CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 1/7

LAB 3: PIPELINED MIPS

AssIGNED: WED., 2/4; DUE: Fri., 2/20 (MIDNIGHT)

INSTRUCTOR: ONUR MUTLU
TAS: RACHATA AUSAVARUNGNIRUN, KEVIN CHANG, ALBERT CHO, JEREMIE KiM, CLEMENT LOH

“It is comparable to a pipeline which, once filled, has a large output rate no matter what

its length. The same is true here. Once the flow is started, the execution rate of the
instructions is high in spite of the large number of stages through which they progress.”

Chapter 14. The Central Processing Unit. Erich Bloch.

Planning a Computer System: Project Stretch. IBM. McGraw-Hill, 1962.

1. Introduction

In Lab 2, you implemented single-cycle MIPS machines. In this lab, you will implement pipelined MIPS
machines. The pipeline must consist of five stages as discussed in class and covered in a textbook
(Patterson and Hennessy).

¢

Now that multiple instructions can be “in-flight” at the same time, you must detect dependences
between instructions and handle them correctly. In this lab, we will consider only data dependences
and ignore control dependences. Specifically, you will implement two pipelined MIPS machines that
handle data dependences in two different ways: stalling and forwarding. Both MIPS machines must
be correct and synthesizable.

Warning. This lab is difficult. We strongly encourage you to get started early.

Extra Credit. “Top” students will receive extra credit (up to 40%) for implementing the highest
performing MIPS machines. Only correct and synthesizable implementations will be eligible.

2. Specifications of the MIPS Machine
2.1. Architecture

e Instruction Set. The machine supports all MIPS instructions specified in Lab 1, ezcluding
those related to division and control-flow: DIV, DIVU, BEQ, BGEZ, BGEZAL, BGTZ, BLEZ, BLTZ,
BLTZAL, BNE, J, JAL, JALR, JR. As shown in the following table, there are 39 MIPS instructions
that the machine supports.

ADD ADDU ADDI ADDIU AND ANDI BER
BGEZ BGEZAL BGTZ BEEZ BLETZ BETZAL BNE
BEV¥ b F JAE FAER IR LB
LBU LH LHU LUI Lw MFHI MFLO
MTHI MTLO MULT MULTU NOR OR ORI
SB SH SLL SLLV SLT SLTI SLTIU
SLTU SRA SRAV SRL SRLV SUB SUBU
SwW SYSCALL XO0R XORI

e System Call Instruction. Terminates the program (same as Lab 2). In addition, for debug-
ging and grading purposes, you must ensure that the contents of the register file are dumped
out in the same format as Lab 2.

e Exceptions. No support (same as Lab 2).

e Branch Delay Slot. Does not apply: the machine does not support control-flow instructions.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 2/7

2.2. Microarchitecture

Unlike a single-cycle microarchitecture, a pipelined microarchitecture divides the “work” required to
execute an instruction across multiple cycles. Each cycle corresponds to a stage within a pipeline.
The major advantage of a pipelined microarchitecture is that it can execute multiple instructions in
parallel: multiple instructions can be in the pipeline at the same time, albeit at different stages.

Pipeline Stages.

For this lab, you must implement the following five-stage pipeline. Please ensure that there are exactly
five stages. Please ensure that each stage does exactly what it is supposed to do (no more, no less).
For example, as long as the memory is accessed only during the MEM stage, you are allowed to generate
control signals (or perform other bookkeeping activities) for other stages. Later on, for extra credit,
you will be allowed to design your own custom pipeline if you want.

Stage Specification
1. IF Instruction fetch
. ID Instruction decode and register file read

2

3. EX Execution or memory address calculation
4. MEM Memory access

5. WB Writeback to register file

Handling Data Dependences.

For this lab, you must implement two five-stage pipelines, each of which handles data dependences in
a different way. You will submit both of these implementations separately.

1. Stalling. When a data dependence is detected, simply prevent later instructions from enter-
ing/progressing through the pipeline. This leads to idle pipeline stages referred to as “bubbles”.
For this lab, your implementation must stall only when necessary.

