

 OS trap handler invoked to move data from disk into memory

 Current process suspends, others can resume

 OS has full control over placement

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

After fault

Disk

14

Servicing a Page Fault

(1) Processor signals controller

 Read block of length P starting
at disk address X and store
starting at memory address Y

(2) Read occurs

 Direct Memory Access (DMA)

 Under control of I/O controller

(3) Controller signals completion

 Interrupt processor

 OS resumes suspended process Disk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

Page Swap

 Swapping

 You are running many programs that require lots of memory

 What happens if you try to run another program?

 Some physical pages are “swapped out” to disk

 The data in some physical pages are migrated to disk

 This frees up those physical pages

 As a result, their PTEs become invalid

 When you access a physical page that has been swapped
out, only then is it brought back into physical memory

 This may cause another physical page to be swapped out

 If this “ping-ponging” occurs frequently, it is called thrashing

 Extreme performance degradation

15

Address Translation

 How to get the physical address from a virtual address?

 Page size specified by the ISA

 VAX: 512 bytes

 Today: 4KB, 8KB, 2GB, … (small and large pages mixed
together)

 Trade-offs?

 Page Table contains an entry for each virtual page

 Called Page Table Entry (PTE)

 What is in a PTE?

16

Trade-Offs in Page Size

 Large page size (e.g., 1GB)

 Pro: Fewer PTEs required Saves memory space

 Pro: Fewer TLB misses Improves performance

 Con: Large transfers to/from disk

 Even when only 1KB is needed, 1GB must be transferred

 Waste of bandwidth/energy

 Reduces performance

 Con: Internal fragmentation

 Even when only 1KB is needed, 1GB must be allocated

 Waste of space

 Q: What is external fragmentation?

 Con: Cannot have fine-grained permissions

17

18

VM Address Translation

 Parameters

 P = 2p = page size (bytes).

 N = 2n = Virtual-address limit

 M = 2m = Physical-address limit

virtual page number page offset virtual address

physical page number page offset physical address

0 p–1

address translation

p m–1

n–1 0 p–1 p

Page offset bits don’t change as a result of translation

19

VM Address Translation

 virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0 p–1 p m–1

n–1
0

p–1 p
page table

base register

if valid=0

then page

not in memory

(page fault)

valid physical page number (PPN)

VPN acts as

table index

 Separate (set of) page table(s) per process

 VPN forms index into page table (points to a page table entry)

 Page Table Entry (PTE) provides information about page

access

20

VM Address Translation: Page Hit

21

VM Address Translation: Page Fault

Issues

 How large is the page table?

 Where do we store it?

 In hardware?

 In physical memory? (Where is the PTBR?)

 In virtual memory? (Where is the PTBR?)

 How can we store it efficiently without requiring physical
memory that can store all page tables?

 Idea: multi-level page tables

 Only the first-level page table has to be in physical memory

 Remaining levels are in virtual memory (but get cached in
physical memory when accessed)

22

Issue: Page Table Size

 Suppose 64-bit VA and 40-bit PA, how large is the page table?
252 entries x ~4 bytes  16x1015 Bytes

 and that is for just one process!!?

23

VPN PO

page
table

concat PA

64-bit

12-bit 52-bit

28-bit 40-bit

Multi-Level Page Tables in x86

24

Page Table Access

 How do we access the Page Table?

 Page Table Base Register (CR3 in x86)

 Page Table Limit Register

 If VPN is out of the bounds (exceeds PTLR) then the
process did not allocate the virtual page  access control

exception

 Page Table Base Register is part of a process’s context

 Just like PC, PSR, GPRs

 Needs to be loaded when the process is context-switched in

25

More on x86 Page Tables (I)

26

More on x86 Page Tables (II): Large Pages

27

x86 Page Table Entries

28

X86 PTE (4KB page)

29

X86 Page Directory Entry (PDE)

30

Four-level Paging in x86

31

Four-level Paging and Extended Physical Address Space in x86

32

