
CMU 18-447 – Introduction to Computer Architecture – Spring 2013 1/3

Lab 4b: Fine-Grained Multithreading
Assigned: Mon., 2/24; Due: Fri., 3/21 (Midnight)

Instructor: Onur Mutlu
TAs: Rachata Ausavarungnirun, Varun Kohli, Paraj Tyle, Xiao Bo Zhao

1. Introduction

In this lab, you will extend your pipelined ARM machine to support the control flow instructions that
we deferred from the previous lab (conditional and unconditional branches). You will also implement
fine-grained multithreading to prevent stalling. Along the way, you will learn about the trade-offs for
using fine-grained multithreading, and after you are finished, you will have a complete pipeline that
can run four contexts1 without hardware stalling.

2. Additions to the ARM Machine

2.1. Architecture

• Instruction Set. You should use the five-stage pipeline ARM core with branches from Lab
4A as a starting point. However, you should remove any branch prediction mechanism. The
machine should still support all ARM instructions specified in Lab 1. The behavior of your
pipeline should be match that of your (now correct) implementation of the Lab 1 simulator for
the 25 instructions in the following table. The only exception is the instruction SWI, which we
are redefining for this lab only (see section below).

ADC ADD AND B BIC

BL CMN CMP EOR LDR

LDRB MLA MOV MUL MVN

ORR RSB RSC SBC STR

STRB SUB TEQ TST SWI

• System Call Instruction. If the bottom 24 bits are 0xA, then it terminates the program (same
as Lab 3) running in the current context. Once a context terminates, there is no way to resume
it. Whenever this context is executed again, a NOP equivalent instruction should be inserted into
the pipeline. Once all contexts are terminated, the simulation ends. Finally, for debugging and
grading purposes, when simulation ends you must ensure that the contents of the register file
for each context are dumped out in the same format as Lab 3.
If the bottom 24 bits are 0x5, then the thread id of the current thread should be loaded into
the register R0. This instruction should work similarly to a move, i.e. PC is incremented by 4 as
usual and data dependencies are handled properly.

• Exceptions. No support (same as Lab 3).

2.2. Microarchitecture

Pipeline Modifications.

In this lab you will create four different execution contexts and run them in a fine-grained multi-
threading fashion. Each context should contain its own set of registers(R0-15 and CPSR). Also, each
context’s PC should be initialized to the same address, 0x400000, and all other registers should be

1For this lab, we will use the words context and thread interchangeably.



CMU 18-447 – Introduction to Computer Architecture – Spring 2013 2/3

initialized to 0. The number of pipeline stages and the number of execution units should not change.
Data forwarding is still required for some type of instructions. The remaining mechanisms from pre-
vious labs (branch predictor and unnecessary data forwarding or stalling) should be removed since
they are obsolete.

Memory.

Memory is shared between all four contexts. This creates opportunities for writing interesting mul-
tithreaded programs. Basic software primitives such as locking and message passing can all be im-
plemented using shared memory. You are encouraged to write some complex test cases to verify the
correctness of your multithreaded machine.

Fine-Grained Multithreading.

At each cycle the machine should fetch the instruction from a different context and insert it into the
pipeline. As a result, each thread is only executed once every fourth cycle. The pipeline should always
remain full, and no hardware stalling should occur.
The four context should have identifiers 0-3. Thread 0 should execute first, followed by 1, 2, and 3.
When all contexts are executed once, the machine should fetch the next instruction for context 0.
Therefore, the writeback stage and the fetch stage should always be executing from the same context.
In order to facilitate testing and grading, we are providing you with a new register file. You can find
this at /afs/ece/class/ece447/labs/lab4b/447src. This new register file allows you to specify a
thread id through the parameter id, which defaults to 0. Once halted, the content of the registers
will be dumped to a log identified using id. Therefore, it is important that you instance each
of the register files with the correct id.
Once a thread terminates by executing SWI #0xA, all write signals to its register file should be per-
manently asserted low. This means that its PC should increment one last time and point to the next
instruction (PC + 4). This behavior should match the one in Lab 1 and Lab 2. Finally, you should en-
sure that all register files are halted together. The halt signal for the register files should be asserted
only when all threads terminate.

3. Submission

3.1. Lab Section Checkoff

So that the TAs can check you off, please come to any of the lab sections before Sat., 4/1. Note that
you must be checked off for both Lab 4a and Lab 4b by then. You can get them checked
off separately in different lab sections or all in one sitting. Please come early during the lab section.
During the Lab Section, the TAs may ask you:

• to answer questions about your implementations,

• to simulate your implementations using various test inputs (some of which you may have not
seen before),

• to show that your implementation can execute all four contexts fine-grainedly, each terminating
at different times,

• to explain the trade-offs between using fine-grained multithreading and fancy branch predictors.

3.2. Source Code

Make sure that your source code is readable and documented. Please submit the lab by executing
the following commands. Make sure you format your folders as specified. We will penalize
wrong submissions.

Fine-Grained Multithreading.



CMU 18-447 – Introduction to Computer Architecture – Spring 2013 3/3

$ cp -r src /afs/ece/class/ece447/handin/lab4/andrewID/threaded

$ cp -r inputs /afs/ece/class/ece447/handin/lab4/andrewID/threaded

3.3. README

In addition, please submit a README.txt file. To submit these files, execute the following command.

$ cp README.txt /afs/ece/class/ece447/handin/lab4/andrewID/threaded/README.txt

The README.txt file must contain the following three pieces of information.

1. A high-level description of your design (including what are the initial values of your components).

2. How does fine-grained multithreading stack up agaisnt branch predictors? How does each one
perform? What are some limitations for using each approach? How are areas and critical paths
affected?

3. Did you try writing any interesting multithreaded program? Could you write the same program
using one thread? If so, does it run faster using fine-grained multithreading or using branch
predictors?

It may also contain information about any additional aspect of your lab.

3.4. Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please
send an email to 447-instructors@ece.cmu.edu with tarballs of what you would have submitted to
the handin directory.

$ tar cvzf lab4 threaded andrewID.tar.gz src inputs README.txt

Remember, you have only 7 late lab days for the entire semester (applies only to lab submissions, not
to homeworks, not to anything else). If we receive the tarball within 24 hours, we will deduct 1 late
lab day. If we receive the tarball within 24 to 48 hours, we will deduct 2 late lab days... During this
time, you may send updated versions of the tarballs (but try not to send too many). However, once a
tarball is received, it will immediately invalidate a previous tarball you may have sent. You may not
take it back. We will take your very last tarball to calculate how many late lab days to deduct. If we
don’t hear from you at all, we won’t deduct any late lab days, but you will receive a 0 score for the
lab.