2. Forwarding. When a data dependence is detected, allow an earlier instruction to send data
directly to a later instruction even before the data has been written back into the register file.
For this lab, you must forward data into the end of the decode stage. Your implementation
is still allowed to stall, but only when stalling cannot be prevented by forwarding data.

3. Lab Resources

3.1. Source Code

The source code is available at: /afs/ece/class/ece447/labs/lab3. Do NOT modify any files or
folders unless explicitly specified in the list below.

e Makefile
e src/ (NOT PROVIDED; PLEASE USE YOUR OWN FOLDER FROM LAB 2)
e 447src/ — Supplementary source code.

— multiply_coprocessor.v: The multiplier module.

— regfile.v: An array of 3-ported registers. (A “file” is an array of registers.)

— syscall_unit.v: The system call unit: exercised only when the syscall instruction is
invoked to terminate a program.

— exception_unit.v: The exception unit: not exercised.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 3/7

— mips_mem.v: The memory module.
— testbench.v: The testbench.
e 447inputs/ — Example test inputs.
e inputs/ (MODIFIABLE) — You are allowed to add your own test inputs.
e outputs/ (MODIFIABLE) - You can direct your outputs to here.
e 447ncsim/ — Config. file for the ncsim tool.

e ncsim/ (MODIFIABLE) — Ignore. If you really want, you can implement a customized con-
fig. file.

e 447xst/ — Config. files for the xst tool. (We are synthesizing for a Virtex-5 FPGA from Xilinx.)
e 44T7util/

The source code is exactly the same as Lab 2, except for the following three differences. First, we do
not provide a src/ folder. Instead, please use your own src/ that you completed for Lab 2. Second,
we provide you with a multiplication module: 447src/multiply_coprocessor.v. Please use this to
implement the multiplication-related instructions. Third, there is a minor change in the 447xst/
folder which you can ignore.

3.2. Software Tools

We provide software tools for compiling, simulating, and synthesizing your MIPS machine. In order
to use the tools, remotely log into an ECE server (e.g., ece [000-008] .ece.cmu.edu from off-campus
and ece[009-031] . campus.ece.cmu.local from on-campus) and execute the following command in
your bash shell. The command will modify your shell’s environment variables to set up the correct
AF'S paths to the tool binaries as well as the licenses for using them. We highly recommend doing the
lab on the ECE servers.

$ source /afs/ece/class/ece447/bin/setupdd?

The following is the list of software tools that are involved in this lab. For your benefit, we also provide
their technical documents on the course website (they have the correct versions that match with those
of the binaries). If you have questions about the tools, please consult the technical documents first.

ncvlog: Verilog/System Verilog compiler (Cadence) — ncvlog.pdf

ncelab: Verilog/System Verilog elaborator (Cadence) — ncvlog. pdf

ncsim: Verilog/System Verilog simulator (Cadence) — ncvlog.pdf
e simvision: Waveform viewer (Cadence) — simvision.pdf, simviscmdref.pdf

e xst: Verilog/System Verilog synthesizer (Xilinx) — xst.pdf

Among these, simvision is the only tool that you will directly invoke. All other tools will be auto-
matically invoked by the Makefile that we provide. Since simvision requires a graphical interface,
make sure that you enable X11 forwarding when you remotely log into an ECE server (i.e., ssh -X
ece000.ece.cmu.edu).!

3.3. Makefile

We provide a Makefile that automates the tedious process of compiling, simulating, verifying, and
synthesizing your System Verilog implementation. Typing make without any targets or options will
invoke the help screen. Please read this help screen carefully!

1If you are running Microsoft Windows on your local machine, you need to install an X server that does the actual
rendering. Please install both Xming and Xming-fonts from http://www.straightrunning.com/XmingNotes/.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 4/7

$

make

4. Getting Started & Tips

4.1.

1.

Getting Started

Review the material on pipelined machines from the lecture notes and the textbook (Patterson
and Hennessy).

Sketch a high-level block diagram of how you want to organize your pipelined machine. Refine
this block diagram as you make progress on your implementation. This block diagram will be
collected.

3. Copy your src/ folder from Lab 2 into the Lab 3 directory.

4. Implement just enough of the pipeline so that the machine can execute the following stream

4.2.

of instructions where there are no back-to-back instructions: ADDIU, NOP, NOP, NOP, NOP,
ADDIU, NOP, NOP, NOP, NOP, ...

e While there is no NOP machine instruction defined in the MIPS ISA per se, the SPIM
assembler happens to convert a nop assembly instruction into a particular OR machine
instruction (0x000025: $r0 <« $r0 | $r0). While it is certainly not required, for your
debugging purposes, we recommend that your machine recognize this particular machine
instruction as a “NOP”. Your machine should then “execute” this instruction by doing
nothing except for incrementing the program counter. This is a convenient way of forcing
an artificial bubble into your pipeline.

e Create a test input called inputs/addiumnop.s which is the same as 447inputs/addiu.s,
except that four nop assembly instructions are inserted after every addiu assembly instruc-
tion. Simulate this test input to check whether your rudimentary pipeline is correct.

Implement just enough of the pipeline so that the machine can execute the following stream of
instructions where there are no data dependences: ADDIU, ADDIU, ADDIU, ...

e Create a test input called inputs/addiu-addiu.s, which is the same as 447inputs/addiu.s,
except that no register is ever read by a later instruction if the register had been written
to by an earlier instruction (i.e., no RAW data dependences). Simulate this test input to
check whether your rudimentary pipeline is correct.

Augment your pipeline with logic for detecting data dependence and stalling so that the machine
can execute the following stream of instructions where there are data dependences: ADDIU,
ADDIU, ADDIU, ...

e Simulate 447inputs/addiu.s to check whether your rudimentary pipeline is correct.
Once you have completely implemented the stalling version of your pipeline, use it a basis for
implementing the forwarding version. Remember, you will submit both versions.

Tips

Read this handout in detail.

Please ask questions to the TAs using the online Q&A forum. (The link is available
on the course website.)

When you encounter a technical problem, please read the logs/reports generated by the software
tools in the outputs/ folder.

Your System Verilog code will require many wires. Please adopt a consistent scheme for naming
them.

We provide a multiplier module 447src/multiply_coprocessor.v that you can instantiate to

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 5/7

implement the multiplication-related instructions: MFHI, MFLO, MTHI, MTLO, MULT, MULTU. You
will not be implementing division-related instructions.

e The system call instruction should terminate the program only when all other preceding instruc-
tions have completed execution.

e When coding in System Verilog, we recommend having a separate module for each pipeline stage
(maybe even in separate files). This way, it is easy to draw a separate block diagram for each
module.

e Make sure your System Verilog implementation is synthesizable.

e For debugging and grading purposes, the system call instruction must dump out the contents of
the register file in the same format as Lab 2. Since the $display() System Verilog function is
not synthesizable, you must include synthesis translate_off and synthesis translate_on
(in commented form) before and after the code block that includes $display (). Please refer to
the source code from Lab 2 to see how it is done.

e When synthesizing your implementation, check for warnings that mention the word “latch”.
This is most likely due to a bug in your System Verilog code (e.g., incomplete case or if
statements).

e The cycle time of your implementation is determined by the critical path of the slowest stage.
While a short cycle time is not necessary to achieve a perfect score on this lab, you should still try
to keep your cycle time as short as possible. Keep in mind that cycle time is not the whole story.
Forwarding paths may actually increase your cycle time, but also improve overall performance
(by reducing stalls and decreasing CPI). Finally, its important to make your processor work
first, and then make it work fast. Premature optimization is the root of all evil.

5. Submission
5.1. Block Diagram

Please submit two hardcopies of the computer-drawn diagram of your MIPS machine: one for the
stalling version and the other for the forwarding version. The TAs will collect these diagrams during
the Lab Sections and you will be responsible for explaining your design decisions to the TAs.

The diagrams should be at the same level of detail as you saw in the textbook and lecture notes.
All major structures (e.g., registers, muxes) should be drawn, as well as boxes for the various control
logic blocks. Label all wires with their names and widths. We suggest using different colors (or line
styles) to differentiate control- and data-path wires. Putting in an extra effort to keep this diagram
neat and clean will definitely pay off. It is okay to utilize plenty of white space and to span multiple
sheets of paper. We recommend using Inkscape (cross-platform), Adobe Illustrator (Windows/Mac),
or Microsoft Visio (Windows/Mac).

5.2. Lab Section Checkoff

So that the TAs can check you off, please come to any of the lab sections before Sat., 2/28. Note
that you must be checked off for both versions of your implementation (stalling and
forwarding) and also the extra credit if you choose to submit it. You can get them checked
off separately in different lab sections or all in one sitting. Please come early during the lab section.
During the Lab Section, the TAs may ask you:

e to answer questions about your implementations,

e to simulate your implementation using various test inputs (some of which you may have not
seen before),

e to synthesize your implementation.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 6/7

5.3. Source Code

Make sure that your source code is readable and documented. Please submit the lab by executing the
following commands.

Stalling Version.

$ cp -r src /afs/ece/class/ece447/handin/lab3/andrewID/stalling
$ cp -r inputs /afs/ece/class/ece447/handin/lab3/andrewID/stalling

Forwarding Version.

$ cp -r src /afs/ece/class/ece447/handin/lab3/andrewID/forwarding
$ cp -r inputs /afs/ece/class/ece447/handin/lab3/andrewID/forwarding

5.4. README
In addition, please submit two README. txt files. To submit these files, execute the following command.

$ cp README.txt /afs/ece/class/eced447/handin/lab3/andrewID/stalling/README. txt
$ cp README.txt /afs/ece/class/eced447/handin/lab3/andrewID/forwarding/README. txt

The README. txt file must contain the following two pieces of information.

1. A high-level description of your design.

2. A high-level description of the critical-path of your synthesized implementation.

It may also contain information about any additional aspect of your lab.
5.5. Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please
send an email to 447-instructors@ece.cmu.edu with tarballs of what you would have submitted to
the handin directory.

$ tar cvzf lab3_stalling andrewID.tar.gz src inputs README.txt
$ tar cvzf lab3_forwarding andrewID.tar.gz src inputs README.txt

Remember, you have only 5 late lab days for the entire semester (applies to only lab submissions, not
to homeworks, not to anything else). If we receive the tarball within 24 hours, we will deduct 1 late
lab day. If we receive the tarball within 24 to 48 hours, we will deduct 2 late lab days... During this
time, you may send updated versions of the tarballs (but try not to send too many). However, once a
tarball is received, it will immediately invalidate a previous tarball you may have sent. You may not
take it back. We will take your very last tarball to calculate how many late lab days to deduct. If we
don’t hear from you at all, we won’t deduct any late lab days, but you will receive a 0 score for the
lab.

6. Extra Credit

For extra credit on this lab, we will hold a performance competition. Among all implementations
that are correct and synthesizable, the “top”? students that have the lowest execution time for an
undisclosed set of test inputs will receive up to 40% additional credit for this lab (equivalent to 2%

2The instructor reserves all rights for the precise definition of the word “top”.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 7/7

additional credit for the course) as well as “prizes” (at the discretion of the instructor). You may
choose to submit the stalling or the forwarding version of the pipeline without making any effort to
optimize it further.

All of the guidelines for Lab 3 specified in this handout also apply to the extra credit, except for the
following differences.

As long as it is correct and synthesizable, there are no restrictions on the pipeline. It may
have an arbitrary number of stages and an arbitrary way of handling data dependences.

To make the competition more interesting, you are not required to implement the multi-
plier module which is likely to be on the critical path no matter what. We will not run the
extra credit with any test input that includes multiplication-related instructions: MFHI, MFLO,
MTHI, MTLO, MULT, MULTU.

The README.txt must include the following two additional pieces of information.
1. How you have defined your pipeline stages (if different from the reference).
2. Description of the effort you invested (if any) to improve performance.
Submission path: /afs/ece/class/ece447/handin/lab3/andrewID/extra

Tarball (for late submissions): lab3_extra_andrewID.tar.gz

For late submissions, we must receive all three tarballs (stalling, forwarding, extra credit) on the same
day. If not, we will deduct the lab late days for whichever tarball we received last.

